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statmod-package Introduction to the StatMod Package
Description

This package includes a variety of functions for numerical analysis and statistical modelling. The
functions are briefly summarized by type of application below.

Generalized Linear Models

The function tweedie defines a large class of generalized linear model families with power variance
functions. It used in conjunction with the glm function, and widens the class of families that can be
fitted.

gresiduals implements randomized quantile residuals for generalized linear models.

The functions canonic.digamma, unitdeviance.digamma, varfun.digamma, cumulant.digamma,
d2cumulant.digamma, meanval.digamma and logmdigamma are used to fit double-generalized
models, in which a link-linear model is fitted to the dispersion as well as to the mean. Spefically
they are used to fit the dispersion submodel associated with a gamma glm.

Growth Curves

compareGrowthCurves, compareTwoGrowthCurves and meanT are functions to test for differences
between growth curves with repeated measurements on subjects.
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Limiting Dilution Analysis

The 1imdil function is used in the analysis of stem cell frequencies. It implements limiting dilu-
tion analysis using complemenary log-log binomial generalized linear model regression, with some
improvements on previous programs.

Probability Distributions

The functions ginvgauss, dinvgauss, pinvgauss and rinvgauss provide probability calculations
for the inverse Gaussian distribution.

gauss.quad and gauss.quad.prob compute Gaussian Quadrature with probability distributions.

Tests

hommel. test performs Hommel’s multiple comparison tests.
power.fisher.test computes the power of Fisher’s Exact Test for comparing proportions.

sage.test is a fast approximation to Fisher’s exact test for each tag for comparing two Serial
Analysis of Gene Expression (SAGE) libraries.

permp computes p-values for permutation tests when the permutations are randomly drawn.

Variance Models

mixedModel?2, mixedModel2Fit and glmgam. fit fit mixed linear models.

remlscore and remlscoregamma fit heteroscedastic and varying dispersion models by REML.
welding is an example data set.

Matrix Computations

matvec and vecmat facilitate multiplying matrices by vectors.

Author(s)

Gordon Smyth

Digamma Digamma Generalized Linear Model Family

Description

Produces a Digamma generalized linear model family object. The Digamma distribution is the
distribution of the unit deviance for a gamma response.
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Usage

Digamma(link = "log")
unitdeviance.digamma(y, mu)
cumulant.digamma(theta)
meanval .digamma(theta)
d2cumulant.digamma(theta)
varfun.digamma(mu)
canonic.digamma(mu)

Arguments
link character string, number or expressing specifying the link function. See quasi
for specification of this argument.
y numeric vector of (positive) response values
mu numeric vector of (positive) fitted values
theta numeric vector of values of the canonical variable, equal to —1/¢ where ¢ is the
dispersion parameter of the gamma distribution
Details

This family is useful for dispersion modelling with gamma generalized linear models. The Digamma
distribution describes the distribution of the unit deviances for a gamma family, in the same way
that the gamma distribution itself describes the distribution of the unit deviances for Gaussian or
inverse Gaussian families. The Digamma distribution is so named because it is dual to the gamma
distribution in the above sense, and because the digamma function appears in its mean function.

Suppose that y follows a gamma distribution with mean y and dispersion parameter ¢, so the vari-
ance of y is ¢u?. Write d(y, ) for the gamma distribution unit deviance. Then meanval .digamma(-1/phi)
gives the mean of d(y, 1) and 2*d2cumulant.digamma(-1/phi) gives the variance.

Value

Digamma produces a glm family object, which is a list of functions and expressions used by glm in
its iteratively reweighted least-squares algorithm. See family for details.

The other functions take vector arguments and produce vector values of the same length and called

by Digamma. unitdeviance.digamma gives the unit deviances of the family, equal to the squared
deviance residuals. cumulant.digamma is the cumulant function. If the dispersion is unity, then suc-
cessive derivatives of the cumulant function give successive cumulants of the Digamma distribution.
meanvalue.digamma gives the first derivative, which is the expected value. d2cumulant.digamma

gives the second derivative, which is the variance. canonic.digamma is the inverse of meanvalue.digamma
and gives the canonical parameter as a function of the mean parameter. varfun.digamma is the vari-

ance function of the Digamma family, the variance as a function of the mean.

Author(s)

Gordon Smyth
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References

Smyth, G. K. (1989). Generalized linear models with varying dispersion. J. R. Statist. Soc. B, 51,
47-61. doi:10.1111/1.25176161.1989.tb01747 .x

See Also

quasi, make.link

Examples

# Test for log-linear dispersion trend in gamma regression
y <- rchisq(20,df=1)

X <= 1:20

out.gam <- glm(y~x,family=Gamma(link="1log"))

d <- residuals(out.gam)”*2

out.dig <- glm(d~x,family=Digamma(link="1og"))
summary(out.dig,dispersion=2)

elda Extreme Limiting Dilution Analysis

Description

Fit single-hit model to a dilution series using complementary log-log binomial regression.

Usage

elda(response, dose, tested=rep(1,length(response)), group=rep(1,length(response)),
observed=FALSE, confidence=0.95, test.unit.slope=FALSE)

limdil(response, dose, tested=rep(1,length(response)), group=rep(1,length(response)),
observed=FALSE, confidence=0.95, test.unit.slope=FALSE)

eldaOneGroup(response, dose, tested, observed=FALSE, confidence=0.95,
tol=1e-8, maxit=100, trace=FALSE)

Arguments

response numeric vector giving number of positive cases out of tested trials. Should
take non-negative integer values.

dose numeric vector of expected number of cells in assay. Values must be positive.
tested numeric vector giving number of trials at each dose. Should take integer values.
group vector or factor giving group to which the response belongs.
observed logical, is the actual number of cells observed?
confidence numeric level for confidence interval. Should be strictly between 0 and 1.

test.unit.slope
logical, should the adequacy of the single-hit model be tested?
tol convergence tolerance.
maxit maximum number of Newton iterations to perform.
trace logical, if TRUE then iterim results are output at each iteration.


https://doi.org/10.1111/j.2517-6161.1989.tb01747.x

6 elda

Details

elda and 1imdil are alternative names for the same function. (1imdil was the older name before
the 2009 paper by Hu and Smyth.) eldaOneGroup is a lower-level function that does the computa-
tions when there is just one group, using a globally convergent Newton iteration. It is called by the
other functions.

These functions implement maximum likelihood analysis of limiting dilution data using methods
proposed by Hu and Smyth (2009). The functions gracefully accommodate situations where 0%
or 100% of the assays give positive results, which is why we call it "extreme" limiting dilution
analysis. The functions provide the ability to test for differences in stem cell frequencies between
groups, and to test goodness of fit in a number of ways. The methodology has been applied to the
analysis of stem cell assays (Shackleton et al, 2006).

The statistical method is explained by Hu and Smyth (2009). A binomial generalized linear model
is fitted for each group with cloglog link and offset log(dose). If observed=FALSE, a classic
Poisson single-hit model is assumed, and the Poisson frequency of the stem cells is the exp of
the intercept. If observed=TRUE, the values of dose are treated as actual cell numbers rather than
expected values. This doesn’t change the generalized linear model fit, but it does change how the
frequencies are extracted from the estimated model coefficient (Hu and Smyth, 2009).

The confidence interval is a Wald confidence interval, unless the responses are all negative or all
positive, in which case Clopper-Pearson intervals are computed.

If group takes several values, then separate confidence intervals are computed for each group. In
this case a likelihood ratio test is conducted for differences in active cell frequencies between the
groups.

These functions compute a number of different tests of goodness of fit. One test is based on the
coefficient for log(dose) in the generalized linear model. The nominal slope is 1. A slope greater
than one suggests a multi-hit model in which two or more cells are synergistically required to
produce a positive response. A slope less than 1 suggests some sort of cell interference. Slopes less
than 1 can also be due to heterogeneity of the stem cell frequency between assays. elda conducts
likelihood ratio and score tests that the slope is equal to one.

Another test is based on the coefficient for dose. This idea is motivated by a suggestion of Gart
and Weiss (1967), who suggest that heterogeneity effects are more likely to be linear in dose than
log(dose). These functions conducts score tests that the coefficient for dose is non-zero. Negative
values for this test suggest heterogeneity.

These functions produce objects of class "1imdil”. There are print and plot methods for "1imdil”
objects.

Value
eldaand 1imdil produce an object of class “"1imdil”. This is a list with the following components:

CI numeric matrix giving estimated stem cell frequency and lower and upper limits
of Wald confidence interval for each group

test.difference
numeric vector giving chisquare likelihood ratio test statistic and p-value for
testing the difference between groups

test.slope.wald
numeric vector giving wald test statistics and p-value for testing the slope of the
offset equal to one
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test.slope.lr numeric vector giving chisquare likelihood ratio test statistics and p-value for
testing the slope of the offset equal to one

test.slope.score.logdose
numeric vector giving score test statistics and p-value for testing multi-hit alter-
natives

test.slope.score.dose
numeric vector giving score test statistics and p-value for testing heterogeneity

response numeric of integer counts of positive cases, out of tested trials
tested numeric vector giving number of trials at each dose
dose numeric vector of expected number of cells in assay
group vector or factor giving group to which the response belongs
num. group number of groups

Author(s)

Yifang Hu and Gordon Smyth

References

Hu, Y, and Smyth, GK (2009). ELDA: Extreme limiting dilution analysis for comparing depleted
and enriched populations in stem cell and other assays. Journal of Immunological Methods 347, 70-
78. doi:10.1016/5.jim.2009.06.008 http://www.statsci.org/smyth/pubs/ELDAPreprint.pdf

Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M.-L., Wu,
L., Lindeman, G. J., and Visvader, J. E. (2006). Generation of a functional mammary gland from a
single stem cell. Nature 439, 84-88. doi:10.1038/nature04372

Gart, JJ, and Weiss, GH (1967). Graphically oriented tests for host variability in dilution experi-
ments. Biometrics 23, 269-284.

See Also

plot.limdil and print.limdil are methods for 1imdil class objects.

A web interface to this function is available at https://bioinf.wehi.edu.au/software/elda/.

Examples

# When there is one group

Dose <- c¢(50,100,200,400,800)

Responses <- ¢(2,6,9,15,21)

Tested <- c(24,24,24,24,24)

out <- elda(Responses,Dose,Tested, test.unit.slope=TRUE)
out

plot(out)

# When there are four groups

Dose <- c(30000,20000,4000,500,30000,20000,4000,500,30000,20000,4000,500, 30000, 20000, 4000, 500)
Responses <- ¢(2,3,2,1,6,5,6,1,2,3,4,2,6,6,6,1)

Tested <- ¢(6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6)

Group <- ¢(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)
elda(Responses,Dose, Tested, Group, test.unit.slope=TRUE)


https://doi.org/10.1016/j.jim.2009.06.008
http://www.statsci.org/smyth/pubs/ELDAPreprint.pdf
https://doi.org/10.1038/nature04372
https://bioinf.wehi.edu.au/software/elda/
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expectedDeviance Expected Value of Scaled Unit Deviance for Linear Exponential Fam-
ilies

Description

Expected value and variance of the scaled unit deviance for common generalized linear model
families.

Usage

expectedDeviance(mu, family="binomial”, binom.size, nbinom.size, gamma.shape)

Arguments
mu numeric vector or matrix giving mean of response variable.
family character string indicating the linear exponential family. Possible values are
"binomial"”,"gaussian”, "Gamma", "inverse.gaussian”, "poisson” or "negative.binomial”.
binom.size integer vector giving the number of binomial trials when family = "binomial”.
Equivalent to the "size"” argument of pbinom.
nbinom.size numeric vector giving the negative binomial size parameter when family =
"negative.binomial”, such that the variance of the response variable is mu
+mu”*2 / nbinom.size. Equivalent to the "size" parameter of pnbinom.
gamma . shape numeric vector giving the gamma shape parameter when family = "Gamma”,
such that the variance of the response variable is mu*2 / gamma. shape. Equiva-
lent to the "shape” parameter of pgamma.
Details

For a generalized linear model (GLM), the scaled unit deviances can be computed using d <-
f$dev.resids(y, mu, wt=1/phi) where f is the GLM family object, y is the response variable, mu
is the vector of means and phi is the vector of GLM dispersions (incorporating any prior weights).

The scaled unit deviances are often treated as being chiquare distributed on 1 df, so the mean should
be 1 and the variance should be 2. This distribution result only holds however when the saddlepoint
approximation is accurate for the response variable distribution (Dunn and Smyth, 2018). In other
cases, the expected value and variance of the unit deviances can be far from the nominal values.
The expectedDeviance function returns the exact mean and variance of the unit deviance for the
usual GLM familes assuming that mu is the true mean and phi is the true dispersion.

When family is "poisson”, "binomial” or "negative.binomial”, the expected values and vari-
ances are computed using Chebyshev polynomial approximations. When family = "Gamma", the
function uses exact formulas derived by Smyth (1989).
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Value
A list with the components

mean expected values

variance variances

both of which have the same length and dimensions as the input mu.

Author(s)

Lizong Chen and Gordon Smyth

References

Dunn PK, Smyth GK (2018). Generalized linear models with examples in R. Springer, New York,
NY. doi:10.1007/9781441901187

Smyth, G. K. (1989). Generalized linear models with varying dispersion. J. R. Statist. Soc. B, 51,
47-61. doi:10.1111/j.25176161.1989.tb01747 .x

See Also

family, meanval.digamma, d2cumulant.digamma.

Examples

# Poisson example

lambda <- 3

nsim <- le4

y <- rpois(nsim, lambda=lambda)

d <- poisson()$dev.resids(y=y, mu=rep(lambda,nsim), wt=1)
c(mean=mean(d), variance=var(d))
unlist(expectedDeviance(mu=lambda, family="poisson”))

# binomial example

n <- 10

p <- 0.01

y <= rbinom(nsim, prob=p, size=n)

d <- binomial()$dev.resids(y=y/n, mu=rep(p,nsim), wt=n)

c(mean=mean(d), variance=var(d))
unlist(expectedDeviance(mu=p, family="binomial”, binom.size=n))

# gamma example

alpha <- 5

beta <- 2

y <- beta * rgamma(le4, shape=alpha)

d <- Gamma()$dev.resids(y=y, mu=rep(alphaxbeta,n), wt=alpha)
c(mean=mean(d), variance=var(d))

unlist(expectedDeviance(mu=alpha*beta, family="Gamma", gamma.shape=alpha))

# negative binomial example
library(MASS)


https://doi.org/10.1007/978-1-4419-0118-7
https://doi.org/10.1111/j.2517-6161.1989.tb01747.x
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mu <- 10

phi <- 0.2

y <- rnbinom(nsim, mu=mu, size=1/phi)

f <- MASS::negative.binomial(theta=1/phi)

d <- f$dev.resids(y=y, mu=rep(mu,nsim), wt=1)

c(mean=mean(d), variance=var(d))

unlist(expectedDeviance(mu=mu, family="negative.binomial”, nbinom.size=1/phi))

# binomial expected deviance tends to zero for p small:

p <- seq(from=0.001,t0=0.11,1en=200)

ed <- expectedDeviance(mu=p,family="binomial”,binom.size=10)
plot(p,ed$mean, type="1")

fitNBP Negative Binomial Model for SAGE Libraries with Pearson Estimation
of Dispersion

Description
Fit a multi-group negative-binomial model to SAGE data, with Pearson estimation of the common
overdispersion parameter.

Usage

fitNBP(y, group=NULL, lib.size=colSums(y), tol=1e-5, maxit=40, verbose=FALSE)

Arguments
y numeric matrix giving counts. Rows correspond to tags (genes) and columns to
SAGE libraries.
group factor indicating which library belongs to each group. If NULL then one group is
assumed.
lib.size vector giving total number of tags in each library.
tol small positive numeric tolerance to judge convergence
maxit maximum number of iterations permitted
verbose logical, if TRUE then iteration progress information is output.
Details

The overdispersion parameter is estimated equating the Pearson goodness of fit to its expectation.
The variance is assumed to be of the form Var(y)=mu*(1+phi*mu) where E(y)=mu and phi is the
dispersion parameter. All tags are assumed to share the same dispersion.

For given dispersion, the model for each tag is a negative-binomial generalized linear model with
log-link and log(lib.size) as offset. The coefficient parametrization used is that corresponding
to the formula ~0+group+offset(log(lib.size).
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Except for the dispersion being common rather than genewise, the model fitted by this function is
equivalent to that proposed by Lu et al (2005). The numeric algorithm used is that of alternating
iterations (Smyth, 1996) using Newton’s method as the outer iteration for the dispersion parameter
starting at phi=0. This iteration is monotonically convergent for the dispersion.

Value

List with components

coefficients numeric matrix of rates for each tag (gene) and each group
fitted.values numeric matrix of fitted values

dispersion estimated dispersion parameter

Note

This function has been made obsolete by the edgeR package on Bioconductor.

Author(s)

Gordon Smyth

References

Lu, J, Tomfohr, JK, Kepler, TB (2005). Identifying differential expression in multiple SAGE li-
braries: an overdispersed log-linear model approach. BMC Bioinformatics 6,165.

Smyth, G. K. (1996). Partitioned algorithms for maximum likelihood and other nonlinear estima-
tion. Statistics and Computing, 6, 201-216. doi:10.1007/BF00140865

See Also

sage.test

The edgeR package on Biconductor provides new and better functions to fit negative-binomial glms
to SAGE or RNA-seq data. See particularly the glmFit and mglmOneWay functions.

Examples

# True value for dispersion is 1/size=2/3

# Note the Pearson method tends to under-estimate the dispersion
y <- matrix(rnbinom(10*4,mu=4,size=1.5),10,4)

lib.size <- rep(50000,4)

group <- ¢(1,1,2,2)

fit <- fitNBP(y,group=group,lib.size=1ib.size)

logratio <- fit$coef %*x% c(-1,1)


https://doi.org/doi:10.18129/B9.bioc.edgeR
https://doi.org/10.1007/BF00140865
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forward Forward Selection of Covariates for Multiple Regression

Description
Fit a multi-group negative-binomial model to SAGE data, with Pearson estimation of the common
overdispersion parameter.

Usage

forward(y, x, xkept=NULL, intercept=TRUE, nvar=ncol(x))

Arguments
y numeric response vector.
X numeric matrix of covariates, candidates to be added to the regression.
xkept numeric matrix of covariates to be included in the starting regression.
intercept logical, should an intercept be added to xkept?
nvar integer, number of covariates from x to add to the regression.

Details

This function has the advantage that x can have many more columns than the length of y.

Value

Integer vector of length nvar, giving the order in which columns of x are added to the regression.

Author(s)

Gordon Smyth

See Also

step

Examples

y <= rnorm(10)
x <- matrix(rnorm(10%5),10,5)
forward(y, x)
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gauss.quad Gaussian Quadrature

Description

Calculate nodes and weights for Gaussian quadrature.

Usage
gauss.quad(n, kind = "legendre”, alpha = 0@, beta = 0)

Arguments
n number of nodes and weights
kind kind of Gaussian quadrature, one of "legendre”, "chebyshev1”, "chebyshev2"”,
"hermite”, "jacobi” or "laguerre”
alpha parameter for Jacobi or Laguerre quadrature, must be greater than -1
beta parameter for Jacobi quadrature, must be greater than -1
Details

The integral from a to b of w(x)*f(x) is approximated by sum(w*f(x)) where x is the vector of
nodes and w is the vector of weights. The approximation is exact if f(x) is a polynomial of order
no more than 2n-1. The possible choices for w(x), a and b are as follows:

Legendre quadrature: w(x)=1 on (-1,1).

Chebyshev quadrature of the 1st kind: w(x)=1/sqrt(1-x*2) on (-1,1).
Chebyshev quadrature of the 2nd kind: w(x)=sqrt(1-x*2) on (-1,1).
Hermite quadrature: w(x)=exp(-x*2) on (-Inf,Inf).

Jacobi quadrature: w(x)=(1-x)"*alpha*(1+x)“beta on (-1,1). Note that Chebyshev quadrature
is a special case of this.

Laguerre quadrature: w(x)=x"alpha*exp(-x) on (0, Inf).

The algorithm used to generated the nodes and weights is explained in Golub and Welsch (1969).

Value

A list containing the components

nodes vector of values at which to evaluate the function
weights vector of weights to give the function values
Author(s)

Gordon Smyth, using Netlib Fortran code https://netlib.org/go/gaussq.f, and including a
suggestion from Stephane Laurent


https://netlib.org/go/gaussq.f
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References

Golub, G. H., and Welsch, J. H. (1969). Calculation of Gaussian quadrature rules. Mathematics of
Computation 23, 221-230.
Golub, G. H. (1973). Some modified matrix eigenvalue problems. Siam Review 15, 318-334.

Smyth, G. K. (1998). Numerical integration. In: Encyclopedia of Biostatistics, P. Armitage and T.

Colton (eds.), Wiley, London, pages 3088-3095. http://www.statsci.org/smyth/pubs/NumericalIntegration-Prepr:
pdf

Smyth, G. K. (1998). Polynomial approximation. In: Encyclopedia of Biostatistics, P. Armitage
and T. Colton (eds.), Wiley, London, pages 3425-3429. http://www.statsci.org/smyth/pubs/
PolyApprox-Preprint.pdf

Stroud, AH, and Secrest, D (1966). Gaussian Quadrature Formulas. Prentice-Hall, Englewood
Cliffs, N.J.
See Also

gauss.quad.prob, integrate

Examples

# mean of gamma distribution with alpha=6
out <- gauss.quad(10, "laguerre”,alpha=5)
sum(out$weights * out$nodes) / gamma(6)

gauss.quad.prob Gaussian Quadrature with Probability Distributions

Description

Calculate nodes and weights for Gaussian quadrature in terms of probability distributions.

Usage
gauss.quad.prob(n, dist = "uniform”, 1 =0, u=1,
mu = @, sigma = 1, alpha = 1, beta = 1)
Arguments
n number of nodes and weights
dist distribution that Gaussian quadrature is based on, one of "uniform”, "normal”,
"beta" or "gamma"
1 lower limit of uniform distribution
u upper limit of uniform distribution
mu mean of normal distribution

sigma standard deviation of normal distribution


http://www.statsci.org/smyth/pubs/NumericalIntegration-Preprint.pdf
http://www.statsci.org/smyth/pubs/NumericalIntegration-Preprint.pdf
http://www.statsci.org/smyth/pubs/PolyApprox-Preprint.pdf
http://www.statsci.org/smyth/pubs/PolyApprox-Preprint.pdf
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alpha positive shape parameter for gamma distribution or first shape parameter for beta
distribution
beta positive scale parameter for gamma distribution or second shape parameter for

beta distribution

Details

This is a rewriting and simplification of gauss.quad in terms of probability distributions. The
probability interpretation is explained by Smyth (1998). For details on the underlying quadrature
rules, see gauss.quad.

The expected value of f(X) is approximated by sum(w*f(x)) where x is the vector of nodes and w
is the vector of weights. The approximation is exact if f(x) is a polynomial of order no more than
2n-1. The possible choices for the distribution of X are as follows:

Uniform on (1,u).

Normal with mean mu and standard deviation sigma.

Beta with density x* (alpha-1)*(1-x)*(beta-1)/B(alpha,beta) on (0,1).
Gamma with density x* (alpha-1)*exp(-x/beta)/beta*alpha/gamma(alpha).

Value

A list containing the components

nodes vector of values at which to evaluate the function
weights vector of weights to give the function values
Author(s)

Gordon Smyth, using Netlib Fortran code https://netlib.org/go/gaussq.f, and including cor-
rections suggested by Spencer Graves

References

Smyth, G. K. (1998). Polynomial approximation. In: Encyclopedia of Biostatistics, P. Armitage
and T. Colton (eds.), Wiley, London, pages 3425-3429. http://www.statsci.org/smyth/pubs/
PolyApprox-Preprint.pdf

See Also

gauss.quad, integrate

Examples

# the 4th moment of the standard normal is 3
out <- gauss.quad.prob(10,"normal")
sum(out$weights *x out$nodes”4)

# the expected value of log(X) where X is gamma is digamma(alpha)
out <- gauss.quad.prob(32,"gamma"”,alpha=5)
sum(out$weights * log(out$nodes))


https://netlib.org/go/gaussq.f
http://www.statsci.org/smyth/pubs/PolyApprox-Preprint.pdf
http://www.statsci.org/smyth/pubs/PolyApprox-Preprint.pdf
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glm.scoretest

glm.scoretest Score Test for Adding a Covariate to a GLM

Description

Computes score test statistics (z-statistics) for adding covariates to a generalized linear model.

Usage

glm.scoretest(fit, x2, dispersion=NULL)

Arguments
fit generalized linear model fit object, of class glm.
X2 vector or matrix with each column a covariate to be added.
dispersion the dispersion for the generalized linear model family.
Details

Rao’s score test is a type of asymptotic test that is an alternative to Wald tests or likelihood ratio
tests (LRTs) (Dunn and Smyth, 2018). Wald tests are computed by dividing parameter estimates by
their standard errors. LRTs are computed from differences in the log-likihoods between the null and
alternative hypotheses. Score tests are computed from log-likelihood derivatives. All three types of
tests (Wald, score and LRT) are asymptotically equivalent under ideal circumstances, but the score
and LRT tests are invariant under-reparametrization whereas Wald tests are not.

One of the main differences between the tests is the need for estimation of parameters under the
null and alternative hypotheses. Wald tests require maximum likelihood estimates (MLEs) to be
computed only under the alternative hypothesis, LRT tests require both the null and alternative
models to be fitted, while score tests require only the null hypothesis to be fitted.

When a generalized linear model (GLM) is fitted in R using the glm function, the summary () func-
tion presents Wald tests for all the coefficients in the linear model while anova() is able to compute
likelihood ratio tests. GLM output in R has historically not included score tests, although score
tests can be a very computationally coefficient choice when one wants to test for many potential
additional covariates being added to a relatively simple null model.

A number of well known Pearson chisquare statistics, including goodness of fit statistics and the
Pearson test for independence in a contingency table can be derived as score tests (Smyth, 2003;
Dunn and Smyth, 2018).

This function computes score test statistics for adding a single numerical covariate to a GLM, given
the glm output for the null model. It makes very efficient use of the quantities already stored in the
GLM fit object. A computational formula for the score test statistics is given in Section 7.2.6 of
Dunn and Smyth (2018).

The dispersion parameter is treated as for summary.glm. If NULL, the Pearson estimator is used,
except for the binomial, Poisson and negative binomial families, for which the dispersion is one.

Note that the anova.glm function in the stats package has offered a Rao score test option since
2011, but it requires model fits under the alternative as well as the null hypothesis, which does not
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take advantage of the computational advantage of score test. The glm. scoretest is more efficient
as it does not require a full model fit. On the other hand, anova.glm can compute score tests for
factors and multiple covariates, which glm. scoretest does not currently do.

Value

numeric vector containing the z-statistics, one for each covariate. The z-statistics can be treated as
standard normal under the null hypothesis.

Author(s)
Gordon Smyth

References

Dunn, PK, and Smyth, GK (2018). Generalized linear models with examples in R. Springer, New
York, NY. doi:10.1007/9781441901187

Lovison, G (2005). On Rao score and Pearson X2 statistics in generalized linear models. Statistical
Papers, 46, 555-574.

Pregibon, D (1982). Score tests in GLIM with applications. In GLIMS2: Proceedings of the Inter-
national Conference on Generalized Linear Models, R Gilchrist (ed.), Lecture Notes in Statistics,
Volume 14, Springer, New York, pages 87-97.

Smyth, G. K. (2003). Pearson’s goodness of fit statistic as a score test statistic. In: Science and
Statistics: A Festschrift for Terry Speed, D. R. Goldstein (ed.), IMS Lecture Notes - Monograph
Series, Volume 40, Institute of Mathematical Statistics, Beachwood, Ohio, pages 115-126. http:
//www.statsci.org/smyth/pubs/goodness.pdf

See Also

glm, add1, anova.glm

Examples

# Pearson's chisquare test for independence
# 1in a contingency table is a score test.

# First the usual test

y <- c(20,40,40,30)
chisqg.test(matrix(y,2,2), correct=FALSE)

# Now same test using glm.scoretest

a <- gl(2,1,4)

b <- gl(2,2,4)

fit <- glm(y~atb, family=poisson)
x2 <- ¢(0,0,0,1)

z <- glm.scoretest(fit, x2)

z"2


https://doi.org/10.1007/978-1-4419-0118-7
http://www.statsci.org/smyth/pubs/goodness.pdf
http://www.statsci.org/smyth/pubs/goodness.pdf
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glmgam.fit Fit Gamma Generalized Linear Model by Fisher Scoring with Identity
Link

Description

Fit a generalized linear model with secure convergence.

Usage

glmgam.fit(X, y, coef.start = NULL, tol = 1e-6, maxit = 50, trace = FALSE)

Arguments
X design matrix, assumed to be of full column rank. Missing values not allowed.
y numeric vector of responses. Negative or missing values not allowed.
coef.start numeric vector of starting values for the regression coefficients
tol small positive numeric value giving convergence tolerance
maxit maximum number of iterations allowed
trace logical value. If TRUE then output diagnostic information at each iteration.
Details

This function implements a modified Fisher scoring algorithm for generalized linear models, similar
to the Levenberg-Marquardt algorithm for nonlinear least squares. The Levenberg-Marquardt mod-
ification checks for a reduction in the deviance at each step, and avoids the possibility of divergence.
The result is a very secure algorithm that converges for almost all datasets.

glmgam.fit is in principle equivalent to glm.fit(X,y, family=Gamma(link="identity")) but
with much more secure convergence.

Value

List with the following components:

coefficients numeric vector of regression coefficients

fitted numeric vector of fitted values
deviance residual deviance
iter number of iterations used to convergence. If convergence was not achieved then

iter is set to maxit+1.

Author(s)

Gordon Smyth and Yunshun Chen
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19

Dunn, PK, and Smyth, GK (2018). Generalized linear models with examples in R. Springer, New
York, NY. doi:10.1007/9781441901187

See Also

glmgam.fit is called by mixedModel2Fit.

glm is the standard glm fitting function in the stats package.

Examples

y <- rgamma(1@, shape=5)
X <= cbind(1, 1:10)
fit <- glmgam.fit(X, y, trace=TRUE)

glmnb.fit

Fit Negative Binomial Generalized Linear Model with Log-Link

Description

Fit a generalized linear model with secure convergence.

Usage

glmnb.fit(X, y, dispersion, weights = NULL, offset = @, coef.start = NULL,
start.method = "mean”, tol = 1e-6, maxit = 50L, trace = FALSE)

Arguments
X
y

dispersion

weights
offset
coef.start
start.method
tol

maxit

trace

design matrix, assumed to be of full column rank. Missing values not allowed.
numeric vector of responses. Negative or missing values not allowed.

numeric vector of dispersion parameters for the negative binomial distribution.
If of length 1, then the same dispersion is assumed for all observations.

numeric vector of positive weights, defaults to all one.

offset vector for linear model

numeric vector of starting values for the regression coefficients

method used to find starting values, possible values are "mean” or "log(y)"
small positive numeric value giving convergence tolerance

maximum number of iterations allowed

logical value. If TRUE then output diagnostic information at each iteration.


https://doi.org/10.1007/978-1-4419-0118-7

20 glmnb.fit

Details

This function implements a modified Fisher scoring algorithm for generalized linear models, analo-
gous to the Levenberg-Marquardt algorithm for nonlinear least squares. The Levenberg-Marquardt
modification checks for a reduction in the deviance at each step, and avoids the possibility of diver-
gence. The result is a very secure algorithm that converges for almost all datasets.

glmnb. fitisin principle equivalent to glm.fit(X,y,family=negative.binomial(link="1og",theta=1/dispersion))
but with more secure convergence. Here negative.binomial is a function in the MASS package.

The dispersion parameter is the same as 1/theta for the MASS: :negative.binomial function or
1/size for the stats: :rnbinom function. dispersion=0 corresponds to the Poisson distribution.

Value

List with the following components:

coefficients  numeric vector of regression coefficients

fitted numeric vector of fitted values
deviance residual deviance
iter number of iterations used to convergence. If convergence was not achieved then

iter is set to maxit+1.

Author(s)

Gordon Smyth and Yunshun Chen

References

Dunn, PK, and Smyth, GK (2018). Generalized linear models with examples in R. Springer, New
York, NY. doi:10.1007/9781441901187

See Also

The glmFit function in the edgeR package on Bioconductor is a high-performance version of
glmnb. fit for many y vectors at once.

glm is the standard glm fitting function in the stats package. negative.binomial in the MASS
package defines a negative binomial family for use with glm.

Examples

y <= rnbinom(10, mu=1:10, size=5)
X <= cbind(1, 1:10)
fit <- glmnb.fit(X, y, dispersion=0.2, trace=TRUE)


https://doi.org/10.1007/978-1-4419-0118-7
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Compare Groups of Growth Curves

Description

Do all pairwise comparisons between groups of growth curves using a permutation test.

Usage

compareGrowthCurves(group, y, levels=NULL, nsim=100, fun=meanT, times=NULL,

verbose=TRUE, adjust="holm", n@=0.5)

compareTwoGrowthCurves(group, y, nsim=100, fun=meanT, n0=0.5)
plotGrowthCurves(group, y, levels=sort(unique(group)), times=NULL, col=NULL,...)

Arguments

group

levels

nsim

fun

times

verbose
adjust
no

col

Details

vector or factor indicating group membership. Missing values are allowed in
compareGrowthCurves but not in compareTwoGrowthCurves.

matrix of response values with rows for individuals and columns for times. The
number of rows must agree with the length of group. Missing values are al-
lowed.

a character vector containing the identifiers of the groups to be compared. By
default all groups with two more more members will be compared.

number of permutations to estimated p-values.

a function defining the statistic used to measure the distance between two groups
of growth curves. Defaults to meanT.

a numeric vector containing the column numbers on which the groups should be
compared. By default all the columns are used.

should progress results be printed?

method used to adjust for multiple testing, see p.adjust.

offset used for numerator and denominator of p-value calculation.
vector of colors corresponding to distinct groups

other arguments passed to plot()

compareTwoGrowthCurves performs a permutation test of the difference between two groups of
growth curves. compareGrowthCurves does all pairwise comparisons between two or more groups

of growth curves.

The permutation p-values are computed as p = (ngt + neq/2 + n0) / (nsim + n0) where ngt is the
number of permutations with test statistics greater than observed, neq is the number of permuttation
with test statistics equal to that observed, and nO is an offset to avoid p-values of zero (Phipson
& Smyth 2010). The offset n0 improves the type I error rate control and can be interpreted as
allowing for the observed data as one of the permutations. High resolution p-values can be obtained
by setting nsim to some large value, nsim=10000 say.
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Value

compareTwoGrowthCurves returns a list with two components, stat and p.value, containing the
observed statistics and the estimated p-value. compareGrowthCurves returns a data frame with

components

Group1 name of first group in a comparison
Group2 name of second group in a comparison
Stat observed value of the statistic
P.Value permutation p-value

adj.P.value p-value adjusted for multiple testing

Author(s)

Gordon Smyth

References

Elso, C. M., Roberts, L. J., Smyth, G. K., Thomson, R. J., Baldwin, T. M., Foote, S. J., and
Handman, E. (2004). Leishmaniasis host response loci (Imr13) modify disease severity through
a Th1/Th2-independent pathway. Genes and Immunity 5, 93-100.

Baldwin, T., Sakthianandeswaren, A., Curtis, J., Kumar, B., Smyth, G. K., Foote, S., and Handman,
E. (2007). Wound healing response is a major contributor to the severity of cutaneous leishmaniasis
in the ear model of infection. Parasite Immunology 29, 501-513.

Phipson B, Smyth GK (2010). Permutation P-values should never be zero: calculating exact P-
values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular
Biology, Volume 9, Issue 1, Article 39. doi:10.2202/15446115.1585, doi:10.48550/arXiv.1603.05766.

See Also

meanT, compareGrowthCurves, compareTwoGrowthCurves

Examples

# A example with only one time

data(PlantGrowth)
compareGrowthCurves(PlantGrowth$group,as.matrix(PlantGrowth$weight))
# Can make p-values more accurate by nsim=10000


https://doi.org/10.2202/1544-6115.1585
https://doi.org/10.48550/arXiv.1603.05766
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hommel. test Test Multiple Comparisons Using Hommel’s Method

Description

Given a set of p-values and a test level, returns vector of test results for each hypothesis.

Usage

hommel . test(p, alpha=0.05)

Arguments

p numeric vector of p-values

alpha numeric value, desired significance level
Details

This function implements the multiple testing procedure of Hommel (1988). Hommel’s method
is also implemented as an adjusted p-value method in the function p.adjust but the accept/reject
approach used here is faster.

Value

logical vector indicating whether each hypothesis is accepted

Author(s)
Gordon Smyth

References

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni
test. Biometrika, 75, 383-386.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology 46, 561-576. (An
excellent review of the area.)
See Also

p.adjust

Examples

p <= sort(runif(100))[1:10]
cbind(p,p.adjust(p, "hommel™) , hommel.test(p))
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invgauss

invgauss

Inverse Gaussian Distribution

Description

Density, cumulative probability, quantiles and random generation for the inverse Gaussian distribu-

tion.

Usage

dinvgauss(x, mean=1, shape=NULL, dispersion=1, log=FALSE)
pinvgauss(q, mean=1, shape=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE)
ginvgauss(p, mean=1, shape=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE,

maxit=200L, tol=1e-14, trace=FALSE)

rinvgauss(n, mean=1, shape=NULL, dispersion=1)

Arguments

X,q
p
n

mean
shape

dispersion

lower.tail
log

log.p
maxit

tol

trace

Details

vector of quantiles.
vector of probabilities.

sample size. If length(n) is larger than 1, then length(n) random values are
returned.

vector of (positive) means.
vector of (positive) shape parameters.

vector of (positive) dispersion parameters. Ignored if shape is not NULL, in
which case dispersion=1/shape.

logical; if TRUE, probabilities are P(X<q) otherwise P(X>q).

logical; if TRUE, the log-density is returned.

logical; if TRUE, probabilities are on the log-scale.

maximum number of Newton iterations used to find q.

small positive numeric value giving the convergence tolerance for the quantile.

logical, if TRUE then the working estimate for q from each iteration will be out-
put.

The inverse Gaussian distribution takes values on the positive real line. It is somewhat more right
skew than the gamma distribution, with variance given by dispersion*mean*3. The distribution
has applications in reliability and survival analysis and is one of the response distributions used in
generalized linear models.

Giner and Smyth (2016) show that the inverse Gaussian distribution converges to an inverse chi-
squared distribution as the mean becomes large.
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The functions provided here implement numeric algorithms developed by Giner and Smyth (2016)
that achieve close to full machine accuracy for all possible parameter values. Giner and Smyth
(2016) show that the probability calculations provided by these functions are considerably more ac-
curate, and in most cases faster, than previous implementations of inverse Gaussian functions. The
improvement in accuracy is most noticeable for extreme probability values and for large parameter
values.

The shape and dispersion parameters are alternative parametrizations for the variability, with dispersion=1/shape.
Only one of these two arguments needs to be specified. If both are set, then shape takes precedence.

Value

Output values give density (dinvgauss), probability (pinvgauss), quantile (qinvgauss) or ran-
dom sample (rinvgauss) for the inverse Gaussian distribution with mean mean and dispersion
dispersion. Output is a vector of length equal to the maximum length of any of the arguments x,
g, mean, shape or dispersion. If the first argument is the longest, then all the attributes of the input
argument are preserved on output, for example, a matrix x will give a matrix on output. Elements
of input vectors that are missing will cause the corresponding elements of the result to be missing,
as will non-positive values for mean or dispersion.

Author(s)

Gordon Smyth.

Very early S-Plus versions of these functions, using simpler algorithms, were published 1998
at http://www.statsci.org/s/invgauss.html. Paul Bagshaw (Centre National d’Etudes des
Telecommunications, France) contributed the original version of ginvgauss in December 1998.
Trevor Park (Department of Statistics, University of Florida) suggested improvements to a version
of rinvguass in 2005.

References

Giner, G., and Smyth, G. K. (2016). statmod: Probability calculations for the inverse Gaussian
distribution. R Journal 8(1), 339-351. https://journal.r-project.org/archive/2016-1/
giner-smyth.pdf

Examples

g <- rinvgauss(10, mean=1, disp=0.5) # generate vector of 10 random numbers
p <- pinvgauss(q, mean=1, disp=0.5) # p should be uniformly distributed

# Quantile for small right tail probability:
ginvgauss(1e-20, mean=1.5, disp=0.7, lower.tail=FALSE)

# Same quantile, but represented in terms of left tail probability on log-scale
ginvgauss(-1e-20, mean=1.5, disp=0.7, lower.tail=TRUE, log.p=TRUE)


http://www.statsci.org/s/invgauss.html
https://journal.r-project.org/archive/2016-1/giner-smyth.pdf
https://journal.r-project.org/archive/2016-1/giner-smyth.pdf
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logmdigamma Log Minus Digamma Function

Description

The difference between the 1og and digamma functions.

Usage
logmdigamma(x)
Arguments
X numeric vector or array of positive values. Negative or zero values will return
NA.
Details

digamma(x) is asymptotically equivalent to 1og(x). logmdigamma(x) computes log(x) - digamma(x)
without subtractive cancellation for large x.

Author(s)

Gordon Smyth

References

Abramowitz, M., and Stegun, I. A. (1970). Handbook of mathematical functions. Dover, New York.

See Also

digamma

Examples

log(10%15) - digamma(10*15) # returns @
logmdigamma(1015) # returns value correct to 15 figures
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matvec Multiply a Matrix by a Vector

Description

Multiply the rows or columns of a matrix by the elements of a vector.

Usage

matvec(M, v)
vecmat(v, M)

Arguments
M numeric matrix, or object which can be coerced to a matrix.
v numeric vector, or object which can be coerced to a vector. Length should match
the number of columns of M (for matvec) or the number of rows of M (for vecmat)
Details

matvec(M,v) is equivalent to M %*% diag(v) but is faster to execute. Similarly vecmat(v,M) is
equivalent to diag(v) %*% M but is faster to execute.

Value

A matrix of the same dimensions as M.

Author(s)

Gordon Smyth

Examples

A <- matrix(1:12,3,4)
A
matvec(A,c(1,2,3,4))
vecmat(c(1,2,3),A)



28 meanT

meanT Mean t-Statistic Between Two Groups of Growth Curves

Description

The mean-t statistic of the distance between two groups of growth curves.

Usage

meanT(y1, y2)

Arguments
y1 matrix of response values for the first group, with a row for each individual and
a column for each time. Missing values are allowed.
y2 matrix of response values for the second group. Must have the same number of
columns as y1. Missing values are allowed.
Details

This function computes the pooled two-sample t-statistic between the response values at each time,
and returns the mean of these values weighted by the degrees of freedom. This function is used by
compareGrowthCurves.

Value

numeric vector of length one containing the mean t-statistic.

Author(s)

Gordon Smyth

See Also

compareGrowthCurves, compareTwoGrowthCurves

Examples

y1 <- matrix(rnorm(4%3),4,3)
y2 <- matrix(rnorm(4*3),4,3)
meanT (y1,y2)

data(PlantGrowth)
compareGrowthCurves(PlantGrowth$group,as.matrix(PlantGrowth$weight))
# Can make p-values more accurate by nsim=10000
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mixedModel2 Fit Mixed Linear Model with 2 Error Components

Description

Fits a mixed linear model by REML. The linear model contains one random factor apart from the
unit errors.

Usage

mixedModel2(formula, random, weights=NULL, only.varcomp=FALSE, data=list(),
subset=NULL, contrasts=NULL, tol=1e-6, maxit=5@, trace=FALSE)
mixedModel2Fit(y, X, Z, w=NULL, only.varcomp=FALSE, tol=1e-6, maxit=50, trace=FALSE)
randomizedBlock(formula, random, weights=NULL, only.varcomp=FALSE, data=list(),
subset=NULL, contrasts=NULL, tol=1e-6, maxit=50, trace=FALSE)
randomizedBlockFit(y, X, Z, w=NULL, only.varcomp=FALSE, tol=1e-6, maxit=50, trace=FALSE)

Arguments
The arguments formula, weights, data, subset and contrasts have the same
meaning as in 1m. The arguments y, X and w have the same meaning as in
Im.wfit.
formula specifying the fixed model.
fannata vector or factor specifying the blocks corresponding to random effects.
weights optional vector of prior weights.

only.varcomp  logical value, if TRUE computation of standard errors and fixed effect coefficients

will be skipped

data an optional data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

contrasts an optional list. See the contrasts.arg argument of model.matrix.default.

tol small positive numeric tolerance, passed to glmgam. fit

maxit maximum number of iterations permitted, passed to glmgam.fit

trace logical value, passed to glmgam.fit. If TRUE then working estimates will be

printed at each iteration.
y numeric response vector
numeric design matrix for fixed model
Z numeric design matrix for random effects

w optional vector of prior weights
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Details

Note that randomizedBlock and mixedModel? are alternative names for the same function.

This function fits the model y = Xb + Zu + e where b is a vector of fixed coefficients and v is
a vector of random effects. Write n for the length of y and ¢ for the length of u. The random
effect vector u is assumed to be normal, mean zero, with covariance matrix 0',31 ¢ While e is normal,
mean zero, with covariance matrix 021,,. If Z is an indicator matrix, then this model corresponds
to a randomized block experiment. The model is fitted using an eigenvalue decomposition that
transforms the problem into a Gamma generalized linear model. To the knowledge of the author,
this is an original and unpublished approach to the problem of fitting mixed models.

Note that the block variance component varcomp[2] is not constrained to be non-negative. It may
take negative values corresponding to negative intra-block correlations. However the correlation
varcomp[2]/sum(varcomp) must lie between -1 and 1.

Missing values in the data are not allowed.

This function is in principle equivalent to 1me(fixed=formula, random=~1|random) except that
the block variance component is not constrained to be non-negative. If the block variance compo-
nent is non-negative, then this function is faster and more accurate than 1me for small to moderate
size data sets but slower than 1me when the number of observations is large.

This function tends to be fast and reliable, compared to competitor functions that fit randomized
block models, when then number of observations is small, say no more than 200. However it
becomes quadratically slow as the number of observations increases because of the need to compute
two singular value decompositions of order nearly equal to the number of observations, although
this can be limited to only one decomposition if only.varcomp = TRUE). For these reasons, this
function is a good choice when fitting large numbers of mixed models to small datasets but is not
optimal as currently implemented for fitting mixed models to very large data sets.

Value

A list with the components:

varcomp numeric vector of length two containing the residual and block components of
variance.
se.varcomp standard errors for the variance components (if only . varcomp=FALSE).

coefficients numeric vector of fixed coefficients (if only.varcomp=FALSE).
se.coefficients
standard errors for the fixed coefficients (if only.varcomp=FALSE).

Author(s)
Gordon Smyth

References

Venables, W., and Ripley, B. (2002). Modern Applied Statistics with S-Plus, Springer.

See Also

glmgam.fit, Ime, Im, Im.fit
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Examples

# Compare with first data example from Venable and Ripley (2002),
# Chapter 10, "Linear Models”

library(MASS)

data(petrol)

out <- mixedModel2(Y~SG+VP+V10+EP, random=No, data=petrol)
cbind(varcomp=out$varcomp, se=out$se.varcomp)

mscale M Scale Estimation

Description

Robust estimation of a scale parameter using Hampel’s redescending psi function.

Usage

mscale(u, na.rm=FALSE)

Arguments

u numeric vector of residuals.

na.rm logical. Should missing values be removed?
Details

Estimates a scale parameter or standard deviation using an M-estimator with 50% breakdown. This
means the estimator is highly robust to outliers. If the input residuals u are a normal sample, then
mscale(u) should be equal to the standard deviation.

Value

numeric constant giving the estimated scale.

Author(s)
Gordon Smyth

References

Yohai, V. J. (1987). High breakdown point and high efficiency robust estimates for regression. Ann.
Statist. 15, 642-656.

Stromberg, A. J. (1993). Computation of high breakdown nonlinear regression parameters. J. Amer.
Statist. Assoc. 88, 237-244.

Smyth, G. K., and Hawkins, D. M. (2000). Robust frequency estimation using elemental sets.
Journal of Computational and Graphical Statistics 9, 196-214.
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Examples

u <- rnorm(100)
sd(u)
mscale(u)

permp Exact permutation p-values

Description

Calculates exact p-values for permutation tests when permutations are randomly drawn with re-
placement.

Usage

permp(x, nperm, n1, n2, total.nperm=NULL, method="auto”, twosided=TRUE)

Arguments
X number of permutations that yielded test statistics at least as extreme as the
observed data. May be a vector or an array of values.
nperm total number of permutations performed.
ni sample size of group 1. Not required if total.nperm is supplied.
n2 sample size of group 2. Not required if total.nperm is supplied.
total.nperm total number of permutations allowable from the design of the experiment.
method character string indicating computation method. Possible values are "exact”,
"approximate” or "auto”.
twosided logical, is the test two-sided and symmetric between the two groups?
Details

This function can be used for calculating exact p-values for permutation tests where permutations
are sampled with replacement, using theory and methods developed by Phipson and Smyth (2010).
The input values are the total number of permutations done (nperm) and the number of these that
were considered at least as extreme as the observed data (x).

total.nperm is the total number of distinct values of the test statistic that are possible. This is
generally equal to the number of possible permutations, unless a two-sided test is conducted with
equal sample sizes, in which case total.npermis half the number of permutations, because the test
statistic must then be symmetric in the two groups. Usually total.nperm is computed automati-
cally from n1 and n2, but can also be supplied directly by the user.

When method="exact", the p-values are computed to full machine precision by summing a series
terms. When method="approximate”, an approximation is used that is faster and uses less mem-
ory. If method="auto", the exact calculation is used when total.nperm is less than or equal to
10,000 and the approximation is used otherwise.
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Value

vector or array of p-values, of same dimensions as x

Author(s)

Belinda Phipson and Gordon Smyth

References

Phipson B, Smyth GK (2010). Permutation P-values should never be zero: calculating exact P-
values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular
Biology, Volume 9, Issue 1, Article 39. doi:10.2202/15446115.1585, doi:10.48550/arXiv.1603.05766.

Examples

X <- 0:5

# Both calls give same results
permp(x=x, nperm=99, n1=6, n2=6)
permp(x=x, nperm=99, total.nperm=462)

plot.limdil Plot or print an object of class limdil

Description

Plot or print the results of a limiting dilution analysis.

Usage

## S3 method for class 'limdil'

print(x, ...)

## S3 method for class 'limdil'

plot(x, col.group=NULL, cex=1, lwd=1, legend.pos="bottomleft", ...)
Arguments

X object of class 1imdil.

col.group vector of colors for the groups of the same length as levels(x$group).

cex relative symbol size

lwd relative line width

legend. pos positioning on plot of legend when there are multiple groups

other arguments to be passed to plot or print. Note that pch and 1ty are
reserved arguments for the plot method.


https://doi.org/10.2202/1544-6115.1585
https://doi.org/10.48550/arXiv.1603.05766
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Details

power.fisher.test

The print method formats results similarly to a regression or anova summary in R.

The plot method produces a plot of a limiting dilution experiment similar to that in Bonnefoix et al
(2001). The basic design of the plot was made popular by Lefkovits and Waldmann (1979).

The plot shows frequencies and confidence intervals for the multiple groups. A novel feature is that
assays with 100% successes are included in the plot and are represented by down-pointing triangles.

Author(s)

Yifang Hu and Gordon Smyth

References

Bonnefoix, T, Bonnefoix, P, Callanan, M, Verdiel, P, and Sotto, JJ (2001). Graphical representation
of a generalized linear model-based statistical test estimating the fit of the single-hit poisson model
to limiting dilution assays. The Journal of Immunology 167, 5725-5730.

Lefkovits, I, and Waldmann, H (1979). Limiting dilution analysis of cells in the immune system.
Cambridge University Press, Cambridge.

See Also

limdil describes the 1imdil class.

power.fisher.test

Power of Fisher’s Exact Test for Comparing Proportions

Description

Calculate by simulation the power of Fisher’s exact test for comparing two proportions given two

margin counts.

Usage

power.fisher.test(pl, p2, n1, n2, alpha=0.05, nsim=100, alternative="two.sided")

Arguments

p1

p2

ni

n2
alpha
nsim

alternative

first proportion to be compared.
second proportion to be compared.
first sample size.

second sample size.

significance level.

number of data sets to simulate.

indicates the alternative hypothesis and must be one of "two.sided", "greater" or
"less".
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Details

Estimates the power of Fisher’s exact test for testing the null hypothesis that p1 equals p2 against
the alternative that they are not equal.

The power is estimated by simulation. The function generates nsim pairs of binomial deviates
and calls fisher.test to obtain nsim p-values. The required power is tnen the proportion of the
simulated p-values that are less than alpha.

Value

Estimated power of the test.

Author(s)

Gordon Smyth

See Also

fisher.test, power.t.test

Examples

power.fisher.test(0.5,0.9,20,20) # 70% chance of detecting difference

gresiduals Randomized Quantile Residuals

Description

Compute randomized quantile residuals for generalized linear models.

Usage

gresiduals(glm.obj,dispersion=NULL)
gresid(glm.obj,dispersion=NULL)
gres.binom(glm.obj)

gres.pois(glm.obj)
gres.nbinom(glm.obj)
gres.gamma(glm.obj,dispersion=NULL)
gres.invgauss(glm.obj,dispersion=NULL)
gres.tweedie(glm.obj,dispersion=NULL)
gres.default(glm.obj,dispersion=NULL)
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Arguments
glm.obj Object of class glm. The generalized linear model family is assumed to be bino-
mial for gres. binom, poisson for gqres. pois, negative binomial for qres.nbinom,
Gamma for gres.gamma, inverse Gaussian for gres.invgauss or tweedie for
gres.tweedie.
dispersion a positive real number. Specifies the value of the dispersion parameter for a
Gamma or inverse Gaussian generalized linear model if known. If NULL, the
dispersion will be estimated by its Pearson estimator.
Details

Quantile residuals are based on the idea of inverting the estimated distribution function for each
observation to obtain exactly standard normal residuals. In the case of discrete distributions, such
as the binomial and Poisson, some randomization is introduced to produce continuous normal resid-
uals. Quantile residuals are the residuals of choice for generalized linear models in large dispersion
situations when the deviance and Pearson residuals can be grossly non-normal. Quantile residuals
are the only useful residuals for binomial or Poisson data when the response takes on only a small
number of distinct values.

Value

Numeric vector of standard normal quantile residuals.

Author(s)
Gordon Smyth

References

Dunn, K. P.,, and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational
and Graphical Statistics 5, 1-10. http://www.statsci.org/smyth/pubs/residual.html

Dunn, PK, and Smyth, GK (2018). Generalized linear models with examples in R. Springer, New
York, NY. doi:10.1007/9781441901187

See Also

residuals.glm

Examples

# Poisson example: quantile residuals show no granularity
y <- rpois(20,lambda=4)

X <- 1:20

fit <- glm(y~x, family=poisson)

gr <- gresiduals(fit)

ganorm(qr)

abline(0,1)

# Gamma example:


http://www.statsci.org/smyth/pubs/residual.html
https://doi.org/10.1007/978-1-4419-0118-7
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# Quantile residuals are nearly normal while usual resids are not
y <- rchisq(20, df=1)

fit <- glm(y~1, family=Gamma)

gr <- gresiduals(fit, dispersion=2)

qgnorm(qr)

abline(0,1)

# Negative binomial example:

if(require("MASS")) {

fit <- glm(Days~Age,family=negative.binomial(2),data=quine)
summary(gresiduals(fit))

fit <- glm.nb(Days~Age,link=1log,data = quine)

summary (gresiduals(fit))

}

remlscore REML for Heteroscedastic Regression

Description

Fits a heteroscedastic regression model using residual maximum likelihood (REML).

Usage

remlscore(y, X, Z, trace=FALSE, tol=1e-5, maxit=40)

Arguments
y numeric vector of responses
X design matrix for predicting the mean
z design matrix for predicting the variance
trace Logical variable. If true then output diagnostic information at each iteration.
tol Convergence tolerance
maxit Maximum number of iterations allowed
Details

Write y; = E(y;) and 02 = var(y;) for the expectation and variance of the ith response. We
assume the heteroscedastic regression model
T
i =x; B
log(o7) = 27,

where x; and z; are vectors of covariates, and 3 and ~ are vectors of regression coefficients affect-
ing the mean and variance respectively.

Parameters are estimated by maximizing the REML likelihood using REML scoring as described
in Smyth (2002).
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Value

List with the following components:

beta vector of regression coefficients for predicting the mean
se.beta vector of standard errors for beta
gamma vector of regression coefficients for predicting the variance
se.gam vector of standard errors for gamma
mu estimated means
phi estimated variances
deviance minus twice the REML log-likelihood
h numeric vector of leverages
cov.beta estimated covariance matrix for beta
cov.gam estimated covarate matrix for gamma
iter number of iterations used
Author(s)
Gordon Smyth
References

Smyth, G. K. (2002). An efficient algorithm for REML in heteroscedastic regression. Journal of
Computational and Graphical Statistics 11, 836-847. doi:10.1198/106186002871

Examples

data(welding)

attach(welding)

y <- Strength

# Reproduce results from Table 1 of Smyth (2002)

X <- cbind(1, (Drying+1)/2, (Material+1)/2)

colnames(X) <- c("1","B","C")

Z <- cbind(1, (Material+1)/2, (Method+1)/2, (Preheating+1)/2)
colnames(Z) <- c("1","C","H","I")

out <- remlscore(y,X,Z)

cbind(Estimate=out$gamma, SE=out$se.gam)


https://doi.org/10.1198/106186002871
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remlscoregamma Approximate REML for Gamma Regression with Structured Disper-
sion

Description

Estimates structured dispersion effects using approximate REML with gamma responses.

Usage

remlscoregamma(y, X, Z, mlink="log", dlink="log", trace=FALSE, tol=1e-5, maxit=40)

Arguments
y numeric vector of responses.
X design matrix for predicting the mean.
Z design matrix for predicting the variance.
mlink character string or numeric value specifying link for mean model.
dlink character string or numeric value specifying link for dispersion model.
trace logical value. If TRUE then diagnostic information is output at each iteration.
tol convergence tolerance.
maxit maximum number of iterations allowed.
Details

This function fits a double generalized linear model (glm) with gamma responses. As for ordinary
gamma glms, a link-linear model is assumed for the expected values. The double glm assumes a
separate link-linear model for the dispersions as well. The responses y are assumed to follow a
gamma generalized linear model with link mlink and design matrix X. The dispersions follow a
link-linear model with link dlink and design matrix Z.

Write y; for the ith response. The y; are assumed to be independent and gamma distributed with
E(y;) = p; and var(y;) = ¢;u?. The link-linear model for the means can be written as

g(p) = XB

where g is the mean-link function defined by mlink and p is the vector of means. The dispersion
link-linear model can be written as

h(¢) = Zv
where h is the dispersion-link function defined by d1ink and ¢ is the vector of dispersions.

The parameters y are estimated by approximate REML likelihood using an adaption of the algo-
rithm described by Smyth (2002). See also Smyth and Verbyla (1999a,b) and Smyth and Verbyla
(2009). Having estimated « and ¢, the § are estimated as usual for a gamma glm.

The estimated values for 3, i, v and ¢ are return as beta, mu, gamma and phi respectively.
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Value

List with the following components:

beta numeric vector of regression coefficients for predicting the mean.
se.beta numeric vector of standard errors for beta.
gamma numeric vector of regression coefficients for predicting the variance.
se.gam numeric vector of standard errors for gamma.
mu numeric vector of estimated means.
phi numeric vector of estimated dispersions.
deviance minus twice the REML log-likelihood.
h numeric vector of leverages.
References

Smyth, G. K., and Verbyla, A. P. (1999a). Adjusted likelihood methods for modelling dispersion in
generalized linear models. Environmetrics 10, 695-709. http://www.statsci.org/smyth/pubs/
ties98tr.html

Smyth, G. K., and Verbyla, A. P. (1999b). Double generalized linear models: approximate REML
and diagnostics. In Statistical Modelling: Proceedings of the 14th International Workshop on
Statistical Modelling, Graz, Austria, July 19-23, 1999, H. Friedl, A. Berghold, G. Kauermann
(eds.), Technical University, Graz, Austria, pages 66-80. http://www.statsci.org/smyth/pubs/
iwsm99-Preprint.pdf

Smyth, G. K. (2002). An efficient algorithm for REML in heteroscedastic regression. Journal of
Computational and Graphical Statistics 11, 836-847.

Smyth, GK, and Verbyla, AP (2009). Leverage adjustments for dispersion modelling in generalized
nonlinear models. Australian and New Zealand Journal of Statistics 51, 433-448.

Examples

data(welding)

attach(welding)

y <- Strength

X <- cbind(1, (Drying+1)/2, (Material+1)/2)

colnames(X) <- c("1","B","C")

Z <- cbind(1, (Material+1)/2, (Method+1)/2, (Preheating+1)/2)
colnames(Z) <- c("1","C","H","1I")

out <- remlscoregamma(y,X,Z)


http://www.statsci.org/smyth/pubs/ties98tr.html
http://www.statsci.org/smyth/pubs/ties98tr.html
http://www.statsci.org/smyth/pubs/iwsm99-Preprint.pdf
http://www.statsci.org/smyth/pubs/iwsm99-Preprint.pdf
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sage. test Exact Binomial Tests For Comparing Two SAGE Libraries (Obsolete)

Description

Computes p-values for differential abundance for each tag between two digital libraries, condition-
ing on the total count for each tag. The counts in each group as a proportion of the whole are
assumed to follow a binomial distribution.

Usage

sage.test(x, y, nl=sum(x), n2=sum(y))

Arguments
X integer vector giving counts in first library. Non-integer values are rounded to
the nearest integer.
y integer vector giving counts in second library. Non-integer values are rounded
to the nearest integer.
ni total number of tags in first library. Non-integer values are rounded to the nearest
integer.
n2 total number of tags in second library. Non-integer values are rounded to the
nearest integer.
Details

This function was originally written for comparing SAGE libraries (a method for counting the
frequency of sequence tags in samples of RNA). It can however be used for comparing any two
digital libraries from RNA-Seq, ChIP-Seq or other technologies with respect to technical variation.

An exact two-sided binomial test is computed for each tag. This test is closely related to Fisher’s
exact test for 2x2 contingency tables but, unlike Fisher’s test, it conditions on the total number of
counts for each tag. The null hypothesis is that the expected counts are in the same proportions as
the library sizes, i.e., that the binomial probability for the first library is n1/(n1+n2).

The two-sided rejection region is chosen analogously to Fisher’s test. Specifically, the rejection
region consists of those values with smallest probabilities under the null hypothesis.

When the counts are reasonably large, the binomial test, Fisher’s test and Pearson’s chisquare all
give the same results. When the counts are smaller, the binomial test is usually to be preferred in
this context.

This function is a later version of the earlier sage.test function in the sagenhaft Bioconductor
package. This function has been made obsolete by binomTest in the edgeR package.

Value

Numeric vector of p-values.
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Note

This function is kept in the statmod package so as not to break code that depends on it but it has
been replaced by binomTest in the edgeR Bioconductor package and is no longer updated. It may
be removed in a later release of this package.

Author(s)
Gordon Smyth

References

https://en.wikipedia.org/wiki/Binomial_test
https://en.wikipedia.org/wiki/Fisher’s_exact_test
https://en.wikipedia.org/wiki/Serial_analysis_of_gene_expression

https://en.wikipedia.org/wiki/RNA-Seq

See Also

The binomTest function in the edgeR package on Bioconductor is a newer and better version of
this function.

binom. test in the stats package performs univariate binomial tests.

Examples

sage.test(c(0,5,10),c(0,30,50),n1=10000,n2=15000)
# Univariate equivalents:
binom.test(5,5+30,p=10000/(10000+15000))$p.value
binom.test(10,10+50,p=10000/(10000+15000))$p.value

tweedie Tweedie Generalized Linear Models

Description
Produces a generalized linear model family object with any power variance function and any power
link. Includes the Gaussian, Poisson, gamma and inverse-Gaussian families as special cases.
Usage

tweedie(var.power = @, link.power = 1 - var.power)

Arguments
var.power index of power variance function
link.power index of power link function. link.power=0@ produces a log-link. Defaults to

the canonical link, which is 1-var. power.


https://en.wikipedia.org/wiki/Binomial_test
https://en.wikipedia.org/wiki/Fisher's_exact_test
https://en.wikipedia.org/wiki/Serial_analysis_of_gene_expression
https://en.wikipedia.org/wiki/RNA-Seq
https://doi.org/doi:10.18129/B9.bioc.edgeR
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Details

This function provides access to a range of generalized linear model (GLM) response distributions
that are not otherwise provided by R. It is also useful for accessing distribution/link combinations
that are disallowed by the R glm function. The variance function for the GLM is assumed to be
V(mu) = mu”var.power, where mu is the expected value of the distribution. The link function
of the GLM is assumed to be mu”link.power for non-zero values of link.power or log(mu) for
var.power=0. For example, var.power=1 produces the identity link. The canonical link for each
Tweedie family is 1ink.power =1 - var.power.

The Tweedie family of GLMs is discussed in detail by Dunn and Smyth (2018). Each value of
var.power corresponds to a particular type of response distribution. The values 0, 1, 2 and 3
correspond to the normal distribution, the Poisson distribution, the gamma distribution and the
inverse-Gaussian distribution respectively. For these choices of var.power, the Tweedie family is
exactly equivalent to the usual GLM famly except with a greater choice of link powers. For example,
tweedie(var.power = 1, link.power = @) is exactly equivalent to poisson(link = "log").

The most interesting Tweedie families occur for var . power between 1 and 2. For these GLMs, the
response distribution has mass at zero (i.e., it has exact zeros) but is otherwise continuous on the
positive real numbers (Smyth, 1996; Hasan et al, 2012). These GLMs have been used to model
rainfall for example. Many days there is no rain at all (exact zero) but, if there is any rain, then the
actual amount of rain is continuous and positive.

Generally speaking, var . power should be chosen so that the theoretical response distribution matches
the type of response data being modeled. Hence var . power should be chosen between 1 and 2 only
if the response observations are continuous and positive except for exact zeros and var.power
should be chosen greater than or equal to 2 only if the response observations are continuous and
strictly positive.

There are no theoretical Tweedie GLMs with var.power between 0 and 1 (Jorgensen 1987). The
tweedie function will work for those values but the family should be interpreted in a quasi-likelihood
sense.

Theoretical Tweedie GLMs do exist for negative values of var.power, but they are of little practical
application. These distributions assume The tweedie function will work for those values but the
family should be interpreted in a quasi-likelihood sense.

The name Tweedie has been associated with this family by Joergensen (1987) in honour of M. C. K.
Tweedie. Joergensen (1987) gives a mathematical derivation of the Tweedie distributions proving
that no distributions exist for var.power between 0 and 1.

Mathematically, a Tweedie GLM assumes the following. Let u; = F/(y;) be the expectation of the

ith response. We assume that
q_

T

pi = @ b,var(y;) = uf
where x; is a vector of covariates and b is a vector of regression cofficients, for some ¢, p and q.
This family is specified by var.power = p and 1ink.power = g. A value of zero for q is interpreted
as log(j;) = x7'b.

The following table summarizes the possible Tweedie response distributions:

var.power Response distribution
0 Normal
1 Poisson
(1,2) Compound Poisson, non-negative with mass at zero
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2 Gamma
3 Inverse-Gaussian
>2 Stable, with support on the positive reals

Value

A family object, which is a list of functions and expressions used by glm and gam in their iteratively
reweighted least-squares algorithms. See family and glm in the R base help for details.

Author(s)
Gordon Smyth

References

Dunn, P. K., and Smyth, G. K, (2018). Generalized linear models with examples in R. Springer,
New York, NY. doi:10.1007/9781441901187 (Chapter 12 gives an overall discussion of Tweedie
GLMs with R code and case studies.)

Hasan, M.M. and Dunn, P.K. (2012). Understanding the effect of climatology on monthly rainfall
amounts in Australia using Tweedie GLMs. International Journal of Climatology, 32(7) 1006-1017.
(An example with var.power between 1 and 2)

Joergensen, B. (1987). Exponential dispersion models. J. R. Statist. Soc. B 49, 127-162. (Mathe-
matical derivation of Tweedie response distributions)

Tweedie, M. C. K. (1984). An index which distinguishes between some important exponential
families. In Statistics: Applications and New Directions. Proceedings of the Indian Statistical
Institute Golden Jubilee International Conference. (Eds. J. K. Ghosh and J. Roy), pp. 579-604.
Calcutta: Indian Statistical Institute. (The original mathematical paper from which the family is
named)

Smyth, G. K. (1996). Regression modelling of quantity data with exact zeroes. Proceedings of
the Second Australia-Japan Workshop on Stochastic Models in Engineering, Technology and Man-
agement. Technology Management Centre, University of Queensland, pp. 572-580. http://
www.statsci.org/smyth/pubs/RegressionWithExactZerosPreprint.pdf (Derivation and ex-
amples of Tweedie GLMS with var.power between 0 and 1)

Smyth, G. K., and Verbyla, A. P., (1999). Adjusted likelihood methods for modelling dispersion in
generalized linear models. Environmetrics 10, 695-709. http://www.statsci.org/smyth/pubs/
Ties98-Preprint.pdf (Includes examples of Tweedie GLMs with var.power=2 and var.power=4)

See Also

glm, family, dtweedie

Examples

y <- rgamma(20, shape=5)

X <= 1:20

# Fit a poisson generalized linear model with identity link
glm(y~x,family=tweedie(var.power=1,1link.power=1))


https://doi.org/10.1007/978-1-4419-0118-7
http://www.statsci.org/smyth/pubs/RegressionWithExactZerosPreprint.pdf
http://www.statsci.org/smyth/pubs/RegressionWithExactZerosPreprint.pdf
http://www.statsci.org/smyth/pubs/Ties98-Preprint.pdf
http://www.statsci.org/smyth/pubs/Ties98-Preprint.pdf
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# Fit an inverse-Gaussion glm with log-link
glm(y~x,family=tweedie(var.power=3,link.power=0))

welding Data: Tensile Strength of Welds

Description

This is a highly fractionated two-level factorial design employed as a screening design in an off-line
welding experiment performed by the National Railway Corporation of Japan. There were 16 runs
and 9 experimental factors. The response variable is the observed tensile strength of the weld, one
of several quality characteristics measured. All other variables are at plus and minus levels.

Usage
data(welding)

Format

A data frame containing the following variables. All the explanatory variables are numeric with two
levels, -1 and 1.

Variable Description

Rods Kind of welding rods
Drying Period of drying
Material Welded material
Thickness  Thickness

Angle Angle
Opening Opening
Current Current

Method Welding method
Preheating  Preheating
Strength Tensile strength of the weld in kg/mm. The response variable.

Source

http://www.statsci.org/data/general/welding.html

References
Smyth, G. K., Huele, F., and Verbyla, A. P. (2001). Exact and approximate REML for heteroscedas-
tic regression. Statistical Modelling 1, 161-175.

Smyth, G. K. (2002). An efficient algorithm for REML in heteroscedastic regression. Journal of
Computational and Graphical Statistics 11, 1-12.


http://www.statsci.org/data/general/welding.html
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