Package 'survML'

October 31, 2024

Title Tools for Flexible Survival Analysis Using Machine Learning

Version 1.2.0

Description Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Depends SuperLearner (>= 2.0.28),

- **Imports** Iso (>= 0.0.18.1), haldensify (>= 0.2.3), fdrtool (>= 1.2.17), ChernoffDist (>= 0.1.0), dplyr (>= 1.0.10), gtools (>= 3.9.5), mboost (>= 2.9.0), survival (>= 3.5.0), stats (>= 4.3.2), methods (>= 4.3.2)
- **Suggests** knitr, rmarkdown, testthat (>= 3.0.0), ggplot2 (>= 3.4.0), gam (>= 1.22.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://github.com/cwolock/survML,

https://cwolock.github.io/survML/

BugReports https://github.com/cwolock/survML/issues

NeedsCompilation no

Author Charles Wolock [aut, cre, cph] (<https://orcid.org/0000-0003-3527-1102>), Avi Kenny [ctb] (<https://orcid.org/0000-0002-9465-7307>)

Maintainer Charles Wolock <cwolock@gmail.com>

Repository CRAN

Date/Publication 2024-10-31 00:20:01 UTC

Contents

	_
crossfit_oracle_preds	2
crossfit_surv_preds	3
currstatCIR	4
DR_pseudo_outcome_regression	6
generate_folds	7
predict.stackG	7
predict.stackL	9
	11
stackL	
vim	18
vim_accuracy	21
vim_AUC	23
vim_brier	25
vim_cindex	26
vim_rsquared	
vim survival time mse	
	50
	32

crossfit_oracle_preds Generate cross-fitted oracle prediction function estimates

Description

Generate cross-fitted oracle prediction function estimates

Usage

Index

```
crossfit_oracle_preds(
   time,
   event,
   X,
   folds,
   nuisance_preds,
   pred_generator,
   ...
)
```

	$n \ge 1$ numeric vector of observed follow-up times. If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed.
Х	n x p data.frame of observed covariate values
folds	n x 1 numeric vector of folds identifiers for cross-fitting

crossfit_surv_preds

nuisance_preds	Named list of conditional event and censoring survival functions that will be used to estimate the oracle prediction function.
pred_generator	Function to be used to estimate oracle prediction function.
	Additional arguments to be passed to pred_generator.

Value

Named list of cross-fitted oracle prediction estimates

crossfit_surv_preds Generate cross-fitted conditional survival predictions

Description

Generate cross-fitted conditional survival predictions

Usage

```
crossfit_surv_preds(time, event, X, newtimes, folds, pred_generator, ...)
```

Arguments

time	$n \ge 1$ numeric vector of observed follow-up times. If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed.
Х	n x p data.frame of observed covariate values
newtimes	Numeric vector of times on which to estimate the conditional survival functions
folds	n x 1 numeric vector of folds identifiers for cross-fitting
pred_generator	Function to be used to estimate conditional survival function.
	Additional arguments to be passed to pred_generator.

Value

Named list of cross-fitted conditional survival predictions

```
currstatCIR
```

Description

Estimate a survival function under current status sampling

Usage

```
currstatCIR(
  time,
  event,
  X,
  SL_control = list(SL.library = c("SL.mean", "SL.glm"), V = 3),
  HAL_control = list(n_bins = c(5), grid_type = c("equal_mass"), V = 3),
  deriv_method = "m-spline",
  eval_region,
  n_eval_pts = 101,
  alpha = 0.05
)
```

time	n x 1 numeric vector of observed monitoring times. For individuals that were never monitored, this can be set to any arbitrary value, including NA, as long as the corresponding event variable is NA.
event	n x 1 numeric vector of status indicators of whether an event was observed prior to the monitoring time. This value must be NA for individuals that were never monitored.
Х	n x p dataframe of observed covariate values.
SL_control	List of SuperLearner control parameters. This should be a named list; see SuperLearner documentation for further information.
HAL_control	List of haldensify control parameters. This should be a named list; see haldensify documentation for further information.
deriv_method	Method for computing derivative. Options are "m-spline" (the default, fit a smoothing spline to the estimated function and differentiate the smooth approximation), "linear" (linearly interpolate the estimated function and use the slope of that line), and "line" (use the slope of the line connecting the endpoints of the estimated function).
eval_region	Region over which to estimate the survival function.
n_eval_pts	Number of points in grid on which to evaluate survival function. The points will be evenly spaced, on the quantile scale, between the endpoints of eval_region.
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

currstatCIR

Value

Data frame giving results, with columns:

t	Time at which survival function is estimated
S_hat_est	Survival function estimate
S_hat_cil	Lower bound of confidence interval
S_hat_ciu	Upper bound of confidence interval

Examples

```
## Not run: # This is a small simulation example
set.seed(123)
n <- 300
x <- cbind(2*rbinom(n, size = 1, prob = 0.5)-1,</pre>
           2*rbinom(n, size = 1, prob = 0.5)-1)
t <- rweibull(n,</pre>
              shape = 0.75,
               scale = exp(0.4*x[,1] - 0.2*x[,2]))
y <- rweibull(n,</pre>
              shape = 0.75,
              scale = exp(0.4*x[,1] - 0.2*x[,2]))
# round y to nearest quantile of y, just so there aren't so many unique values
quants <- quantile(y, probs = seq(0, 1, by = 0.05), type = 1)
for (i in 1:length(y)){
  y[i] <- quants[which.min(abs(y[i] - quants))]</pre>
}
delta <- as.numeric(t <= y)</pre>
dat <- data.frame(y = y, delta = delta, x1 = x[,1], x2 = x[,2])
dat$delta[dat$y > 1.8] <- NA</pre>
dat$y[dat$y > 1.8] <- NA
eval_region <- c(0.05, 1.5)
res <- survML::currstatCIR(time = dat$y,</pre>
                            event = dat$delta,
                            X = dat[, 3:4],
                            SL_control = list(SL.library = c("SL.mean", "SL.glm"),
                                               V = 3),
                            HAL\_control = list(n\_bins = c(5),
                                                 grid_type = c("equal_mass"),
                                                V = 3),
                            eval_region = eval_region)
xvals = res$t
yvals = res$S_hat_est
fn=stepfun(xvals, c(yvals[1], yvals))
plot.function(fn, from=min(xvals), to=max(xvals))
## End(Not run)
```

DR_pseudo_outcome_regression

Generate oracle prediction function estimates using doubly-robust pseudo-outcome regression with SuperLearner

Description

Generate oracle prediction function estimates using doubly-robust pseudo-outcome regression with SuperLearner

Usage

```
DR_pseudo_outcome_regression(
   time,
   event,
   X,
   newX,
   approx_times,
   S_hat,
   G_hat,
   newtimes,
   outcome,
   SL.library,
   V
```

)

time	n x 1 numeric vector of observed follow-up times. If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed.
Х	n x p data.frame of observed covariate values
newX	$m \times p$ data.frame of new observed covariate values at which to obtain m predictions for the estimated algorithm. Must have the same names and structure as X.
approx_times	Numeric vector of length J2 giving times at which to approximate integral appearing in the pseudo-outcomes
S_hat	n x J2 matrix of conditional event time survival function estimates
G_hat	n x J2 matrix of conditional censoring time survival function estimates
newtimes	Numeric vector of times at which to generate oracle prediction function esti- mates
outcome	Outcome type, either "survival_probability" or "restricted_survival_time"
SL.library	Super Learner library
V	Number of cross-validation folds, to be passed to SuperLearner

generate_folds

Value

Matrix of predictions.

generate_folds Generate cross-fitting and sample-splitting folds

Description

Generate cross-fitting and sample-splitting folds

Usage

generate_folds(n, V, sample_split)

Arguments

n	Total sample size
V	Number of cross-fitting folds to use
<pre>sample_split</pre>	Logical, whether or not sample-splitting is being used

Value

Named list of cross-fitting and sample-splitting folds

predict.stackG	Obtain predicted conditional survival and cumulative hazard func-
	tions from a global survival stacking object

Description

Obtain predicted conditional survival and cumulative hazard functions from a global survival stacking object

Usage

```
## S3 method for class 'stackG'
predict(
   object,
   newX,
   newtimes,
   surv_form = object$surv_form,
   time_grid_approx = object$time_grid_approx,
   ...
)
```

Arguments

object	Object of class stackG	
newX	m x p data.frame of new observed covariate values at which to obtain m predictions for the estimated algorithm. Must have the same names and structure as X .	
newtimes	$k \ge 1$ numeric vector of times at which to obtain k predicted conditional survivals.	
surv_form	Mapping from hazard estimate to survival estimate. Can be either "PI" (product integral mapping) or "exp" (exponentiated cumulative hazard estimate). Defaults to the value saved in object.	
time_grid_approx		
	Numeric vector of times at which to approximate product integral or cumulative hazard interval. Defaults to the value saved in object.	
	Further arguments passed to or from other methods.	

Value

A named list with the following components:

S_T_preds	An m x k matrix of estimated event time survival probabilities at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.	
S_C_preds	An $m \times k$ matrix of estimated censoring time survival probabilities at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.	
Lambda_T_preds	An $m \times k$ matrix of estimated event time cumulative hazard function values at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.	
Lambda_C_preds	An $m \times k$ matrix of estimated censoring time cumulative hazard function values at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.	
<pre>time_grid_approx</pre>		
	The approximation grid for the product integral or cumulative hazard integral, (user-specified).	
surv_form	Exponential or product-integral form (user-specified).	

See Also

stackG

Examples

```
# This is a small simulation example
set.seed(123)
n <- 250
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))</pre>
```

```
S0 <- function(t, x){
  pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)
}
T \le rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
GO <- function(t, x) \{
  as.numeric(t < 15) *.9*pexp(t,
                                rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
                                lower.tail=FALSE)
}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
entry <- runif(n, 0, 15)</pre>
time <- pmin(T, C)</pre>
event <- as.numeric(T <= C)</pre>
sampled <- which(time >= entry)
X <- X[sampled,]</pre>
time <- time[sampled]</pre>
event <- event[sampled]</pre>
entry <- entry[sampled]</pre>
# Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")</pre>
fit <- stackG(time = time,</pre>
              event = event,
              entry = entry,
              X = X,
              newX = X,
              newtimes = seq(0, 15, .1),
               direction = "prospective",
              bin_size = 0.1,
               time_basis = "continuous",
               time_grid_approx = sort(unique(time)),
               surv_form = "exp",
               learner = "SuperLearner",
               SL_control = list(SL.library = SL.library,
                                  V = 5))
preds <- predict(object = fit,</pre>
                  newX = X,
                  newtimes = seq(0, 15, 0.1))
plot(preds$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')
```

predict.stackL

Description

Obtain predicted conditional survival function from a local survival stacking object

Usage

```
## S3 method for class 'stackL'
predict(object, newX, newtimes, ...)
```

Arguments

object	Object of class stackL
newX	m x p data.frame of new observed covariate values at which to obtain m predictions for the estimated algorithm. Must have the same names and structure as X .
newtimes	k x 1 numeric vector of times at which to obtain k predicted conditional survivals.
	Further arguments passed to or from other methods.

Value

A named list with the following components:

S_T_preds An m x k matrix of estimated event time survival probabilities at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.

See Also

stackL

Examples

```
# This is a small simulation example
set.seed(123)
n <- 500
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))
S0 <- function(t, x){
    pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)
}
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
G0 <- function(t, x) {
    as.numeric(t < 15) *.9*pexp(t,</pre>
```

```
rate = \exp(-2 - .5 \times x[,1] - .25 \times x[,2] + .5 \times x[,1] \times x[,2]),
                                  lower.tail=FALSE)
}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
entry <- runif(n, 0, 15)</pre>
time <- pmin(T, C)</pre>
event <- as.numeric(T <= C)</pre>
sampled <- which(time >= entry)
X <- X[sampled,]</pre>
time <- time[sampled]</pre>
event <- event[sampled]</pre>
entry <- entry[sampled]</pre>
# Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")</pre>
fit <- stackL(time = time,</pre>
                 event = event,
                 entry = entry,
                 X = X,
                 newX = X,
                 newtimes = seq(0, 15, .1),
                 direction = "prospective",
                 bin_size = 0.1,
                 time_basis = "continuous",
                 SL_control = list(SL.library = SL.library,
                                     V = 5))
preds <- predict(object = fit,</pre>
                   newX = X,
                   newtimes = seq(0, 15, 0.1))
plot(preds$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')
```

```
stackG
```

Estimate a conditional survival function using global survival stacking

Description

Estimate a conditional survival function using global survival stacking

Usage

stackG(
 time,

stackG

```
event = rep(1, length(time)),
 entry = NULL,
 Х,
 newX = NULL,
 newtimes = NULL,
 direction = "prospective",
  time_grid_fit = NULL,
 bin_size = NULL,
  time_basis,
 time_grid_approx = sort(unique(time)),
 surv_form = "PI",
 learner = "SuperLearner",
 SL_control = list(SL.library = c("SL.mean"), V = 10, method = "method.NNLS", stratifyCV
   = FALSE),
 tau = NULL
)
```

Arguments

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. De- faults to a vector of 1s, i.e. no censoring.
entry	Study entry variable, if applicable. Defaults to NULL, indicating that there is no truncation.
Х	n x p data.frame of observed covariate values on which to train the estimator.
newX	m x p data.frame of new observed covariate values at which to obtain m predictions for the estimated algorithm. Must have the same names and structure as X .
newtimes	k x 1 numeric vector of times at which to obtain k predicted conditional survivals.
direction	Whether the data come from a prospective or retrospective study. This deter- mines whether the data are treated as subject to left truncation and right censor- ing ("prospective") or right truncation alone ("retrospective").
time_grid_fit	Named list of numeric vectors of times of times on which to discretize for estimation of cumulative probability functions. This is an alternative to bin_size and allows for specially tailored time grids rather than simply using a quantile bin size. The list consists of vectors named $F_Y_1_grid$, $F_Y_0_grid$, $G_W_1_grid$, and $G_W_0_grid$. These denote, respectively, the grids used to estimate the conditional CDF of the time variable among uncensored and censored observations, and the grids used to estimate the conditional distribution of the entry variable among uncensored and censored observations.
bin_size	Size of time bin on which to discretize for estimation of cumulative probability functions. Can be a number between 0 and 1, indicating the size of quantile grid (e.g. 0.1 estimates the cumulative probability functions on a grid based on deciles of observed times). If NULL, creates a grid of all observed times.

12

stackG

time_basis	How to treat time for training the binary classifier. Options are "continuous" and "dummy", meaning an indicator variable is included for each time in the time grid.
<pre>time_grid_appro</pre>	X
	Numeric vector of times at which to approximate product integral or cumulative hazard interval. Defaults to times argument.
surv_form	Mapping from hazard estimate to survival estimate. Can be either "PI" (product integral mapping) or "exp" (exponentiated cumulative hazard estimate).
learner	Which binary regression algorithm to use. Currently, only SuperLearner is supported, but more learners will be added. See below for algorithm-specific arguments.
SL_control	Named list of parameters controlling the Super Learner fitting process. These parameters are passed directly to the SuperLearner function. Parameters include SL.library (library of algorithms to include in the binary classification Super Learner), V (Number of cross validation folds on which to train the Super Learner classifier, defaults to 10), method (Method for estimating coefficients for the Super Learner, defaults to "method.NNLS"), stratifyCV (logical indicating whether to stratify by outcome in SuperLearner's cross-validation scheme), and obsWeights (observation weights, passed directly to prediction algorithms by SuperLearner).
tau	The maximum time of interest in a study, used for retrospective conditional survival estimation. Rather than dealing with right truncation separately than left truncation, it is simpler to estimate the survival function of $tau - time$. Defaults to NULL, in which case the maximum study entry time is chosen as the reference point.

Value

A named list of class stackG, with the following components:

S_T_preds	An m x k matrix of estimated event time survival probabilities at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.	
S_C_preds	An $m \times k$ matrix of estimated censoring time survival probabilities at the m co- variate vector values and k times provided by the user in newX and newtimes, respectively.	
Lambda_T_preds	An $m \times k$ matrix of estimated event time cumulative hazard function values at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.	
Lambda_C_preds	An $m \times k$ matrix of estimated censoring time cumulative hazard function values at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.	
time_grid_approx		
	The approximation grid for the product integral or cumulative hazard integral, (user-specified).	
direction	Whether the data come from a prospective or retrospective study (user-specified).	

tau	The maximum time of interest in a study, used for retrospective conditional survival estimation (user-specified).
surv_form	Exponential or product-integral form (user-specified).
time_basis	Whether time is included in the regression as continuous or dummy (user-specified)
SL_control	Named list of parameters controlling the Super Learner fitting process (user-specified).
fits	A named list of fitted regression objects corresponding to the constituent regressions needed for global survival stacking. Includes P_Delta (probability of event given covariates), F_Y_1 (conditional cdf of follow-up times given covariates among uncensored), F_Y_0 (conditional cdf of follow-up times given covariates among censored), G_W_1 (conditional distribution of entry times given covariates and follow-up time among uncensored), G_W_0 (conditional distribution of entry times given covariates and follow-up time among uncensored). Each of these objects includes estimated coefficients from the SuperLearner fit, as well as the time grid used to create the stacked dataset (where applicable).

References

Wolock C.J., Gilbert P.B., Simon N., and Carone, M. (2024). "A framework for leveraging machine learning tools to estimate personalized survival curves."

See Also

predict.stackG for stackG prediction method.

Examples

```
# This is a small simulation example
set.seed(123)
n <- 250
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))</pre>
S0 <- function(t, x){
  pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)
}
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
G0 <- function(t, x) \{
  as.numeric(t < 15) *.9*pexp(t,</pre>
                               rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
                               lower.tail=FALSE)
}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
entry <- runif(n, 0, 15)
time <- pmin(T, C)</pre>
event <- as.numeric(T <= C)</pre>
```

stackL

```
sampled <- which(time >= entry)
X <- X[sampled,]</pre>
time <- time[sampled]</pre>
event <- event[sampled]</pre>
entry <- entry[sampled]</pre>
# Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")</pre>
fit <- stackG(time = time,</pre>
              event = event,
              entry = entry,
              X = X,
              newX = X,
              newtimes = seq(0, 15, .1),
               direction = "prospective",
              bin_size = 0.1,
               time_basis = "continuous",
               time_grid_approx = sort(unique(time)),
               surv_form = "exp",
              learner = "SuperLearner",
               SL_control = list(SL.library = SL.library,
                                  V = 5))
plot(fit$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
```

```
abline(0,1,col='red')
```

stackL

Estimate a conditional survival function via local survival stacking

Description

Estimate a conditional survival function via local survival stacking

Usage

```
stackL(
   time,
   event = rep(1, length(time)),
   entry = NULL,
   X,
   newX,
   newtimes,
   direction = "prospective",
   bin_size = NULL,
   time_basis = "continuous",
   learner = "SuperLearner",
   SL_control = list(SL.library = c("SL.mean"), V = 10, method = "method.NNLS", stratifyCV
```

stackL

```
= FALSE),
tau = NULL
)
```

Arguments

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. De- faults to a vector of 1s, i.e. no censoring.
entry	Study entry variable, if applicable. Defaults to NULL, indicating that there is no truncation.
х	n x p data.frame of observed covariate values on which to train the estimator.
newX	$m \times p$ data.frame of new observed covariate values at which to obtain m predictions for the estimated algorithm. Must have the same names and structure as X.
newtimes	$k \ge 1$ numeric vector of times at which to obtain k predicted conditional survivals.
direction	Whether the data come from a prospective or retrospective study. This deter- mines whether the data are treated as subject to left truncation and right censor- ing ("prospective") or right truncation alone ("retrospective").
bin_size	Size of bins for the discretization of time. A value between 0 and 1 indicating the size of observed event time quantiles on which to grid times (e.g. 0.02 creates a grid of 50 times evenly spaced on the quantile scaled). If NULL, defaults to every observed event time.
time_basis	How to treat time for training the binary classifier. Options are "continuous" and "dummy", meaning an indicator variable is included for each time in the time grid.
learner	Which binary regression algorithm to use. Currently, only SuperLearner is supported, but more learners will be added. See below for algorithm-specific arguments.
SL_control	Named list of parameters controlling the Super Learner fitting process. These parameters are passed directly to the SuperLearner function. Parameters include SL.library (library of algorithms to include in the binary classification Super Learner), V (Number of cross validation folds on which to train the Super Learner classifier, defaults to 10), method (Method for estimating coefficients for the Super Learner, defaults to "method.NNLS"), stratifyCV (logical indicating whether to stratify by outcome in SuperLearner's cross-validation scheme), and obsWeights (observation weights, passed directly to prediction algorithms by SuperLearner).
tau	The maximum time of interest in a study, used for retrospective conditional survival estimation. Rather than dealing with right truncation separately than left truncation, it is simpler to estimate the survival function of tau – time. Defaults to NULL, in which case the maximum study entry time is chosen as the reference point.

16

stackL

Value

A named list of class stackL.

S_T_preds	An $m \times k$ matrix of estimated event time survival probabilities at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.
fit	The Super Learner fit for binary classification on the stacked dataset.

References

Polley E.C. and van der Laan M.J. (2011). "Super Learning for Right-Censored Data" in Targeted Learning.

Craig E., Zhong C., and Tibshirani R. (2021). "Survival stacking: casting survival analysis as a classification problem."

See Also

predict.stackL for stackL prediction method.

Examples

```
# This is a small simulation example
set.seed(123)
n <- 500
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))</pre>
S0 <- function(t, x){
  pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)
}
T \le rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
GO <- function(t, x) \{
  as.numeric(t < 15) *.9*pexp(t,
                                 rate = \exp(-2 - .5 \times x[,1] - .25 \times x[,2] + .5 \times x[,1] \times x[,2]),
                                 lower.tail=FALSE)
}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
entry <- runif(n, 0, 15)</pre>
time <- pmin(T, C)</pre>
event <- as.numeric(T <= C)</pre>
sampled <- which(time >= entry)
X <- X[sampled,]</pre>
time <- time[sampled]</pre>
event <- event[sampled]</pre>
entry <- entry[sampled]</pre>
# Note that this a very small Super Learner library, for computational purposes.
```

```
SL.library <- c("SL.mean", "SL.glm")
fit <- stackL(time = time,
            event = event,
            entry = entry,
            X = X,
            newtimes = seq(0, 15, .1),
            direction = "prospective",
            bin_size = 0.1,
            time_basis = "continuous",
            SL_control = list(SL.library = SL.library,
                  V = 5))
plot(fit$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))</pre>
```

abline(0,1,col='red')

vim

18

Estimate AUC VIM

Description

Estimate AUC VIM

Usage

```
vim(
  type,
  time,
  event,
 Х,
 landmark_times = stats::quantile(time[event == 1], probs = c(0.25, 0.5, 0.75)),
  restriction_time = max(time[event == 1]),
  approx_times = NULL,
  large_feature_vector,
  small_feature_vector,
  conditional_surv_preds = NULL,
  large_oracle_preds = NULL,
  small_oracle_preds = NULL,
  conditional_surv_generator = NULL,
  conditional_surv_generator_control = NULL,
  large_oracle_generator = NULL,
  large_oracle_generator_control = NULL,
  small_oracle_generator = NULL,
  small_oracle_generator_control = NULL,
  cf_folds = NULL,
  cf_fold_num = 5,
```

vim

```
sample_split = TRUE,
ss_folds = NULL,
robust = TRUE,
scale_est = FALSE,
alpha = 0.05,
verbose = FALSE
)
```

type	Type of VIM to compute. Options include "accuracy", "AUC", "Brier", "R-squared" "C-index", and "survival_time_MSE".
time	$n \ge 1$ numeric vector of observed follow-up times. If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed.
Х	n x p data.frame of observed covariate values
landmark_times	Numeric vector of length J1 giving landmark times at which to estimate VIM ("accuracy", "AUC", "Brier", "R-squared").
restriction_tim	ne
	$Maximum\ follow-up\ time\ for\ calculation\ of\ "C-index"\ and\ "survival_time_MSE".$
approx_times	Numeric vector of length J2 giving times at which to approximate integrals. Defaults to a grid of 100 timepoints, evenly spaced on the quantile scale of the distribution of observed event times.
large_feature_v	
	Numeric vector giving indices of features to include in the 'large' prediction model.
<pre>small_feature_v</pre>	vector
	Numeric vector giving indices of features to include in the 'small' prediction model. Must be a subset of large_feature_vector.
conditional_sur	rv_preds
	User-provided estimates of the conditional survival functions of the event and censoring variables given the full covariate vector (if not using the vim() function to compute these nuisance estimates). Must be a named list of lists with elements S_hat, S_hat_train, G_hat, and G_hat_train. Each of these is itself a list of length K, where K is the number of cross-fitting folds. Each element of these lists is a matrix with J2 columns and number of rows equal to either the number of samples in the kth fold (for S_hat or G_hat) or the number of samples used to compute the nuisance estimator for the kth fold.
large_oracle_pr	reds
	User-provided estimates of the oracle prediction function using large_feature_vector. Must be a named list of lists with elements f_hat and f_hat_train. Each of these is itself a list of length K. Each element of these lists is a matrix with J1 columns (for landmark time VIMs) or 1 column (for "C-index" and "survival_time_MSE").
<pre>small_oracle_pr</pre>	
	User-provided estimates of the oracle prediction function using small_feature_vector. Must be a named list of lists with elements f_hat and f_hat_train. Each of

vim

	these is itself a list of length K. Each element of these lists is a matrix with J1	
	columns (for landmark time VIMs) or 1 column (for "C-index" and "survival_time_MSE").	
conditional_surv_generator		
	A user-written function to estimate the conditional survival functions of the	
	event and censoring variables. Must take arguments time, event, folds (cross- fitting fold identifiance) and neutrinose (times at which to generate predictions)	
conditional cu	fitting fold identifiers), and newtimes (times at which to generate predictions).	
conditional_su	rv_generator_control	
large_oracle_ge	A list of arguments to pass to conditional_surv_generator.	
	A user-written function to estimate the oracle prediction function using large_feature_vector.Must	
	take arguments time, event, and folds (cross-fitting fold identifiers).	
large_oracle_ge	enerator_control	
	A list of arguments to pass to large_oracle_generator.	
small_oracle_ge	enerator	
	A user-written function to estimate the oracle prediction function using small_feature_vector.Must take arguments time, event, and folds (cross-fitting fold identifiers).	
small_oracle_ge	enerator_control	
	A list of arguments to pass to small_oracle_generator.	
cf_folds	Numeric vector of length n giving cross-fitting folds	
cf_fold_num	The number of cross-fitting folds, if not providing cf_folds	
<pre>sample_split</pre>	Logical indicating whether or not to sample split	
ss_folds	Numeric vector of length n giving sample-splitting folds	
robust	Logical, whether or not to use the doubly-robust debiasing approach. This op- tion is meant for illustration purposes only — it should be left as TRUE.	
<pre>scale_est</pre>	Logical, whether or not to force the VIM estimate to be nonnegative	
alpha	The level at which to compute confidence intervals and hypothesis tests. De- faults to 0.05	
verbose	Whether to print progress messages.	
Value		
Named list with th	ne following elements:	

result	Data frame giving results. See the documentation of the individual vim_* func- tions for details.
folds	A named list giving the cross-fitting fold IDs (cf_folds) and sample-splitting fold IDs (ss_folds).

folds A named list giving the cross-fitting fold IDs (cf_folds) and sample-splitting fold IDs (ss_folds). approx_times A vector of times used to approximate integrals appearing in the form of the VIM estimator. conditional_surv_preds A named list containing the estimated conditional event and censoring survival

A named list containing the estimated conditional event and censoring survival functions.

large_oracle_preds

A named list containing the estimated large oracle prediction function.

small_oracle_preds

A named list containing the estimated small oracle prediction function.

vim_accuracy

See Also

vim_accuracy vim_AUC vim_brier vim_cindex vim_rsquared vim_survival_time_mse

Examples

```
# This is a small simulation example
set.seed(123)
n <- 100
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))</pre>
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
time <- pmin(T, C)</pre>
event <- as.numeric(T <= C)</pre>
# landmark times for AUC
landmark_times <- c(3)</pre>
output <- vim(type = "AUC",</pre>
              time = time,
              event = event,
              X = X,
              landmark_times = landmark_times,
              large_feature_vector = 1:2,
              small_feature_vector = 2,
          conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")),
              large_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")),
              small_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")),
              cf_fold_num = 2,
              sample_split = FALSE,
              scale_est = TRUE)
```

print(output\$result)

vim_accuracy Estimate classification accuracy VIM

Description

Estimate classification accuracy VIM

Usage

```
vim_accuracy(
   time,
   event,
```

```
approx_times,
landmark_times,
f_hat,
fs_hat,
S_hat,
G_hat,
cf_folds,
sample_split,
ss_folds,
scale_est = FALSE,
alpha = 0.05
```

Arguments

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. De- faults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
landmark_times	Numeric vector of length J2 giving times at which to estimate accuracy
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
cf_folds	Numeric vector of length n giving cross-fitting folds
<pre>sample_split</pre>	Logical indicating whether or not to sample split
ss_folds	Numeric vector of length n giving sample-splitting folds
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

A data frame giving results, with the following columns:

landmark_time	Time at which AUC is evaluated.
est	VIM point estimate.
var_est	Estimated variance of the VIM estimate.
cil	Lower bound of the VIM confidence interval.
ciu	Upper bound of the VIM confidence interval.
cil_1sided	Lower bound of a one-sided confidence interval.
р	p-value corresponding to a hypothesis test of null importance.

22

vim_AUC

large_predictiveness		
	Estimated predictiveness of the large oracle prediction function.	
<pre>small_predictiv</pre>	eness	
	Estimated predictiveness of the small oracle prediction function.	
vim	VIM type.	
large_feature_vector		
	Group of features available for the large oracle prediction function.	
small_feature_vector		
	Group of features available for the small oracle prediction function.	

vim_AUC Estimate AUC VIM

Description

Estimate AUC VIM

Usage

```
vim_AUC(
   time,
   event,
   approx_times,
   landmark_times,
   f_hat,
   fs_hat,
   S_hat,
   G_hat,
   cf_folds,
   sample_split,
   ss_folds,
   robust = TRUE,
   scale_est = FALSE,
   alpha = 0.05
```

)

time	n x 1 numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. De- faults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
landmark_times	Numeric vector of length J2 giving times at which to estimate AUC
f_hat	Full oracle predictions (n x J1 matrix)

fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
cf_folds	Numeric vector of length n giving cross-fitting folds
<pre>sample_split</pre>	Logical indicating whether or not to sample split
ss_folds	Numeric vector of length n giving sample-splitting folds
robust	Logical, whether or not to use the doubly-robust debiasing approach. This option is meant for illustration purposes only — it should be left as TRUE.
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

A data frame giving results, with the following columns:

Time at which AUC is evaluated.		
VIM point estimate.		
Estimated variance of the VIM estimate.		
Lower bound of the VIM confidence interval.		
Upper bound of the VIM confidence interval.		
Lower bound of a one-sided confidence interval.		
p-value corresponding to a hypothesis test of null importance.		
large_predictiveness		
Estimated predictiveness of the large oracle prediction function.		
small_predictiveness		
Estimated predictiveness of the small oracle prediction function.		
VIM type.		
large_feature_vector		
Group of features available for the large oracle prediction function.		
small_feature_vector		
Group of features available for the small oracle prediction function.		

See Also

vim for example usage

vim_brier

Description

Estimate Brier score VIM

Usage

```
vim_brier(
   time,
   event,
   approx_times,
   landmark_times,
   f_hat,
   fs_hat,
   S_hat,
   G_hat,
   cf_folds,
   sample_split,
   scale_est = FALSE,
   alpha = 0.05
)
```

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	$n \ x \ 1$ numeric vector of status indicators of whether an event was observed. Defaults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
landmark_times	Numeric vector of length J2 giving times at which to estimate Brier score
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
cf_folds	Numeric vector of length n giving cross-fitting folds
ss_folds	Numeric vector of length n giving sample-splitting folds
sample_split	Logical indicating whether or not to sample split
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

26

Value

A data frame giving results, with the following columns:

landmark_time	Time at which AUC is evaluated.
est	VIM point estimate.
var_est	Estimated variance of the VIM estimate.
cil	Lower bound of the VIM confidence interval.
ciu	Upper bound of the VIM confidence interval.
cil_1sided	Lower bound of a one-sided confidence interval.
р	p-value corresponding to a hypothesis test of null importance.
large_predictiv	reness
	Estimated predictiveness of the large oracle prediction function.
small_predictiv	reness
	Estimated predictiveness of the small oracle prediction function.
vim	VIM type.
large_feature_v	rector
	Group of features available for the large oracle prediction function.
small_feature_v	rector
	Group of features available for the small oracle prediction function.

See Also

vim for example usage

vim_cindex

Estimate concordance index VIM

Description

Estimate concordance index VIM

Usage

vim_cindex(
 time,
 event,
 approx_times,
 restriction_time,
 f_hat,
 fs_hat,
 S_hat,
 G_hat,
 cf_folds,
 sample_split,

```
ss_folds,
scale_est = FALSE,
alpha = 0.05
)
```

Arguments

time	n x 1 numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. De- faults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
restriction_tim	ne
	Restriction time (upper bound for event times to be compared in computing the C-index)
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
cf_folds	Numeric vector of length n giving cross-fitting folds
<pre>sample_split</pre>	Logical indicating whether or not to sample split
ss_folds	Numeric vector of length n giving sample-splitting folds
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

A data frame giving results, with the following columns:

restriction_time Restriction time (upper bound for event times to be compared in computing the C-index). est VIM point estimate. var_est Estimated variance of the VIM estimate. Lower bound of the VIM confidence interval. cil ciu Upper bound of the VIM confidence interval. cil_1sided Lower bound of a one-sided confidence interval. p-value corresponding to a hypothesis test of null importance. р large_predictiveness Estimated predictiveness of the large oracle prediction function. small_predictiveness Estimated predictiveness of the small oracle prediction function.

vim	VIM type.
large_feature_v	ector
	Group of features available for the large oracle prediction function.
small_feature_vector	
	Group of features available for the small oracle prediction function.

See Also

vim for example usage

vim_rsquared	Estimate R-squared (proportion of explained variance) VIM based on
	event occurrence by a landmark time

Description

Estimate R-squared (proportion of explained variance) VIM based on event occurrence by a landmark time

Usage

```
vim_rsquared(
   time,
   event,
   approx_times,
   landmark_times,
   f_hat,
   fs_hat,
   S_hat,
   G_hat,
   cf_folds,
   sample_split,
   scale_est = FALSE,
   alpha = 0.05
)
```

Arguments

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. De- faults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
landmark_times	Numeric vector of length J2 giving times at which to estimate Brier score
f_hat	Full oracle predictions (n x J1 matrix)

28

vim_rsquared

fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
cf_folds	Numeric vector of length n giving cross-fitting folds
ss_folds	Numeric vector of length n giving sample-splitting folds
sample_split	Logical indicating whether or not to sample split
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

A data frame giving results, with the following columns:

landmark_time	Time at which AUC is evaluated.	
est	VIM point estimate.	
var_est	Estimated variance of the VIM estimate.	
cil	Lower bound of the VIM confidence interval.	
ciu	Upper bound of the VIM confidence interval.	
cil_1sided	Lower bound of a one-sided confidence interval.	
р	p-value corresponding to a hypothesis test of null importance.	
large_predictiveness Estimated predictiveness of the large oracle prediction function.		
small_predictiveness		
	Estimated predictiveness of the small oracle prediction function.	
vim	VIM type.	
large_feature_vector		
	Group of features available for the large oracle prediction function.	
small_feature_vector		
	Group of features available for the small oracle prediction function.	

See Also

vim for example usage

vim_survival_time_mse Estimate restricted predicted survival time MSE VIM

Description

Estimate restricted predicted survival time MSE VIM

Usage

```
vim_survival_time_mse(
   time,
   event,
   approx_times,
   restriction_time,
   f_hat,
   fs_hat,
   S_hat,
   G_hat,
   cf_folds,
   sample_split,
   ss_folds,
   scale_est = FALSE,
   alpha = 0.05
)
```

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. De- faults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
restriction_time	
	restriction time
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
cf_folds	Numeric vector of length n giving cross-fitting folds
<pre>sample_split</pre>	Logical indicating whether or not to sample split
ss_folds	Numeric vector of length n giving sample-splitting folds
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

A data frame giving results, with the following columns:

restriction_time

restriction_time	
	Restriction time (upper bound for event times to be compared in computing the restricted survival time).
est	VIM point estimate.
var_est	Estimated variance of the VIM estimate.
cil	Lower bound of the VIM confidence interval.
ciu	Upper bound of the VIM confidence interval.
cil_1sided	Lower bound of a one-sided confidence interval.
р	p-value corresponding to a hypothesis test of null importance.
large_predictiveness	
	Estimated predictiveness of the large oracle prediction function.
<pre>small_predictiveness</pre>	
	Estimated predictiveness of the small oracle prediction function.
vim	VIM type.
large_feature_vector	
	Group of features available for the large oracle prediction function.
small_feature_vector	
	Group of features available for the small oracle prediction function.

See Also

vim for example usage

Index

crossfit_oracle_preds, 2 crossfit_surv_preds, 3 currstatCIR, 4 ${\tt DR_pseudo_outcome_regression, 6}$ ${\tt generate_folds, 7}$ predict.stackG, 7, 14 predict.stackL, 9, 17 stackG, 8, 11 stackL, *10*, 15 vim, 18, 24, 26, 28, 29, 31 vim_accuracy, 21, 21 vim_AUC, 21, 23 vim_brier, 21, 25 vim_cindex, 21, 26 vim_rsquared, 21, 28 vim_survival_time_mse, 21, 30