tabnet 0.7.0
Bugfixes
- Remove long-run example raising a Note.
 
- fix 
tabet_pretrain failing with
value_error("Can't convert data of class: 'NULL'") in R
4.5 
- fix 
tabet_pretrain wrongly used instead of
tabnet_fit in Missing data predictor vignette 
- improve message related to case_weights not being used as
predictors.
 
- improve function documentation consistency before translation.
 
- fix “…” is not an exported object from ‘namespace:dials’” error when
using tune() on tabnet parameters. (#160 @cphaarmeyer)
 
tabnet 0.6.0
New features
- parsnip models now allow transparently passing case weights through
workflows::add_case_weights() parameters (#151) 
- parsnip models now support 
tabnet_model and
from_epoch parameters (#143) 
Bugfixes
- Adapt 
tune::finalize_workflow() test to {parsnip} v1.2
breaking change. (#155) 
autoplot() now position the “has_checkpoint” points
correctly when a tabnet_fit() is continuing a previous
training using tabnet_model =. (#150) 
- Explicitely warn that 
tabnet_model option will not be
used in tabnet_pretrain() tasks. (#150) 
tabnet 0.5.0
New features
- {tabnet} now allows hierarchical multi-label classification through
{data.tree} hierarchical 
Node dataset. (#126) 
tabnet_pretrain() now allows different GLU blocks in
GLU layers in encoder and in decoder through the config()
parameters num_idependant_decoder and
num_shared_decoder (#129) 
- Add 
reduce_on_plateau as option for
lr_scheduler at tabnet_config() (@SvenVw, #120) 
- use zeallot internally with %<-% for code readability (#133)
 
- add FR translation (#131)
 
tabnet 0.4.0
New features
- Add explicit legend in 
autoplot.tabnet_fit() (#67) 
- Improve unsupervised vignette content. (#67)
 
tabnet_pretrain() now allows missing values in
predictors. (#68) 
tabnet_explain() now works for
tabnet_pretrain models. (#68) 
- Allow missing-values values in predictor for unsupervised training.
(#68)
 
- Improve performance of 
random_obfuscator() torch_nn
module. (#68) 
- Add support for early stopping (#69)
 
tabnet_fit() and predict() now allow
missing values in predictors. (#76) 
tabnet_config() now supports a
num_workers= parameters to control parallel dataloading
(#83) 
- Add a vignette on missing data (#83)
 
tabnet_config() now has a flag
skip_importance to skip calculating feature importance
(@egillax, #91) 
- Export and document 
tabnet_nn 
- Added 
min_grid.tabnet method for tune
(@cphaarmeyer,
#107) 
- Added 
tabnet_explain() method for parsnip models (@cphaarmeyer,
#108) 
tabnet_fit() and predict() now allow
multi-outcome, all numeric or all factors but not
mixed. (#118) 
Bugfixes
tabnet_explain() is now correctly handling missing
values in predictors. (#77) 
dataloader can now use num_workers>0
(#83) 
- new default values for 
batch_size and
virtual_batch_size improves performance on mid-range
devices. 
- add default 
engine="torch" to tabnet parsnip model
(#114) 
- fix 
autoplot() warnings turned into errors with
{ggplot2} v3.4 (#113) 
tabnet 0.3.0
- Added an 
update method for tabnet models to allow the
correct usage of finalize_workflow (#60). 
tabnet 0.2.0
New features
- Allow model fine-tuning through passing a pre-trained model to
tabnet_fit() (@cregouby, #26) 
- Explicit error in case of missing values (@cregouby, #24)
 
- Better handling of larger datasets when running
tabnet_explain(). 
- Add 
tabnet_pretrain() for unsupervised pretraining
(@cregouby,
#29) 
- Add 
autoplot() of model loss among epochs (@cregouby, #36) 
- Added a 
config argument to
fit() / pretrain() so one can pass a pre-made config list.
(#42) 
- In 
tabnet_config(), new mask_type option
with entmax additional to default sparsemax
(@cmcmaster1,
#48) 
- In 
tabnet_config(), loss now also takes
function (@cregouby,
#55) 
Bugfixes
- Fixed bug in GPU training. (#22)
 
- Fixed memory leaks when using custom autograd function.
 
- Batch predictions to avoid OOM error.
 
Internal improvements
tabnet 0.1.0
- Added a 
NEWS.md file to track changes to the
package.