## ----setup, include = FALSE--------------------------------------------------- library(ggplot2) library(dplyr) library(tidyr) library(purrr) library(tidypaleo) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 3, fig.width = 5, dpi = 150 ) ## ---- eval=FALSE-------------------------------------------------------------- # library(tidyverse) # library(tidypaleo) ## ----------------------------------------------------------------------------- alta_lake_geochem ## ----------------------------------------------------------------------------- alta_nested <- nested_data( alta_lake_geochem, qualifiers = c(age, depth, zone), key = param, value = value, trans = scale ) alta_nested ## ----------------------------------------------------------------------------- alta_nested %>% unnested_data(data) alta_nested %>% unnested_data(qualifiers, data) ## ----------------------------------------------------------------------------- pca <- alta_nested %>% nested_prcomp() pca ## ----------------------------------------------------------------------------- plot(pca) pca %>% unnested_data(qualifiers, scores) pca %>% unnested_data(variance) pca %>% unnested_data(loadings) ## ----------------------------------------------------------------------------- keji_nested <- keji_lakes_plottable %>% group_by(location) %>% nested_data(qualifiers = depth, key = taxon, value = rel_abund) keji_nested %>% unnested_data(qualifiers, data) ## ----------------------------------------------------------------------------- coniss <- keji_nested %>% nested_chclust_coniss() plot(coniss, main = location) ## ----------------------------------------------------------------------------- plot(coniss, main = location, xvar = qualifiers$depth, labels = "") ## ----------------------------------------------------------------------------- coniss %>% select(location, zone_info) %>% unnest(zone_info) ## ----------------------------------------------------------------------------- keji_nested %>% nested_chclust_coniss(n_groups = c(3, 2)) %>% select(location, zone_info) %>% unnested_data(zone_info) ## ----------------------------------------------------------------------------- halifax_nested <- halifax_lakes_plottable %>% nested_data(c(location, sample_type), taxon, rel_abund, fill = 0) halifax_nested %>% unnested_data(qualifiers, data) ## ----------------------------------------------------------------------------- hclust <- halifax_nested %>% nested_hclust(method = "average") plot( hclust, labels = sprintf( "%s (%s)", qualifiers$location, qualifiers$sample_type ) ) ## ----------------------------------------------------------------------------- alta_nested %>% nested_analysis(vegan::rda, data) %>% plot() ## ----------------------------------------------------------------------------- biplot(pca)