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Abstract

Purpose of this paper is twofold. It is first to offer a rough overview on the field of threshold cointegra-

tion, from the seminal paper of Balke and Fomby (1997) to the recent developments. Simultaneously, it

is to describe the implementation of the main functionalities for the modeling in the open-source package

tsDyn. It provides hence a unique way to get an introduction on the threshold cointegration field allowing

in the same time to conduct its own analysis.

Introduced by Engle and Granger (1987), the concept of cointegration became a indispensable step

in the analysis of non stationary time series. The underlying idea is that even if two variables (or more)

are non-stationary, there can exist a combination of them which is stationary. This definition leads to

interesting interpretations as the variables can then be interpreted to have a stable relationship (a long-

run equilibrium), can be represented in an vector error-correction model, and share a common stochastic

trend.

However, implicit in the definition is the idea that every small deviation from the long-run equilibrium

will lead instantaneously to error correction mechanisms. Threshold cointegration extends the linear

cointegration case by allowing the adjustment to occur only after the deviation exceed some critical

threshold, thus taking into account possibly transaction costs or stickiness of the prices. Furthermore, it

allows to capture asymmetries in the adjustment, where positive or negative deviations won’t be corrected

in the same manner.
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1 Introduction: linear cointegration

On stationarity When dealing with time series, a main concern for statistical analysis is stationarity, the

usual inference being based on that assumption. In its weak version, stationarity is defined as the finite-

ness and time-invariance of the expectation, variance and auto-covariance of a series. However, there are

considerable theoretical (Samuelson, 1965) and empirical (Nelson and Plosser, 1982) arguments in favor of

non-stationarity of economic series, especially for the difference-stationary type. A difference-stationary (or

integrated) series is defined as a series that is non-stationary, but whose difference is stationary, as the random

walk is. Great care should be taken when analyzing such series as they follow a different asymptotic behavior

and particularly, regression among integrated series leads to a so-called spurious regression, i.e. inflation of

regression indicators (t-tests, R2) which lead to the false conclusion of statistical dependence between the

series (Granger and Newbold 1974, Philipps 1986). An obvious remedy is to use differenced series, for which

usual asymptotics apply. This approach has become the standard in the VAR framework popularized by

Sims (1980).

Cointegration Granger introduced in 1982 the concept of cointegration, which means integrated series for

which a linear combination exists that is stationary. This can be interpreted economically as the presence of

a long-run equilibrium, the relationship between the variables being stable. The concept gained a significant

interest with the so-called Granger representation theorem, which states that cointegrated variables have a

vector error correction model (VECM) representation, that can be seen as a VAR model including a variable

representing the deviations from the long-run equilibrium. Equation1 shows a VECM for two variables

including a constant, the error-correction term and a lag.

[
∆Xt

∆Yt

]
=

[
c1

c2

]
+

[
a1

a2

]
ECT−1 +

[
b11 b12

b21 b22

][
∆Xt−1

∆Xt−1

]
+

[
εXt

εYt

]
ECT−1 = (1,−β)

[
Xt−1

Yt−1

]
(1)

This VECM representation is particularly interesting as it allows to estimate how the variables adjust

deviations towards the long-run equilibrium, to test for Granger-causality as well as to determine the impacts

of shocks to the variables using impulse response functions. In a system with more than k > 2 variables,

there may exist k − 1 cointegrating relationships, hence the vector A of adjustment speed parameters (also

called loading matrix) and the vector B of cointegrating values become matrices1. The matrix of their

product, corresponding to the parameters of the lagged vector, is singular with rank equal to the number of

cointegrating relationships.

Two methods captured the main attention and are of popular use now. The first one was advocated by

Engle and Granger (hereafter E-G), who propose a two-steps approach, estimating the cointegrating values in

the long-run representation and then plugging those estimates one the VECM representation2. The related

testing procedure taking absence of cointegration as a null hypothesis consists in determining whether the

residuals from the first step are stationary or not. Rejection of the stationarity is then interpreted as the

1of dimension r × k, with r the number of cointegrating values and k the number of variables
2This two-step approach has been justified afterwards by the fact that the estimator in the first step is super-consistent, i.e.

converging to its true value at rate n instead of usual rate
√
n (Stock, 1987)
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rejection of the null hypothesis of cointegration. When the cointegrating vector is known, usual unit root

tests can be applied, whereas in case it is unknown, different critical values need to be used. Philipps and

Ouliaris (1990) developed a test that is invariant to the normalization available in the software R in package

urca (Pfaff 2008a).

Estimation and testing A major drawback of the E-G approach is that is allows to estimate and test

only for one cointegrating relationship. When the cointegrating vectors are known, estimation of multiple

cointegration relationship is trivial as the estimation is simply OLS regression for the VECM and testing

can be done using classical Wald tests (Horvath and Watson 1995). When these vectors are unknown,

the reduced-rank approach adopted by Johansen (1998, 1995)Johansen (1988, 1995) is able to estimate

the potential cointegrating vectors and to test for their significance, allowing to determine the number of

cointegration relationships. This is available in R with the ca.jo() function from package vars (Pfaff 2008b).

2 The extension to threshold cointegration

Balke and Fomby (1997) note that in the concept of cointegration there is the implicit assumption that the

adjustment of the deviations towards the long-run equilibrium is made instantaneously at each period. There

are nevertheless serious arguments in economic theory to invalidate this assumption of linearity. Among

them, the presence of transaction costs is maybe the most noteworthy, as it implies that adjustment will

occur only once deviations are higher than the transactions costs, and hence adjustment should not happen

instantaneously and at each time. Financial theory predicts that even in highly liquid markets a so-called

band of no arbitrage may exist where deviations are too small for the arbitrage to be profitable. In the

domain of macroeconomics, policies are often organized around targets, where intervention is activated only

once the deviations from the target are significant, the most famous example being the monetary policy

management during the Bretton Woods agreement where central banks pegged their exchange rate and

allowed a +/- 1 % band.

A second range of arguments that were raised in favour of nonlinear adjustment concerns the assumption

of symmetry. In the linear cointegration context, increases or decreases of the deviations are deemed to be

corrected in the same way. Again, several theoretical arguments may contest this assumption, such as the

presence of menu costs ( Levy, Bergen, Dutta, and Venable, 1997, Dutta, Bergen, Levy, and Venable, 1999),

market power (Damania and Yang, 1998, Ward, 1982) or simply small country vs rest of the world effects.

Balke and Fomby (1997) introduced the concept of threshold cointegration, which allows to take into

consideration the two main criticisms (though BF were concerned only with the first one) raised against

linear cointegration. In their framework, the adjustment does not need to occur instantaneously but only

once the deviations exceed some critical threshold, allowing thus the presence of an inaction or no-arbitrage

band. They base their adjustment process on the self-exciting threshold autoregressive model (SETAR3)

introduced by Chan (1983) and discussed extensively in Tong (1990). In the SETAR model, the autoregressive

coefficients take different values depending on whether the previous value is above or under a certain threshold

value, thus exhibiting regime switching dynamics. Hence, the linear adjustment process:

3But they call this model TAR, which is a more general form presented later.
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εt = ρεt−1 + ut (2)

is extended as:

εt =


ρLεt−1 + ut if εt−1 ≤ θL
ρMεt−1 + ut if θL ≤ εt−1 ≤ θH
ρHεt−1 + ut if θH ≤ εt−1

(3)

This is actually a piecewise linear model where three different AR(1) processes are estimated depending

on the state of the variable at time t− 1. Autoregressive parameters are denoted with subscript L, M and

H standing for Low, Middle and High regime, and they differ whether the variable was below the lower

threshold θL, between the lower θL and upper θH threshold, or above the higher θH . This leads to some

further remarks:

� The threshold effect is present when ρH 6= ρMand ρL 6= ρM and as long as 0 < P (ε < θb) <

1 where b = L or H

� The SETAR model nest the AR when ρH = ρM = ρL.

� The model can easily by extended by adding lags in each regime, as well as intercepts.

� Several restricted models have been proposed, the main restriction being that the outer regimes are

symmetric (θL = θM along with ρH = ρL).

While the work of Balke and Fomby (1997) focused on the long-run relationship representation, extension

to a threshold VECM (TVECM) has been made by several authors, the threshold effect being applied the

anticipation by the agents of interventionary policy only to the error-correction term (Granger and Lee 1989,

Seo 2006) or to the lags and the intercept as well (Hansen and Seo 2002, Lo and Zivot 2001 ).
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+
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][
∆Xt−1

∆Yt−1

]
+

[
εXt

εYt
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(4)

In this model, the error-correction term is split into three regimes, lower (L), middle (M) and high (H)

depending on whether it is below, between or above the two thresholds θL and θH , as in 3.

Note that speaking of threshold cointegration in the case of the TVECM was rather a conjecture as no

formal representation theorem had been demonstrated in the threshold case. Nevertheless, the intuition of

these authors was justified as Krishnakumar and Netto (2009) derived recently such a theorem, under the

assumption that the loading matrix (the matrix of coefficients a in 4) is diagonal. An interesting conclusion

of their theorem is that the threshold effect is present on the lags also only if the residuals from the LR
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follow a multivariate SETAR process with one lag in each regime. When the residuals follow a multivariate

SETAR process with p >1 lags, the lags in the TVECM do also have regime-specific components.

Several other model specifications have been used in the literature. Gonzalo and Pittarakis(2006a) and

Krishnakumar and Netto (2009) use as transition variable not the deviations itself, but an external variable

(that is, a TAR model, as we will see later). This has important implications as the stationarity conditions

are different, estimation is much easier, and testing is more restrictive4. In that sense, it should be clearly

differentiated from threshold cointegration as introduced by BF and I will denote it by cointegration with

threshold effects. In my opinion, this approach is less attractive as it lets unanswered the question why an

influencing variable is not included in the VECM.

All previous studies were based on the definition of threshold cointegration as a case where the variables

are“linear”and the combination is linear, whereas the adjustment process exhibits threshold effects. Gonzalo

and Pittarakis (2006b) take an opposite direction where the cointegrating relationship exhibits threshold

effects whereas the adjustment is linear5. That is, yt is I(1) and xt follows a SETAR process, but there

exists a linear combination of them which is stationary. Note that in that case, the notion of integratedness

is undefined and there is no corresponding VECM representation (Gonzalo and Pittarakis 2006a).

Empirical applications Since the seminal work of Balke and Fomby, threshold cointegration has become

widely applied in various contexts. The law of one price (LOP) and the associated purchasing power parity

(PPP) hypothesis represent maybe the field where the greatest number of studies has been conducted (see for

a review on LOP Lo and Zivot, for the PPP, Gouveia and Rodrigues 2004, Heimonen 2006, Bec et al. 2004).

Numerous studies on price transmission of agricultural products or other commodities (principally oil) use the

threshold cointegration framework. In the field of the term interest theory, threshold cointegration methods

have been developed and applied by Enders and Granger (1998), Enders and Siklos (2001), Bec et al. (2008),

Krishnakumar and Netto (2009). Other fields include the Fisher effect (Million 2004), financial integration

based on comparing local and the US stock markets (Jawadi et al. 2009), exchange rate pass-through (Al-

Abri and Goodwin 2009). To my knowledge, however, the use of threshold cointegration remained within

the economical literature and no study has been done on other domains.

3 The TAR model: probabilistic structure

The Balke and Fomby approach was based on the use of the SETAR model developed by Chan and Tong

associated to cointegration. The SETAR is actually a particular case of the more general TAR model that

can be written as:

yt =


µ1 + ρ1,1yt−1 + . . .+ ρ1,p1yt−p1 + εt if xt−d ≥ θm−1
µ2 + ρ2,1yt−1 + . . .+ ρ2,p2yt−p2 + εt if θm−1 ≥ xt−d ≥ θm−2
. . . if θ... ≥ xt−d ≥ θ...
µm + ρm,1yt−1 + . . .+ ρm,pmyt−pm + εt if θ1 ≥ xt−d

(5)

4Current tests work only with a stationary external variable.
5For an analogous case in the structural break literature, see Gregory and Hansen (1996)
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This model has several parameters:

� m: the number of regimes

� µ1 . . . µm: the intercepts in each regime

� pj,1 . . . pj,m−1: the number of lags in regime j

� θ1 . . . θm−1: the thresholds

� d: the delay of the transition variable

� xt−d: the transition variable

When used in the framework of cointegration, BF used a simplified form of 5 by taking lagged values as the

transition variable (i.e. setting xt−d = yt−d), which leads to she called self-exciting threshold autoregressive

model (SETAR), that they nevertheless called simply TAR. They furthermore set the delay value to d = 1, as

it then corresponds to the delay of the error-correction term. Note that some authors don’t take as transition

variable the deviations from equilibrium but rather an external variable6, i.e. they use a TAR model.

The theoretically unlimited number of regimes is usually restricted to 2 or 3 in empirical studies. Hence,

the simplified model takes the following form:

yt =


µL + ρL,1yt−1 + . . .+ ρL,pLyt−pL + εt if yt−1 ≤ θL
µM + ρM,1yt−1 + . . .+ ρM,pMyt−pM + εt if θL ≤ yt−1 ≤ θH
µH + ρH,1yt−1 + . . .+ ρH,pHyt−pH + εt if θH ≤ yt−1

(6)

Sufficient and necessary conditions for stationarity of model 6 in case of i.i.d εt were derived by Chan et

al. (1985) in the case when only one lag is present in each regime7. The whole process is stationary if and

only if one of the following conditions holds:

1. ρL < 1, ρH < 1, and ρLρH < 1

2. ρL < 1, ρH = 1, and µH < 0

3. ρH < 1, ρL = 1, and µL > 0

4. ρH = ρL = 1, and µH < 0 < µL

5. ρHρL = 1, ρL < 0, and µ+ ρHµL

Interestingly, the values of the coefficients in the inner regime do not appear in these conditions. Thus, a

unit root in the inner regime won’t affect the stationarity of the whole process. Note also that the condition

for the AR(1) process |ρ| < 1 is relaxed as the autoregressive coefficients have only to be strictly inferior to

1.

6Or the differences of a single variable included in the process, as in Krishnakumar and Netto (2009).
7Chan et al. actually prove this for the general case with m regimes. In that case ρL is to be replaced by ρ1 and ρH by

ρm−1
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Condition (1) corresponds to a case where the stationarity of the whole process is due to the stationarity

of the outer regimes. It corresponds to the previously described case where adjustment occurs only after

some threshold has been reached. This is the case being mostly referred and investigated in the threshold

cointegration literature. That condition has been shown to hold (de Jong 2009) under the weaker condition

of weakly dependent innovations.

Conditions (2) and (3) are less restrictive as they allow the presence of a unit root in an outer regime.

The process is though stationary provided the drift in the unit root regime pushes towards the stationary

regime.

Conditions (4) is still less restrictive as then the outer regimes can have both unit roots, but the fact

that the drift parameters are of opposed signs ensures that the process will revert to its mean. In one sense,

a process driven by condition (4) could correspond to a model of adjustment, as once the inaction band is

overtaken, strong mean reversion occurs. See the discussion in section 6.1.

Condition (5) does not correspond in our mind to any clear and intuitive process and is not discussed.

Higher order lag polynomial Sufficient and necessary conditions for a SETAR process with more than one

lag are still not known. Sufficient conditions have been derived, but those correspond only to condition

(1) of the model with one lag. Hence, one may conjecture that weaker conditions allowing for unit roots

in regimes such as (2) to (5) may hold. Chan and Tong (1985) established the sufficient condition that

maxa≤i≤m
∑p
j=1 |ρij | < 1, Kapetanios and Shin (2006) require stationarity8 of the outer regimes, whereas

Bec et al. (2004) establish weaker conditions, which have a less intuitive interpretation.

4 Estimation and inference

4.1 Estimation and inference in the long-run relationship representation

4.1.1 The one threshold case

Estimation is discussed first in the long-run relationship for the threshold and slope parameters, with first

one and then two thresholds. Estimation of the number of lags is then discussed. Second estimation of the

threshold with given cointegrating values is done for 1 and 2 thresholds, and then extended to the case where

the cointegrating vector has to be estimated.

Notice that model 6 can be written in a usual regression form as:

yt = IL (µL + ρL,1yt−1 + . . .+ ρL,pLyt−pM )+IM (µM + ρM,1yt−1 + . . .+ ρM,pMyt−pM )+IH (µH + ρH,1yt−1 + . . .+ ρH,pHyt−pH)+εt

(7)

where the Ia are dummy functions that take either 0 or 1 depending on if yt−1 ∈ a wherea =

L,M or H:

Ia =

1 if yt−1 ∈ a

0 else

8The roots of the lags polynomial having all roots outside the unit circle.
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Estimation of the slope parameters β =(µa, ρa,i) is straightforward in case of a known threshold: it is

simply OLS. Note that as the dummy variables are mutually exclusive9, the subsets regressors are orthogonal

and estimation can also be done independently on the subsets.

Estimation of the threshold parameter is not obvious as the dummy variable is a discontinuous function.

Hence, to obtain an estimator minimizing the sum of squares or maximizing the log-likelihood, an analytical

form can’t be derived, nor can usual optimisation algorithms be used, as the objective function is highly

erratic.

A solution is obtained through concentration of the objective function. As the slope estimators given

a threshold are OLS, one can reduce the problem by concentrating out the minimization problem through

β(θ) and the corresponding sum of squares SSR(θ). The objective function becomes:

θ̂ = arg min
θ
SSR(θ) (8)

Minimization of 8 is done through a grid search: the values of the variable are sorted, a certain percentage

of the first and last values is excluded to ensure a minimal number of observations in each regime, the SSR is

estimated for each selected value and the one that minimize the SSR is taken as the estimator. This method

has received different name in the literature such as concentrated LS, conditional LS.

This is implemented in package tsDynthrough the function selectSETAR. The range of value to search

inside is specified by the argument trim specifying the percentage of extreme values to exclude and the

argument th, which allows to search among fewer observations, search inside an interval or around a value.

R code
library(tsDyn)

data(lynx)

grid<-selectSETAR(lynx, m=1, thDelay=0, trim=0.15, criterion="SSR")

output
Using maximum autoregressive order for low regime: mL = 1

Using maximum autoregressive order for high regime: mH = 1

Searching on 75 possible threshold values within regimes with sufficient ( 15% ) number of observations

Searching on 75 combinations of thresholds (75) and thDelay (1)

R code
print(grid)

output
Results of the grid search for 1 threshold

Conditional on m= 1

thDelay th SSR

1 0 1388 123102676

2 0 1307 123951941

3 0 1475 124388924

9i.e. an observation is only in one regime at a time
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4 0 1676 124516444

5 0 1638 124557228

6 0 1426 125281019

7 0 1623 125340740

8 0 1292 125488021

9 0 1000 125590841

10 0 957 125596144

Figure 1 shows the output of the grid search and illustrate the erratic behavior of the objective function.

As pointed out by Enders (2004), a strong threshold effect will result in a sharp U-shaped grid search.

Once the threshold has been estimated, it can be plugged into the setar() function. One can thus obtain

the slope estimates and their asymptotic p-values10 :

R code
set<-setar(lynx, m=1, thDelay=0, th=grid$th)

summary(set)

output
Non linear autoregressive model

SETAR model ( 2 regimes)

Coefficients:

Low regime:

const.L phiL.1

-150.298119 1.997857

High regime:

const.H phiH.1

984.5047382 0.5595309

Threshold:

-Variable: Z(t) = + (1) X(t)

-Value: 1388 (fixed)

Proportion of points in low regime: 59.29% High regime: 40.71%

Residuals:

Min 1Q Median 3Q Max

-2677.749 -471.918 90.273 327.865 4067.721

Fit:

residuals variance = 1079848, AIC = 1592, MAPE = 119.8%

Coefficient(s):

10based on student distribution
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Figure 1: Graphical output of the grid search for one threshold

R code
plot(grid)
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Estimate Std. Error t value Pr(>|t|)

const.L -150.29812 220.45996 -0.6817 0.49683

phiL.1 1.99786 0.39437 5.0659 1.651e-06 ***

const.H 984.50474 385.10377 2.5565 0.01194 *

phiH.1 0.55953 0.11439 4.8915 3.442e-06 ***

---

Signif. codes: 0

Threshold

Variable: Z(t) = + (1) X(t)

Value: 1388 (fixed)

It produces an object of class setar with specific methods such as print(), summary(), plot() and toLatex()

and inherits from the class nlar with general methods for AIC(), BIC(), coef(), deviance(), fitted(), logLik(),

residuals(), MAPE(), mse(), predict().

Note those two steps could have been done directly using setar() and without specification of the th

argument.

4.1.2 The two threshold case

Procedure for two thresholds can be conducted in the same way, and searching on all combinations of θL, θH

to minimize SSR(θL, θH). This is however a n2dimensional search and may rapidly become cumbersome. A

computational shortcut was suggested in BF (1997). The idea is to estimate the threshold in a sequential

way: the search is done first in a model with only one threshold. The second threshold is then estimated

taking the first as fixed. A few iterations can be conducted, reestimating the first threshold conditional

on the second one and viz. Gonzalo and Pittarakis (2002) showed that this algorithm is efficient as the

estimator in the first step in the mis-specified model is nevertheless consistent for one of the thresholds. This

is a substantial shortcut as it reduces the number of computations from n2 to 2 × n or k × n when some

iterations are done, practice showing that after 2 or 3 iterations a maximum is reached.

Estimation of the second threshold is done in package tsDynby setting the parameter nthresh to 2:

R code
selectSETAR(lynx, m=1, thDelay=0, trim=0.15, criterion="SSR", nthresh=2)

output
Using maximum autoregressive order for low regime: mL = 1

Using maximum autoregressive order for high regime: mH = 1

Using maximum autoregressive order for middle regime: mM = 1

Searching on 75 possible threshold values within regimes with sufficient ( 15% ) number of observations

Searching on 75 combinations of thresholds (75) and thDelay (1)

Result of the one threshold search:

12



-Thresh: 1388 -Delay: 0 - SSR 123102676

Second best: 2577 (conditionnal on th= 1388 and Delay= 0 ) SSR/AIC: 114452658

Second best: 1000 (conditionnal on th= 2577 and Delay= 0 ) SSR/AIC: 113310032

Results of the grid search for 1 threshold

Conditional on m= 1

thDelay th SSR

1 0 1388 123102676

2 0 1307 123951941

3 0 1475 124388924

4 0 1676 124516444

5 0 1638 124557228

Results of the grid search for 2 thresholds

Conditional on thDelay = 0 and m = 1

th1 th2 SSR

1 1000 2577 113310032

Overall best results:

thDelay th1 th2 SSR

0 1000 2577 113310032

With lags:

-ML: 1

-MM: 1

-MH: 1

Previous discussion was based on the pure TAR model. When this is applied in the domain of threshold

cointegration, the cointegrating vector needs to be estimated. This doesn’t seem to be a problem as practically

all studies apply a two-step approach, estimating first the cointegrating vector and then estimating the

threshold parameters of the residuals from the first step. This could be justified as the estimator of the

first step is super-consistent11. There are to my knowledge nevertheless no proof nor empirical simulations

showing that this sequential approach leads indeed to global optimization over the parameters.

4.1.3 Distribution of the estimator

Properties of the concentrated LS estimator described above were obtained by Chan (1993). He established

that the estimator of the threshold, θ̂, was super-convergent, whereas the estimator of the slope coefficients,

β̂, was convergent. He furthermore found that the distribution of θ̂ is a compound Poisson process with

nuisance parameters, which can’t be computed easily. Superconvergence of θ̂ allows asymptotically to take

the estimated value as given and conduct usual inference on the β̂. Indeed, the distribution of β̂ is the usual

gaussian law and is independent asymptotically of the θ̂. Those results apply when all the coefficients values

differ in each regime, the distribution of the whole process being discontinuous. In a certain case when only

11Super-consistency refers to the fact that the estimator converge to its true value at rate n instead of usual rate
√
n.
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a few variables have regime specific value, the so-called continuous case, Chan and Tsay (1998) established

that the threshold estimator converges at the usual rate and is normally distributed, whereas the asymptotic

Independence does not hold. However, the continuous model does not seem to have received much use in

empirical applications12. There remains an uncertainty for me nevertheless if some studies use actually a

continuous model but describing it as a discontinuous model.

Note that while in both continuous and discontinuous models the results are known in the one threshold

case, there is to my knowledge no study investigating the two thresholds model.

Inference on the threshold parameters A few studies have concentrated on methods to do inference on the

threshold parameter. Hansen (2000) makes the assumption that the threshold effect vanishes asymptotically,

which enables him to derive the distribution of the threshold parameter and to provide critical values for

the likelihood ratio test of θ = θ0. Confidence intervals can then be obtained by inverting the log-likelihood

ratio: the bound are the values for which the test is rejected. 13

Gonzalo and Wolf (2005) use a subsampling procedure to obtain confidence intervals for the threshold.

Their method has the advantage of providing a test to discriminate between continuous and discontinuous

models. Seo and Linton (2007) modify the objective function by replacing the indicator function by a

smoothing function14. This so called smoothed least square estimator has a smaller rate of convergence but

is normally distributed and still independent of the slope parameter estimator. They furthermore establish

the validity of a regressor-based bootstrap to obtain small-sample refinements. None of those methods is

currently implemented in package tsDyn, but the inclusion of Hansen method is under project.

Even if the estimators of the slope parameters are asymptotically normally distributed and independant of

the threshold estimator, this may not hold in small sample. Hansen (2000), and Seo and Linton (2006), both

suggest methods to take into account the variability of the threshold parameter when building confidence

intervals for the slope coefficients. Hansen’s method requires lot of computations as it implies to estimate the

confidence interval of β̂(θ̂) for all θi that are included in the confidence interval of θ̂. Using the normality of

the smoothed-least square, Seo and Linton (2006) are able to obtain a simpler way to compute the confidence

interval for β̂.

-Carlo Studies Globally, Monte Carlo studies of the estimators in the previous papers (Hansen 2000,

Gonzalo and Wolf 2005, Seo and Linton 2006) find that the threshold parameters exhibit a large variability,

higher than is predicted by the asymptotical theory: super-convergence of the estimator does not seem to be

effective in small samples. Consequently, the slope estimators exhibit a large variability. Without surprise,

the authors remark that the variability decrease with the sample size as well as with the effect threshold:

the bigger the difference in the parameters in each regime, the better the estimation of the threshold.

Gonzalo and Pittarakis (2002) find another interesting factor influencing the variability, namely the number

of observations in each regime. While it seems obvious that this will influence the precision in estimating

the slope parameters, they show that this affects also the threshold parameter. Indeed, θ̂ is best estimated

12Gonzalo and Wolf (2005) discuss a test to differentiate between continuous and discontinuous model.
13As the objective function is erratic, there may be intervals inside which the test was rejected for some values and not

rejected for others, see graph page 588 in Hansen (2000).
14This can be a distribution function as it needs to be bounded between 0 and 1.
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when there are an equal number of observations in each regime, precision of the estimator decreasing when

only a few observations are present in a regime.

Estimation of the number of lags The estimation of the number of lags can be done be using again the

concentration method given above, using as objective function an information criterion (AIC, BIC) rather

than the SSR.

IC() = n ∗ log σ̂2
ε + a(n) ∗ k (9)

Where a(n) =2 for the Akaike information criterion (AIC) or a(n)=ln(n) for the bayesian information

criterion (BIC)15.

The parameter are then

(θ̂1,, θ̂2,, k̂1,, k̂2,, k̂3, = arg min IC(θ1, θ2, k1, k2, k3) (10)

This is a considerable extension of the dimension of the grid search, and usually one uses the restriction

k1 = k2.

This is possible in package tsDynby specifying the argument criterion=AIC in function selectSETAR():

R code
selectSETAR(lynx, m=6, thDelay=0, trim=0.15, criterion="AIC", same.lags=TRUE)

output
Using maximum autoregressive order for low regime: mL = 6

Using maximum autoregressive order for high regime: mH = 6

Searching on 70 possible threshold values within regimes with sufficient ( 15% ) number of observations

Searching on 420 combinations of thresholds ( 70 ), thDelay ( 1 ) and m ( 6 )

Results of the grid search for 1 threshold

thDelay m th AIC

1 0 2 1388 1528.278

2 0 2 1307 1528.471

3 0 2 808 1529.596

4 0 2 1000 1529.765

5 0 2 1033 1529.830

6 0 2 1292 1529.882

7 0 2 1132 1529.940

8 0 2 957 1530.249

9 0 2 784 1530.425

10 0 2 758 1530.807

The argument same.lags restrict the search to have the same number of lags in each regime. Its default

value, currently set to FALSE16, search on all combinations of lags, that is, allows to have different lags in

each regime.

15There are several formulations of those criterions. We took here the formulation as in Franses and van Dijk (2000)
16This will probably be changed soon in future version.
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4.2 Estimation and inference in the TVECM representation

Estimation Estimation of the threshold and cointegrating parameters could be done in the long-run rela-

tionship and those estimates plugged into the TVECM, as the Engle-Granger advocates for the linear case.

To my knowledge,the the validity of that method has not been investigated in theoretically. BF mention that

the super-convergence of the OLS estimator in the LR (Watson 1987) still hold when the residuals follow a

SETAR process under the condition (1).

Rather, Hansen and Seo (2002) and Seo (2009) study estimators directly based on the TVECM. Hansen

and Seo derive a maximum-likelihood (ML) estimator, and use a two-dimensional grid for simultaneous

estimation of θ̂ and γ̂. This two-dimensionality can’t be avoided as the parameters can’t be expressed as

functions each of the other one: for each cointegrating value the ECT will be different. For θ, the grid

is restricted to the existing values of the ECT, with exclusion of the upper and lower ranges. For the

cointegrating value, HS suggest to conduct the search based on a confidence interval obtained in the linear

model. When the two values are give, the slope and speed adjustment parameters can be concentrated out

and the estimator is simply OLS (though HS depict it as MLE, it is only MLE as starting values for the

algorithm are based on the linear MLE estimate). This method can be done in a simple bivariate model

without intercept in the cointegrated relationship, but becomes intractable with more than two cointegrating

relationships.

Note that in what I called the cointegration with threshold effect framework, where an external variable

rather than the ECT is taken as transition variable, estimation is highly simplified as the interdependency

between the ECT term and the threshold variable is ruled out. Estimation of multivariate VECM with many

cointegrating relationships is then feasible, the grid search being conduced only over the threshold parameter

space (Krishnakumar and Netto 2009).

Inference While Hansen and Seo (2002) suggested an estimator for the multivariate case, they only con-

jectured its consistency. Interesting results can be found in Seo (2009) concerning proprieties of the LS

estimator. Seo shows that LS estimators of both the threshold and cointegrating values are super conver-

gent, the estimator β converging at a faster rate than in linear model, at n
3
2 instead of n. Similarly as in his

previous work in the univariate case (Seo and Linton 2007), Seo considers a smoothed-LS estimator and finds

that is converging at a slower rate but then normally distributed, allowing to obtain confidence intervals.

Implementation in R The function TVECM() in package tsDynallows to estimate a bivariate TVECM

with two or three regimes with the OLS like estimator. It should be emphasized here that in my view there

is no difference, except in the starting value, between the OLS and MLE estimator, as conditional on the

threshold and the cointegrating value, the MLE estimator is simply LS. The model can be specified either

with a constant a trend, or none, (arg include) and the lags can be regime specific or not (arg common).

Procedure for the TVECM() differ from that of setar() as there is no corresponding selectSETAR()

function. As the search is two dimensional and the cointegrating parameter take continuous values, it can be

easily cumbersome and different options to restrict the search are given with arguments ngridBeta, ngrid,
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Figure 2: Results of the two-dimensional grid search for a TVECM
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R code
data(zeroyld)

tvecm<-TVECM(zeroyld, nthresh=2,lag=1, ngridBeta=60, ngridTh=30, plot=TRUE,trim=0.05, beta=list(int=c(0.7, 1.1)))

It produces an object of class TVECM() with specific methods such as print(), summary() and toLatex()

and inherits from the class nlVar with general methods for AIC(), BIC(), coef(), deviance(), fitted(), logLik(),

residuals().

Note that a plot of the search is given automatically as this has proved in practice to be a useful tool,

experience showing that the confidence interval for the cointegrating values are too small and hence only a

local minimum is obtained, which can be easily detected with the plot.

17Name of this argument will probably be modified in further version of the package.
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5 Testing

Testing for threshold cointegration is particularly difficult as it involves two aspects: the presence of cointe-

gration and that of non-linearity. Hence, one may have four different cases:

� Cointegration and threshold effects

� Cointegration and no threshold effects

� No cointegration and no threshold effects

� No cointegration and threshold effects

Hence, a test with threshold cointegration may have as null hypothesis either cointegration or no cointegra-

tion. This distinction is of major importance as this implies a different distribution under the null. The

distribution is also different whenever the test is done based on the LR or the VECM representation18. Some

of the tests also allow to estimate the cointegrating vector, whereas the majority requires pre-specified ones.

Finally, the number of regime differ in the different specifications, some taking two, some three regimes, or

symmetric outer regimes. To my knowledge, only one test (Hansen 1999) is able to determine the number

of regimes, through a test of one against two thresholds. As a result, there exist many different tests for all

the possible cases.

The approach advocated by BF was to conduct a two-step analysis in the LR with pre-specified cointegrat-

ing value: testing first for cointegration, and if tests indicate presence of cointegration to test for threshold

effects. Nevertheless, this approach may suffer of low power when the true model contains threshold effects

and the first step is conduced using tests with a linear specification. Indeed, several studies showed that

conventional unit root tests had very low power when the alternative was a stationary SETAR (Pippenger

and Goering 2000). Indeed, many studies found that the LOP did not hold, the unit root being not rejected,

contrary to many economic arguments in favor of its stationarity.

Taylor (2001) advocated that the failure of tests to reject the unit root for the case of the LOP was due to

the use of test which assume linear adjustment. Use of more appropriate tests was indeed able to confirm the

LOP. He showed through theoretical and simulation-based arguments that indeed linear tests were biased

towards non-rejection of stationarity.

Hence, the procedure should be to do, as in BF, a two-step approach, using first linear tests of cointe-

gration. If linear cointegration is not rejected, tests for threshold cointegration with linear under H0should

be used. Failure of cointegration in the first step should lead to the use of tests with no cointegration un-

der H0and threshold cointegration under the alternative. The second case is particularly interesting, as it

illustrates how threshold cointegration is a broader concept that involves linear cointegration as a specific

case.

5.1 The problem of the unidentified parameter

A problem for the statistical testing procedure arises when the threshold parameter needs to be estimated.

In case of a known threshold parameter, a likelihood-ratio test for the null of no threshold effects (testing

18Actually a VAR if the null is no cointegration.
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actually equality of the coefficients in each regime) can be formed and has the usual χ2 distribution (Chan

and Tong 1990). But when it is unknown, which is typically the case in practice19, the distribution of the

test is then non-standard as it entails a parameter that is not identified under the null, the so-called Davies

problem (1977, 1987).

Solutions for that problem (Andrews and Ploberger 1994) involve usually applying the test statistic for a

wide range of possible threshold values, and then aggregating those results. One of the solution encountered

is to average all the values, either by using a simple mean or an exponential average. Another solution is

to use a supremum statistic, that is the value for which the test is most favorably rejected. This may be

seen as an endogeneity bias, but it is not as long as appropriate asymptotical tools are used, that take into

account this variability of the test. For a discussion on that question in the similar field of structural break,

see Perron (1989) and Andrews and Zivot (1992).

As the test are applied on a range of values, the question of the selection of that range arises. A typical

approach is to sort the threshold values in ascending order and exclude a certain percentage of the lowest

and highest values. There is no clear rule on the choice of this percentage, but it should not be too small

as Andrews and Ploberger (1994) show that setting it too low result in a considerable size distortion. Other

approaches as in Bec et al. (2008) is to construct a different grid under the null and under the alternative,

using the ADF unit root test for the pre-testing.

The sup-test procedure looks really similar to the estimation procedure as both rely on the use of a sorted

grid, with exclusion of some extreme values. The parameter selected nevertheless is the same only in the

case of an homoscedastic Wald (or Fisher) test. Indeed, the threshold parameter minimizing the SSR need

not be the same of that one maximizing a LM statistic.

Another interesting approach is provided in Altissimo and Corradi (2002) who derive bounds for Wald

and LM type tests. Contrary to the usual approach consisting in deriving the asymptotical distribution of

the tests and obtaining critical values, they simply show that one may apply a functional to the test that is

bounded.

The decision rule from their bound is easy as the model under the null (alternative) should be chosen

when the bound is below (above) one. They show that this procedure leads to type I and type II errors

approaching zero asymptotically. This result is of great importance as it allows to reduce substantially the

number of computation, as critical values don’t need to be tabulated.

5.2 Cointegration vs. threshold cointegration tests

5.2.1 Test based on the long-run relationship

As discussed above, the idea for the testing procedure if to test first for cointegration and in the case when

cointegration is not rejected, test for threshold cointegration, taking cointegration as a null. In our view,

implicetly assumed in that methodology is that the threshold model will be also stationary. Whereas the

fact that a unit root may appear in a three-regime SETAR model, the question is never asked in a two

regimes-model. This is an important gap as indeed splitting the sample may create a unit root in one of the

regime. This is the case indeed in Hansen (1999), who did not seem to note it.

19unless maybe when one imposes a threshold of zero
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In package tsDyn, a minimal test is done automatically computing whether the roots of the polynomials

don’t have values equal or lower to one. Hence, one obtains an automatical warning with data from Hansen

(1999):

R code
data(IIPUs)

set<-setar(IIPUs, m=16, thDelay=5, th=0.23)

Hansen (1996) derived the asymptotic properties of the sup-LM test for a SETAR model with one

unknown threshold. The test follows a complicated empirical distribution process with nuisance parameters

and hence critical values for a general case can’t be tabulated. Hansen nevertheless shows a simulation

procedure which allows to generate asymptotic p-values. In this procedure, heteroskedasticity can also be

taken into account by slight modifications. In a later article, Hansen (1999) studies an alternative way to

obtain the p-values through a residual bootstrap, whose validity is nevertheless not established but only

conjectured. More interestingly, the author develops an extension of the testing procedure to test against

two threshold, and to determinate the number of thresholds by testing the null of one threshold against two.

This test is available in tsDynwith the function setarTest(), for which the homoskedastic bootstrap have

been implemented. It takes as argument nboot the number of bootstrap replications and test=”1vs” (1

regimes against 2) or ”2vs3” (2 regimes against 3).

R code
Hansen.Test<-setarTest(lynx, m=1, nboot=1000)

Available methods are print(), summary() and plot(), as well as an extendBoot() function to run new

bootstrap replications and merge the result with the old ones. This can be useful for a preliminary test and

to check how the result is influenced by new runs.

Another type of test has been suggested by Petrucelli and Davies (1986) and Tsay (1989). By transforming

the specification into an arranged autoregression, Tsay reformulates the problem into a structural change

test. With a test of stability of recursive residual to detect structural change, the problem of the unidentified

parameter under H0 is avoided and hence the test follows a simple χ2distribution. This test has been

implemented in R but not included in version 0.7 as the result differ sometimes drastically from those in the

paper20

BF suggested to extend the approach of Tsay using several other structural change tests, using techniques

as in Hansen (1996). Appropriateness of this method has been nevertheless discussed by Hansen (2000) as

the the ordering of the variable for the arranged autoregression may induce a trend, in case the structural

tests are not consistent.

Criterion based approaches Differing from a pure testing procedure, model selection procedures based on

information criteria (IC) have gained much interest in the literature and their use has been sometimes

advocated rather than formal testing procedure (see for example Lètkephol2007). This is the case in the

20actually as well as from those also differing in the GAUSS procedure distributed by Lo and Zivot (2002).
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well-known selection of lags in time series models, but also for estimating the cointegrating rank (Gonzalo

and Pittarakis 1998, Cheng and Phillips2009).

This has been also applied for the determination of the number of regimes in a SETAR model by Gonzalo

and Pittarakis (2002). They show indeed that this works well in practice using a modified BIC. This result

is of great interest in practice as it avoids the use of bootstrap replications and hence significantly diminishes

the number of computations required. The authors remark in simulations studies that the AIC has big type

one error compared to other BIC, while it has a smaller type II error.

This is easily implemented in package tsDynwith the generic function AIC() and the similar BIC().

Furthermore, with the argument k, practically any penalty term can be used. Using the example of Hansen

(1999):

R code
sun<-(sqrt(sunspot.year+1)-1)*2

lin<-linear(sun, m=11)

set1<-setar(sun, m=11, th=7.4, thDelay=1, nested=TRUE)

set2<-setar(sun, m=11, th=c(5.3,8),nthresh=2, thDelay=1, nested=TRUE)

matrix(c(AIC(lin),AIC(set1),AIC(set2),BIC(lin),BIC(set1),BIC(set2)),ncol=2,dimnames=list(c("lin","set1", "set2"),c("AIC", "BIC")))

output
AIC BIC

lin 419.3361 463.3332

set1 381.2476 472.9083

set2 362.1827 501.5069

As mentioned above, one could also use bounds derived by Altissimo and Corradi (2002). The authors

indeed investigate proprieties of their bound and find that is has considerable size distorsion but excellent

power for the alternative they choose.

This bound has not been implemented in tsDynas results were different compared to other studies (see

Galvao 2006) and there is no comparison of the results with other testing procedures.

5.2.2 Test based on the TVECM representation

Hansen and Seo (2002)suggest a sup-LM test of a linear VECM against a threshold VECM with two regimes.

In the case of unknown cointegrating vector, the search for the sup-LM maximal value can be reasonably

done only for the case of a bivariate TVECM.
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Collecting the various parameters into AL = CL, aL, BLand similarly for AH , the H0 of a linear model

AH = ALis rejected when AH 6= AL. The distribution of the sup-LM test is found to be the same as

in the univariate case as in Hansen (1996). This distribution can’t be tabulated due to the presence of

21



nuisance parameters and hence the authors suggest two bootstrap approaches, with either a fixed-regressor

or a residual bootstrap. While in the paper the sup-LM tests is conditional on both the cointegrating and

threshold value, the implementation of this test done by the authors takes the cointegrating vector as given,

based on the value estimated from the linear VECM.

This is available in package tsDynusing the function TVECM.HStest().

5.3 No cointegration vs. threshold cointegration tests

Numerous tests for the null of no cointegration may be used, either from the L-R or the TVECM represen-

tation. They generally suffer from two major drawbacks which merit on my opinion more attention.

The first is that unit roots tests with a stationary SETAR as alternative which developed recently may

be used in the case of a known cointegrating vector, in analogy to the linear case (see section 1). This has

curiously not been discussed by their authors. Formal test which allow to estimate the beta have not been

derived in the L-R nor in TVECM form, and hence constrain the threshold cointegration field to analyze

only cases where the cointegrated values are meant to be known. Even if it is a strong restriction, it is

still interesting, since there are many applications where theory predicts a particular cointegrated vector, as

Horvath and Watson (1995) claim:

Economic models often imply that variables are cointegrated with simple and known coin-

tegrating vectors. Examples include the neoclassical growth model, which implies that income,

consumption, investment, and the capital stock will grow in a balanced way, [...]. Asset pricing

models with stable risk premia imply corresponding stable differences in spot and forward prices,

long- and short-term interest rates, and the logarithms of stock prices and dividends. Most theo-

ries of international trade imply long-run purchasing power parity, so that long-run movements in

nominal exchange rates are matched by countries relative price levels. Certain monetarist propo-

sitions are centered around the stability of velocity, implying cointegration among the logarithms

of money, prices, and income.

A second drawback of the test with the null of no cointegration is that the alternative stationary model always

take the form of the condition (1). Hence, the presence of a unit root is considered as non-stationarity of

the series. We saw nevertheless above that a SETAR process may still be stationary even with a unit root

in a regime. Henceforth, the non-rejection towards stationarity is not in itself a sign that the series is indeed

non-stationary. It is only a first step indicating that condition (1) of stationarity does not hold, but this does

not mean that other conditions may not hold and the process hence be stationary. However, those further

investigations are not possible as there are to my knowledge no tests that take as alternative hypothesis other

conditions such as (2) or (3). We may hence conjecture that many of the series described as non-stationary

in the literature may well be SETAR-stationary.

5.3.1 Tests based on the long-run relationship

Taking no cointegration as null hypothesis has the implication that under the null, the series (which is

also, remember, the transition variable) is non-stationary, which affects the distribution of the tests. Anal-
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ogously as in the linear case, when the cointegrating vector is known, usual unit root tests can be used,

whereas estimation of the cointegrating vector affect the distribution of the test, which require use of differ-

ent tests/critical values. Hence, when the cointegrating vector is known, unit root tests with a stationary

SETAR as alternative can be used, whereas the case of unknown cointegrating vector needs correction.

Known threshold

Bec, Ben Salem and Carrasco (BBC) Bec, Ben Salem and Carrasco (2004) (referred as to BBC), test

for unit root against a symmetric three regime SETAR model. The model specification is very general as

intercepts as well as lags are included in each regime, and hence corresponds to the model in 7.

∆yt = IL

(
µL + ρLyt−1 +

∑
∆γL,iyt−i

)
IM

(
µM + ρMyt−1 +

∑
∆γM,iyt−i

)
IH

(
µH + ρHyt−1 +

∑
∆γH,iyt−i

)
+εt

(12)

where IL = I{yt−1≤−θ}, IH = I{yt−1>θ} and IM = I{−θ≤yt−1≤θ}

The null hypothesis of unit root is H0: ρL = ρH = ρM = 0 with the alternative HA: ρL < 1, ρH < 0

and ρM ≤ 1. That is, a unit root is allowed in the middle regime, but an explosive behavior is ruled out.

BBC find that the distribution of sup-Wald, sup-LM and sup-LR are free of nuisance parameters and provide

critical values. The authors suggest that the extension to a SETAR with non symmetric thresholds should

not lead to further complications.

Kapetanios and Shin (KS) Kapetanios and Shin (2006) uses as alternative a three-regime model with a

unit root in the inner middle which is meant to be more consistent with the concept of a band without

adjustment. As then coefficients in the middle regime do not need to be estimated, the test is meant to have

better power when the true model is indeed a model with a unit root in the inner regime. They allow the

possibility to add lags common to all the regimes.

∆yt = µL + ρLyt−1 + µH + ρHyt−1 +

p∑
i=1

γi∆yt−i + εt (13)

The null hypothesis of unit root is H0: ρL = ρH = 0 with the alternative HA: ρL < 1, ρH < 0. The grid

for the thresholds is selected such that the probability of being in the middle regime decreases as the sample

size increases, converging to zero asymptotically. Under this specification, the authors derive statistics (the

sup-Wald, exp Wald and ave Wald) which are obtain nuisance parameter free and provide critical values.

Bec, Guay and Guerre (BGG) Under a similar model such as in BBC, Bec, Guay and Guerre (2008)

(hereafter BGG) concentrate on the selection of the grid to obtain a consistent test diverging under HA.

The idea is that if H0 is true, the grid should be small as to ensure a good size, whereas if HA holds, the

grid should be as large as possible to ensure power. Hence, the width of the grid is selected depending on a

pre-test based on the AD test.

Seo Seo (2008) derive a test with a two-regime SETAR as alternative, allowing for non linear and serial

correlated errors. Under those weaker assumptions, the asymptotical distribution of the sup-Wald selecting
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the values as in KS depends on nuisance parameters and critical values can’t be tabulated. Seo hence suggests

a residual based block bootstrap, shown to be asymptotically consistent. Extension of the bootstrap for a

three regime model is meant to be easy.

Monte Carlo comparisons Maki (2009) provides a Monte Carlo simulation for the size and power of the

BBC (using sup-Wald) and KS (sup-Wald, ave and exp-Wald) tests, along with the traditional ADF. Size

of the test is definitely better for the ADF test, with the ave-Wald being close, the sup- and exp-Wald of

KS showing size distorsion, while the sup-wald of BBC is seen to be too conservative. Power of the tests

is investigated based on an alternative model with three regimes, a symmetric threshold, a unit root in the

middle regime and no lags. Different values of the thresholds are tested. With a threshold value of zero

(i.e. no thresholds effects), the ADF test has without surprise the best power. More surprisingly, this is still

the case with small thresholds, with values 1 and 2, the ADF test having the best power for models with

an inner regime counting 40% of the observations. When the thresholds increase (and hence the number of

observations in the unit root regime), power of the ADF decreases consequently. This is also the case for

the KS test, as it is based on a asymptotically degenerated threshold, whereas there is no clear effect on

the BBC. As the KS test does not estimate the inner regime whereas the BBC does, the power of the KS is

much higher, because the true process has indeed a unit root.

When the mean-reversion of the outer regime is increased (which has the effect to have more observations

in the inner regime), all the tests have power near to 1 unless the threshold are high (value of 6), where

power of ADF test falls. The BBC test has in those cases a much better power than the KS, as the latter is

based on a diminishing threshold effect.

Implementation in R BBC and KS have been implemented in package tsDyn. They are nevertheless for

now in an experimental version and may contain errors. Practitioners should use them with care as the

results could not be compared to those of the authors as the data sets are not publicly available.

5.3.2 Unknown cointegrating values

Two early tests deserve here mention. Enders and Granger (1998) first provided an empirical framework to

deal with unit root tests having a two-regime SETAR as alternative. They tabulated critical values for a test

when the threshold is known. Critical values with unknown threshold were given later by Enders (2001).

Enders and Siklos (2001) adopt similar approach but relying on the cointegration framework and allowing

to estimate the cointegrating values. They hence provide larger critical values from those of Enders and

Granger (1998).

This is to my knowledge the only test which allows to work with an unknown cointegrating vector. It

is not sure nevertheless whether it more appropriate to use this one rather that the more formal unit root

tests of BBC and KS, as no distribution theory is given in the former.
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5.3.3 Test based on the TVECM representation

Seo (2006) is to my knowledge the only one to discuss a test of no cointegration against threshold cointegration

based on the VECM model. His framework is a TVECM model with the ECT splitted into three regime,

the middle one being not adjusted and not taken into account, and lags common to all regimes:

∆Xt = µ+

{
aLECTL,t−1

aHECTH,t−1
+ C1∆Xt−1 + . . .+ Cp∆Xt−p + εt (14)

The idea of the test is based on results as in Horvath and Watson (1995), who show that when the

cointegrating vector is known, a test of cointegration can be simply done on testing whether coefficients from

the ECT are significant. In the TVECM framework, the null hypothesis of no cointegration becomes: H0:

aL = aH = 0 and the alternative that either aL or aH is different from zero. The sup-Wald test suggested

does not depend on nuisance parameter and critical values can be obtained. As the asymptotical distribution

is seen to perform badly in small samples, Seo provide a residual based bootstrap and shows its asymptotic

consistency.

This test is available in package tsDynas TVECM.SeoTest().

R code
data(zeroyld)

dat<-zeroyld

testSeo<-TVECM.SeoTest(dat, lag=1, beta=1, nboot=1000)

summary(testSeo)

It requires the argument beta for the cointegrating value and nboot for the number of bootstrap repli-

cations. The methods print(), summary() and plot() are available for objects issued by TVECM.SeoTest().

As the model specification is done for two thresholds, a two-dimensional grid search has been implemented.

This is definitely very slow and a single test may take a few hours 21.

5.4 Conclusion for the test

I reviewed here some of the most popular and applied tests in the literature. This is definitely not exhaustive

and there exist many different tests, especially for the univariate case. Despite of this great amount of

different tests and model specification, some points

6 Interpretation

Once threshold cointegration have been indicated by the different tests and estimation made, there remain

interesting questions on the interpretation of the model obtained. A first one concerns the type of adjustment

and the presence of an attractor. A second one concerns stability of the system and its reactions to exogeneous

shocks.

21As this is a sup-Wald test, for which the best thresholds pair is also maximizing the OLS criterion, one may think that the

conditional search could be applied. This is currently under implementation.
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6.1 Types of adjustment

As was presented earlier, a SETAR model may be stationary under diverse conditions. Nevertheless, almost

the only one to have been investigated empirically, and for which there exist some tests, is that described by

the condition (1). Within this type, there are nevertheless different degrees of adjustment, where adjustment

pushes back either to an equilibrium (EQ-SETAR) or to a band (BAND-SETAR). This distinction is best

shown in a case of perfectly symmetric SETAR with three regimes but same (of opposed signs) thresholds,

same outer coefficients, no lags and a random-walk without drift in the inner regime. The EQ-SETAR is

then:

yt =


ρyt−1 + εt if yt−1 > θ

yt−1 + εt if − θ < yt−1 < θ

ρyt−1 + εt if yt−1 < −θ

(15)

Interpretation of such model is done remembering that the conditional mean in each regime is given

by the mean of an AR(1) process, that is µ
1−ρ . So in, 15, the conditional mean in each regime is 0 and

hence one may think that 0 is the mean of the global process as well as its equilibrium, hence its name of

equilibrium-SETAR. A model with a different type of adjustment, the BAND-SETAR, is given by:

yt =


θ(1− ρ) + ρyt−1 + εt if yt−1 > θ

yt−1 + εt if − θ < yt−1 < θ

−θ(1− ρ) + ρyt−1 + εt if yt−1 < −θ

(16)

Here, the adjustment process is pushing the deviations exceeding the threshold back to the edge of the

band, defined by the space between the two thresholds. Indeed, the conditional mean of the outer regimes

are equal to the threshold
(
θ(1−ρ)
(1−ρ) = θ

)
, whereas the conditional mean of the inner regime is equal to 0.

Therefore, adjustment does not push back to a certain equilibrium point such as in a EQ-SETAR but just

pull within a certain band. The more complete BAND-SETAR nests the EQ-SETAR so determining which

model describe best the data can be easily made.

Whereas the adjustment seems to be faster in a EQ-SETAR than in a BAND-SETAR, it could be that a

SETAR described by condition (4) (denoted by returning-drift, RD-SETAR, by BF) has a faster adjustment.

Effectively, the outer regimes are unit root process with drift that may have much faster dynamics than simple

AR processes. Despite of this potentially interesting feature, RD-SETAR models don’t seem to have been

used much in the literature, probably because of the unavailability of tests as we discussed below and also

because of the more complicated distribution of the parameters.

Note that the difficulty of the comparison of adjustment described by conditions (1) to (4) comes partly

from the fact that first the computation of the mean of a SETAR model is difficult and requires numerical

methods, and second that the relevance itself of the concept of mean for non-linear model may be questioned,

due for example of the potential bimodality of the distribution of the process. Concepts such as attractors

and equilibria may be more adequate (see Tong 1990), with the drawback nevertheless that those only be

described case to case. By extension, the term itself of mean-reversion in the SETAR framework may be
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misleading. This is the case in the process 1 where mean-reversion adjustment appears as a more restrictive

condition than stationarity: taking the case where µH > θH and µL < θLalong with |ρL| < 1 and |ρH | < 1

ensures stationarity but not mean-reversion to the inaction band: once in the outer regime, the process may

remain there.

Whereas the seminal paper of BF was based on models with three regimes (in some cases the outer regimes

are symmetric which may appear as a two-regime specification), other studies (Enders and Granger 1998)

focused on two-regimes model. In our view, two-regimes models offer interesting insights into asymmetric

behaviors, though they have a complicated interpretation. Empirical studies seek indeed to estimate a

threshold in a two-regime model rather than imposing its value to zero. Whereas in a three regime model

it makes sense to observe a strictly positive and a strictly negative threshold, there are few economical

arguments in favor of a two-regime model with a non-zero threshold, where for example positive deviations

would behave like small negative deviations but differently from big ones.

6.2 Non linear impulse response functions

Note that the package tsDyn does NOT provide generalised impulse response functions, altough it does

provide standard imuplse response functions for the linear VAR/VECM only, building on the function from

package vars/urca. Several people have been asking for this functionality, but it should not be too difficult

to do it with the existing functions, since tsDyn already implements a TVECM.sim() and TVECM.boot()

functions. For more informations, see various discussions on the tsDyn mailing lists: http://groups.

google.com/group/tsdyn/t/5c517a94a3a3ab0c

7 Running the functions on parallel CPUs

A major drawback of the threshold cointegration tools is that those, due to the probem of the unidentified

parameter or the need of bootstrap replications, are heavily computer intensive. The test of Seo (2006) takes

indeed a very long time to run.

To alleviate these problems, a possibility is to run the functions on parallel, ie. either on a unique computer

with multiple-CPUs processor or on more complex computer clusters. Nowadays, it is quite common to find

even laptops equiped with processors like Intel Dual-Core, and hence parallel functionalities can be used by

practically everyone. Furthermore, it has become quite easy to do it in R thanks to packages like foreach

which offer a great level of abstraction, requiring the user to do a minimal number of steps to get it running.

Indeed, this package will function as a wrapper for other parallel packages, and allows the user to run it

either on the protocol MPI, nws and pvm, or using the R internal socket system, as well as the multicore22.

Furthermore, parallel computation is quite easy in the context of threshold cointegration as the grid

search or the bootstrap replications are independant of each other and can easily be run on different nodes.

Parallel facilities are for now only available for the function TVECM.HStest(), through the argument hpc

22For a review on R facilities for high performance computing, see Schmidberger, Morgan, Eddelbuettel, Yu, Tierney, and

Mansmann (2009). There exist also a dedicated R mailing list, as well as a task view http://stat.ethz.ch/CRAN/web/views/

HighPerformanceComputing.html
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(standing for high performance computing). When set to foreach, the package will run the foreach package.

It is then up to the user to choose a paralellisation protocol, the current choice being now between doMC,

doSNOW (MPI, pvm and nws, as well as internal R sockets), doMPI and doRedis. We illustrate here with

the easiest package, multicore, wich proved to be quite powerful, with the disadvantage nerverthless that it

can pose problems when R is used within a GUI.

R code
system.time(test1<-TVECM.HStest(dat, lag=1, nboot=200))

library(doMC)

registerDoMC(2) #Number of cores

system.time(test1<-TVECM.HStest(dat, lag=1, nboot=200, hpc="foreach"))

Results are quite impressive, as they show that by simply adding a second core the execution time is

divided by two, while using 4 cores will divide the time by three, as shown in figure 323.

8 Conclusion

In this paper, I showed the interest of threshold cointegration towards traditional cointegration as being

a better framework to model real world adjustment process with stickiness and asymmetries. Indeed, a

great number of empirical studies applied this model, and an evenly great number of theoretical results

have been obtained. I presented also how one can use those developments using the package tsDyn, offering

a comprehensive framework for analysis and testing that, despite of the great interest in this field, that

was until now not available. Using this package, one may conduce a whole analysis, testing for threshold

cointegration in different situations and different model specifications, and estimating those models.

Whereas great developments occured since the seminal work in 1997, many questions remain unanswered

. The complexity of the SETAR model is actually so high that simple aspects such its distribution or

its moments are still only known in restricted cases. Estimation of more than one threshold stills create

problems, and actual tests of stationary consider only a small amount of the possible features of a SETAR.

There is up to now no framework allowing to test the stationarity with an unknown cointegrating vector,

and test discriminating 2 against 3 regimes only work in a restricted case.
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