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Abstract

Sample size calculation is a crucial issue when designing an RNA-

seq experiment. This vignette explains the use of the package ssiz-

eRNA, which is designed to provide an estimation of sample size while

controlling false discovery rate (FDR) for RNA-seq experimental de-

sign.
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1 Introduction

RNA-seq technologies have been popularly applied in transcriptomic stud-

ies. In the statistical analysis of RNA-seq data, identifying differentially ex-

pressed (DE) genes across treatments or conditions is a major step or main

focus. Many statistical methods have been proposed for the detection of DE

genes with RNA-seq data, such as edgeR Robinson et al. (2010), DESeq An-

ders and Huber (2010), DESeq2 Love et al. (2014) and QuasiSeq Lund et al.

(2012).

Due to the genetic complexity, RNA-seq experiments are rather costly.

Many experiments only employ a small number of replicates, which may

lead to unreliable statistical inference. Thus, one of the principal questions

in designing an RNA-seq experiment is: how large of the sample size do we

need?

Many of the current sample size calculation methods are simulation based,

which are quite time-consuming. We propose a much less computationally

intensive method and R package ssizeRNA for sample size calculation in

designing RNA-seq experiments Bi and Liu (2016).

2 Using ssizeRNA

We first load the ssizeRNA package.

library(ssizeRNA)

To determine the sample size for an RNA-seq experiment, users need to

specify the following parameters:

• G: total number of genes for testing;

• pi0: proportion of non-DE genes;

• fdr: FDR level to control;
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• power: desired average power to achieve;

• mu: average read count for each gene in control group (without loss of

generality, we assume that the normalization factors are equal to 1 for

all samples);

• disp: dispersion parameter for each gene;

• fc: fold change for each gene.

We will give several examples of using ssizeRNA sample size estimation as

follows.

2.1 Sample size calculation for a single set of parame-

ter

Here we consider the situation of single set of parameter, i.e. all genes share

the same set of average read count in control group, dispersion parameter,

and fold change.

For example, if we are estimating the sample size for an RNA-seq exper-

iment with

• Total number of genes: G = 10000;

• Proportion of non-DE genes: pi0 = 0.8;

• FDR level to control: fdr = 0.05;

• Desired average power to achieve: power = 0.8;

• Average read count for each gene in control group: mu = 10;

• Dispersion parameter for each gene: disp = 0.1;

• Fold change for each gene: fc = 2.
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The estimated sample size is 14 with anticipated power 0.84 by ssiz-

eRNA single function. The function also gives the power vs. sample size

curve estimated by our method.

set.seed(2016)

size1 <- ssizeRNA_single(nGenes = 10000, pi0 = 0.8, m = 200, mu = 10,

disp = 0.1, fc = 2, fdr = 0.05,

power = 0.8, maxN = 20)
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size1$ssize

## pi0 ssize power

## [1,] 0.8 14 0.8385653
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To check whether desired power would be achieved at the calculated sam-

ple size 14 for voom and limma pipeline Law et al. (2014); Smyth (2004), we

could use the check.power function, which gives the observed power and true

FDR by Benjamini and Hochberg’s method Benjamini and Hochberg (1995)

and Storey’s q-value procedure Storey et al. (2004) respectively. The results

below are based on 10 simulations, indicating that desired power is achieved

and FDR is controlled successfully.

check.power(m = 14, mu = 10, disp = 0.1, fc = 2, sims = 10)

## $pow_bh_ave

## [1] 0.8637

##

## $fdr_bh_ave

## [1] 0.0345167

##

## $pow_qvalue_ave

## [1] 0.8846

##

## $fdr_qvalue_ave

## [1] 0.04520301

2.2 Sample size calculation for gene-specific mean and

dispersion with fixed fold change

Now we will give an example of sample size calculation for gene-specific mean

and dispersion. Here we use the real RNA-seq dataset from Hammer, P. et

al., 2010 Hammer et al. (2010) to generate gene-specific mean and dispersion

parameters.
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data(hammer.eset)

counts <- exprs(hammer.eset)[, phenoData(hammer.eset)$Time == "2 weeks"]

counts <- counts[rowSums(counts) > 0,] ## filter zero count genes

trt <- hammer.eset$protocol[which(hammer.eset$Time == "2 weeks")]

## average read count in control group for each gene

mu <- apply(counts[, trt == "control"], 1, mean)

## dispersion for each gene

d <- DGEList(counts)

d <- calcNormFactors(d)

d <- estimateCommonDisp(d)

d <- estimateTagwiseDisp(d)

disp <- d$tagwise.dispersion

If we would like to estimate the sample size for the above RNA-seq ex-

periment with

• Total number of genes: G = 10000;

• Proportion of non-DE genes: pi0 = 0.8;

• FDR level to control: fdr = 0.05;

• Desired average power to achieve: power = 0.8;

• Fold change for each gene: fc = 2.

The estimated sample size is 8 with anticipated power 0.81 by ssiz-

eRNA vary function. The function also gives the power vs. sample size

curve estimated by our method.
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set.seed(2016)

size2 <- ssizeRNA_vary(nGenes = 10000, pi0 = 0.8, m = 200, mu = mu,

disp = disp, fc = 2, fdr = 0.05,

power = 0.8, maxN = 15, replace = FALSE)
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size2$ssize

## pi0 ssize power

## [1,] 0.8 8 0.8099719

The observed power and true FDR by Benjamini and Hochberg’s method

and Storey’s q-value procedure could also be checked by the check.power

function.
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2.3 Sample size calculation for gene-specific mean and

dispersion with different fold change

If not all genes share the same fold change, for example, if fold change comes

from a log-normal distribution,

fc ∼ log −Normal(log(2), 0.5 ∗ log(2))

other parameters remain the same as in subsection 2.2, then the estimated

sample size is 14 with anticipated power 0.80 by ssizeRNA vary function.

set.seed(2016)

fc <- function(x){exp(rnorm(x, log(2), 0.5*log(2)))}
size3 <- ssizeRNA_vary(nGenes = 10000, pi0 = 0.8, m = 200, mu = mu,

disp = disp, fc = fc, fdr = 0.05,

power = 0.8, maxN = 20, replace = FALSE)
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size3$ssize

## pi0 ssize power

## [1,] 0.8 14 0.810175

By the following command, we verified that the desired power 0.8 is

achieved at the calculated sample size 14 for voom and limma pipeline.

check.power(m = 14, mu = mu, disp = disp, fc = fc, sims = 10,

replace = FALSE)

## $pow_bh_ave

## [1] 0.82855

##

## $fdr_bh_ave

## [1] 0.04001855

##

## $pow_qvalue_ave

## [1] 0.83795

##

## $fdr_qvalue_ave

## [1] 0.05025251

3 Conclusion

ssizeRNA provides a quick calculation for sample size, and an accurate esti-

mate of power. Examples in section 2 demonstrate that our proposed method

offers a reliable approach for sample size calculation for RNA-seq experi-

ments.

4 Session Info
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sessionInfo()

## R version 3.6.1 (2019-07-05)

## Platform: x86_64-apple-darwin15.6.0 (64-bit)

## Running under: macOS High Sierra 10.13.6

##

## Matrix products: default

## BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

##

## locale:

## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

## attached base packages:

## [1] parallel stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] ssizeRNA_1.3.3 edgeR_3.26.7 limma_3.40.6

## [4] Biobase_2.44.0 BiocGenerics_0.30.0 knitr_1.24

##

## loaded via a namespace (and not attached):

## [1] Rcpp_1.0.2 highr_0.8 pillar_1.6.1 compiler_3.6.1

## [5] plyr_1.8.4 tools_3.6.1 evaluate_0.14 lifecycle_1.0.0

## [9] tibble_2.1.3 gtable_0.3.0 lattice_0.20-38 pkgconfig_2.0.2

## [13] rlang_0.4.11 xfun_0.8 ssize.fdr_1.2 stringr_1.4.0

## [17] dplyr_1.0.6 generics_0.1.0 vctrs_0.3.8 locfit_1.5-9.1

## [21] grid_3.6.1 tidyselect_1.1.1 qvalue_2.16.0 glue_1.4.2

## [25] R6_2.4.0 fansi_0.4.0 ggplot2_3.2.1 purrr_0.3.2

## [29] reshape2_1.4.3 magrittr_1.5 splines_3.6.1 scales_1.0.0

## [33] ellipsis_0.3.2 MASS_7.3-51.4 colorspace_1.4-1 utf8_1.1.4

## [37] stringi_1.4.3 lazyeval_0.2.2 munsell_0.5.0 crayon_1.3.4
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