Wetland model

Spatio-temporal dynamic modeling of plant communities responses to hydrological pressures in a semiarid Mediterranean wetland

J. Martínez-López¹, J. Martínez-Fernández^{1,2}, B. Naimi³, M.F. Carreño¹ and M.A. Esteve¹

¹Ecology and Hydrology Department - University of Murcia (Murcia, Spain)
²Applied Biology Dept. University Miguel Hernandez (Elche, Spain)
³ITC - University of Twente (Enschede, The Netherlands)

ISEM 2013

Introduction Methods Conclusions

Study area

Wetland model

ISEM 2013

Introduction Methods Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Marina del Carmoli wetland (300 ha)

Wetland model

ISEM 2013

Introduction Methods

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Wetland plant communities

Semiarid Mediterranean saline wetlands are semi-terrestrial ecosystems

HUMIDITY

- Salt steppe (left) priority habitat by the Habitats Directive
- Salt marsh (center) habitat of interest by the HD
- ▶ Reed beds (right) (*Phragmites australis*) invasive

Wetland model

ISEM 2013

Introduction Methods Conclusions

・ロト・西ト・ヨト ・日・ うらぐ

External water inputs

Percentage of irrigated areas has increased in the last decades due to the opening of a water transfer (Martínez-López et al., 2013)

Wetland model

ISEM 2013

Introduction Methods Conclusions

▲□▶▲舂▶▲≧▶▲≧▶ ≧ のQで

Plant communities change

Important plant communities are being lost!

Carreño et al., 2008; Martínez-López et al., 2012

Wetland model

ISEM 2013

Introduction

Methods

Conclusions

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

Objective

Wetland model

ISEM 2013

Introduction

Methods

Conclusions

 Spatially explicit wetland model of how irrigated agriculture is affecting plant community composition in this semiarid Mediterranean wetland

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Modelling environment

▶ R as a modelling environment:

- GIS capabilities
- source code is flexible
- free availabity and growing user community

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Wetland model

ISEM 2013

Introduction

Methods

Conclusions

State variables

- ▶ Wetland is divided into pixels (25 m)
- Plant communities are modelled separately pixel by pixel (4 maps)
- The total abundance of plant communities within a pixel is limited so:
 - competition among plant communities mediated by
 - total drainge water input to the wetland
 - spatial environmental variables influencing water availability and growth
 - ▶ the dispersion of other PC from the surrounding pixels

Wetland model

ISEM 2013

Introduction Methods Conclusions

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Initial and validation maps of plant communities

Model was tested by means of remote sensing data for the period 1992-2008

Carreño et al., 2008; Martínez-López et al., 2012

Wetland model

ISEM 2013

ntroduction

Methods

Conclusions

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

Model assumptions I

- ▶ Increasing water input
- Only conversion to more humid / less saline plant communities

Wetland model

ISEM 2013

Introduction Methods Conclusions

Model assumptions II

native vs. invasive taxa

- ▶ invasive reed beds are potentially present in all pixels
- ▶ salt marsh is able to disperse into neighbour pixels

Wetland model

ISEM 2013

Introduction

Methods

Conclusions

Non spatial forcing input

Drainage water input

WARP index (Martínez-López et al., 2014a,b)

Wetland model

ISEM 2013

introduction

Methods

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Wetland environmental spatial parameters

- ► (A) distance map to ephemeral river 1 (reed beds)
- ► (B) distance map to ephemeral river 2 (reed beds)
- ► (C) Flow accumulation map (salt marsh)

Wetland model

ISEM 2013

Introduction

Methods

Conclusions

・ロト・日本・日本・日本・日本・日本・日本

Model diagram

Neighbor pixels distance ephemeral rivers Salt Reed Water marsh input beds flow accumulation Salt Bare soil steppe

Wetland model

ISEM 2013

Introduction

Methods

Conclusions

Model development/execution

- 1. Initial dynamic model was developed using Stella (1 pixel)
- Conversion to R using 'StellaR' script (Naimi and Voinov, 2012)
- 3. State variables and spatial environmental variables as matrices
- 4. Model wrapped as a R function
- 5. ode.2D ("euler" method, time = 24 year, TS = 0.25) (library "deSolve")

Wetland model

ISEM 2013

Introduction Methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions

- 1. The model serves as a tool for
 - wetland conservation and management studies (habitat loss)
 - testing plant community interactions
 - testing relationships between plant communities and environmental variables in space and time
- 2. The library undergoes further developments in order to become a flexible tool for the development of new spatio-dynamic models

ISEM 2013

Introduction Methods Conclusions