
Package ‘sensitivity’
August 28, 2024

Version 1.30.1

Title Global Sensitivity Analysis of Model Outputs and Importance
Measures

Maintainer Bertrand Iooss <biooss@yahoo.fr>

Depends R (>= 3.0.0)

Imports boot, numbers, methods, ggplot2, Rcpp, foreach, dtwclust

LinkingTo Rcpp, RcppArmadillo

Suggests condMVNorm, DiceDesign, DiceKriging, doParallel, evd,
ggExtra, grid, gplots, gtools, igraph, IncDTW, ks, lattice,
MASS, mc2d, mvtnorm, parallel, plotrix, pracma, proxy,
randtoolbox, RANN, reshape2, rgl, stringr, triangle, TSP,
viridisLite, whitening

Description A collection of functions for sensitivity analysis of model outputs (factor screen-
ing, global sensitivity analysis and robustness analysis), for variable importance mea-
sures of data, as well as for interpretability of machine learning models. Most of the func-
tions have to be applied on scalar output, but several functions support multi-dimensional outputs.

License GPL-2

NeedsCompilation yes

Repository CRAN

Author Bertrand Iooss [aut, cre],
Sebastien Da Veiga [aut],
Alexandre Janon [aut],
Gilles Pujol [aut]

Date/Publication 2024-08-28 13:40:13 UTC

Contents
sensitivity-package . 3
addelman_const . 7
correlRatio . 8
decoupling . 9
delsa . 10

1

2 Contents

discrepancyCriteria_cplus . 12
EPtest . 14
fast99 . 15
johnson . 17
johnsonshap . 20
lmg . 24
maximin_cplus . 27
morris . 28
morrisMultOut . 33
parameterSets . 35
pcc . 36
PLI . 38
PLIquantile . 43
PLIquantile_multivar . 47
PLIsuperquantile . 50
PLIsuperquantile_multivar . 54
plot.support . 58
pme_knn . 60
pmvd . 65
PoincareChaosSqCoef . 68
PoincareConstant . 73
PoincareOptimal . 76
qosa . 79
sb . 82
sensiFdiv . 84
sensiHSIC . 86
shapleyBlockEstimation . 105
shapleyLinearGaussian . 109
shapleyPermEx . 111
shapleyPermRand . 114
shapleysobol_knn . 117
shapleySubsetMc . 125
sobol . 127
sobol2002 . 129
sobol2007 . 131
sobolEff . 134
sobolGP . 136
soboljansen . 140
sobolmara . 143
sobolmartinez . 145
sobolMultOut . 148
sobolowen . 151
sobolrank . 153
sobolrec . 155
sobolrep . 158
sobolroalhs . 161
sobolroauc . 164
sobolSalt . 167

sensitivity-package 3

sobolshap_knn . 169
sobolSmthSpl . 173
sobolTIIlo . 174
sobolTIIpf . 176
soboltouati . 179
squaredIntEstim . 181
src . 182
support . 184
template.replace . 186
testHSIC . 188
testmodels . 194
truncateddistrib . 196
weightTSA . 197

Index 200

sensitivity-package Sensitivity Analysis

Description

Methods and functions for global sensitivity analysis of model outputs, importance measures and
machine learning model interpretability

Details

The sensitivity package implements some global sensitivity analysis methods and importance mea-
sures:

• Linear regression importance measures in regression or classification (logistic regression) con-
texts (Iooss et al., 2022; Clouvel et al., 2024):

– SRC and SRRC (src), and correlation ratio (correlRatio)
– PCC, SPCC, PRCC and SPRCC (pcc),
– LMG and LMG on ranks (lmg),
– PMVD and PMVD on ranks (pmvd),
– Johnson indices (johnson);

• Bettonvil’s sequential bifurcations (Bettonvil and Kleijnen, 1996) (sb);

• Morris’s "OAT" elementary effects screening method (morris);

• Derivative-based Global Sensitivity Measures:

– Poincare constants for Derivative-based Global Sensitivity Measures (DGSM) (Lamboni
et al., 2013; Roustant et al., 2017) (PoincareConstant) and (PoincareOptimal),

– Squared coefficients computation in generalized chaos via Poincare differential operators
(Roustant et al., 2019) (PoincareChaosSqCoef),

– Distributed Evaluation of Local Sensitivity Analysis (DELSA) (Rakovec et al., 2014)
(delsa);

4 sensitivity-package

• Variance-based sensitivity indices (Sobol’ indices) for independent inputs:

– Estimation of the Sobol’ first order indices with with B-spline Smoothing (Ratto and
Pagano, 2010) (sobolSmthSpl),

– Monte Carlo estimation of Sobol’ indices with independent inputs (also called pick-freeze
method):

* Sobol’ scheme (Sobol, 1993) to compute the indices given by the variance decompo-
sition up to a specified order (sobol),

* Saltelli’s scheme (Saltelli, 2002) to compute first order, second order and total indices
(sobolSalt),

* Saltelli’s scheme (Saltelli, 2002) to compute first order and total indices (sobol2002),

* Mauntz-Kucherenko’s scheme (Sobol et al., 2007) to compute first order and total
indices using improved formulas for small indices (sobol2007),

* Jansen-Sobol’s scheme (Jansen, 1999) to compute first order and total indices using
improved formulas (soboljansen),

* Martinez’s scheme using correlation coefficient-based formulas (Martinez, 2011; Touati,
2016) to compute first order and total indices, associated with theoretical confidence
intervals (sobolmartinez and soboltouati),

* Janon-Monod’s scheme (Monod et al., 2006; Janon et al., 2013) to compute first
order indices with optimal asymptotic variance (sobolEff),

* Mara’s scheme (Mara and Joseph, 2008) to compute first order indices with a cost
independent of the dimension, via permutations on a single matrix (sobolmara),

* Mighty estimator of first-order sensitivity indices based on rank statistics (correlation
coefficient of Chatterjee, 2019; Gamboa et al., 2020) (sobolrank),

* Owen’s scheme (Owen, 2013) to compute first order and total indices using improved
formulas (via 3 input independent matrices) for small indices (sobolowen),

* Total Interaction Indices using Liu-Owen’s scheme (Liu and Owen, 2006) (sobolTIIlo)
and pick-freeze scheme (Fruth et al., 2014) (sobolTIIpf),

– Replication-based procedures:

* Estimation of the Sobol’ first order and closed second order indices using replicated
orthogonal array-based Latin hypecube sample (Tissot and Prieur, 2015) (sobolroalhs),

* Recursive estimation of the Sobol’ first order and closed second order indices us-
ing replicated orthogonal array-based Latin hypecube sample (Gilquin et al., 2016)
(sobolrec),

* Estimation of the Sobol’ first order, second order and total indices using the gener-
alized method with replicated orthogonal array-based Latin hypecube sample (Tissot
and Prieur, 2015) (sobolrep),

* Sobol’ indices estimation under inequality constraints (Gilquin et al., 2015) by ex-
tension of the replication procedure (Tissot and Prieur, 2015) (sobolroauc),

– Estimation of the Sobol’ first order and total indices with Saltelli’s so-called "extended-
FAST" method (Saltelli et al., 1999) (fast99),

– Estimation of the Sobol’ first order and total indices with kriging-based global sensitivity
analysis (Le Gratiet et al., 2014) (sobolGP);

• Variance-based sensitivity indices valid for dependent inputs:

– Exact computation of Shapley effects in the linear Gaussian framework (Broto et al.,
2019) (shapleyLinearGaussian),

sensitivity-package 5

– Computation of Shapley effects in the Gaussian linear framework with an unknown block-
diagonal covariance matrix (Broto et al., 2020) (shapleyBlockEstimation),

– Johnson-Shapley indices (Iooss and Clouvel, 2024) (johnsonshap),
– Estimation of Shapley effects by examining all permutations of inputs (Song et al., 2016)

(shapleyPermEx),
– Estimation of Shapley effects by randomly sampling permutations of inputs (Song et al.,

2016) (shapleyPermRand),
– Estimation of Shapley effects from data using nearest neighbors method (Broto et al.,

2018) (shapleySubsetMc),
– Estimation of Shapley effects and all Sobol indices from data using nearest neighbors

(Broto et al., 2018) (using a fast approximate algorithm) or ranking (Gamboa et al., 2020)
(shapleysobol_knn) and (sobolshap_knn),

– Estimation of Shapley effects from data using nearest neighbors method (Broto et al.,
2018) with an optimized/parallelized computations and bootstrap confidence intervals
estimations (shapleysobol_knn),

– Estimation of Proportional Marginal Effects (PME) (Herin et al., 2024) (pme_knn);

• Support index functions (support) of Fruth et al. (2016);

• Sensitivity Indices based on Csiszar f-divergence (sensiFdiv) (particular cases: Borgonovo’s
indices and mutual-information based indices) and Hilbert-Schmidt Independence Criterion
(sensiHSIC and testHSIC) (Da Veiga, 2015; De Lozzo and Marrel, 2016; Meynaoui et al.,
2019);

• Non-parametric variable significance test based on the empirical process (EPtest) of Klein
and Rochet (2022);

• First-order quantile-oriented sensitivity indices as defined in Fort et al. (2016) via a kernel-
based estimator related (Maume-Deschamps and Niang, 2018) (qosa);

• Target Sensitivity Analysis via Hilbert-Schmidt Independence Criterion (sensiHSIC) (Spag-
nol et al., 2019);

• Robustness analysis by the Perturbed-Law based Indices (PLI) of Lemaitre et al. (2015),
(PLIquantile) of Sueur et al. (2017), (PLIsuperquantile) of Iooss et al. (2021), and exten-
sion as (PLIquantile_multivar) and (PLIsuperquantile_multivar) ;

• Extensions to multidimensional outputs for:

– Sobol’ indices (sobolMultOut): Aggregated Sobol’ indices (Lamboni et al., 2011; Gam-
boa et al., 2014) and functional (1D) Sobol’ indices,

– Shapley effects and Sobol’ indices (shapleysobol_knn) and (sobolshap_knn): Func-
tional (1D) indices,

– HSIC indices (sensiHSIC) (Da Veiga, 2015): Aggregated HSIC, potentially via a PCA
step (Da Veiga, 2015),

– Morris method (morrisMultOut).

Moreover, some utilities are provided: standard test-cases (testmodels), weight transformation
function of the output sample (weightTSA) to perform Target Sensitivity Analysis, normal and
Gumbel truncated distributions (truncateddistrib), squared integral estimate (squaredIntEstim),
Addelman and Kempthorne construction of orthogonal arrays of strength two (addelman_const),
discrepancy criteria (discrepancyCriteria_cplus), maximin criteria (maximin_cplus) and tem-
plate file generation (template.replace).

6 sensitivity-package

Model managing

The sensitivity package has been designed to work either models written in R than external models
such as heavy computational codes. This is achieved with the input argument model present in all
functions of this package.

The argument model is expected to be either a funtion or a predictor (i.e. an object with a predict
function such as lm).

• If model = m where m is a function, it will be invoked once by y <- m(X).

• If model = m where m is a predictor, it will be invoked once by y <- predict(m, X).

X is the design of experiments, i.e. a data.frame with p columns (the input factors) and n lines
(each, an experiment), and y is the vector of length n of the model responses.

The model in invoked once for the whole design of experiment.

The argument model can be left to NULL. This is refered to as the decoupled approach and used with
external computational codes that rarely run on the statistician’s computer. See decoupling.

Author(s)

Bertrand Iooss, Sebastien Da Veiga, Alexandre Janon and Gilles Pujol with contributions from
Paul Lemaitre for PLI, Thibault Delage and Roman Sueur for PLIquantile, Vanessa Verges for
PLIquantile, PLIsuperquantile, PLIquantile_multivar and PLIsuperquantile_multivar,
Laurent Gilquin for sobolroalhs, sobolroauc, sobolSalt, sobolrep, sobolrec, as well as
addelman_const, discrepancyCriteria_cplus and maximin_cplus, Loic le Gratiet for sobolGP,
Khalid Boumhaout, Taieb Touati and Bernardo Ramos for sobolowen and soboltouati, Jana Fruth
for PoincareConstant, sobolTIIlo and sobolTIIpf, Gabriel Sarazin, Amandine Marrel, Anouar
Meynaoui and Reda El Amri for their contributions to sensiHSIC and testHSIC, Joseph Guillaume
and Oldrich Rakovec for delsa and parameterSets, Olivier Roustant for PoincareOptimal,
PoincareChaosSqCoef, squaredIntEstim and support, Eunhye Song, Barry L. Nelson and Jeremy
Staum for shapleyPermEx and shapleyPermRand, Baptiste Broto for shapleySubsetMc, shapleyLinearGaussian
and shapleyBlockEstimation, Filippo Monari for (sobolSmthSpl) and (morrisMultOut), Marouane
Il Idrissi for lmg, pmvd and shapleysobol_knn, associated to Margot Herin for pme_knn, Laura
Clouvel for johnson, Paul Rochet for EPtest, Frank Weber and Roelof Oomen for other contribu-
tions.

(maintainer: Bertrand Iooss <biooss@yahoo.fr>)

References

S. Da Veiga, F. Gamboa, B. Iooss and C. Prieur, Basics and trends in sensitivity analysis, Theory
and practice in R, SIAM, 2021.

R. Faivre, B. Iooss, S. Mahevas, D. Makowski, H. Monod, editors, 2013, Analyse de sensibilite et
exploration de modeles. Applications aux modeles environnementaux, Editions Quae.

L. Clouvel, B. Iooss, V. Chabridon, M. Il Idrissi and F. Robin, 2023, An overview of variance-based
importance measures in the linear regression context: comparative analyses and numerical tests,
Preprint. https://hal.science/hal-04102053

B. Iooss, V. Chabridon and V. Thouvenot, Variance-based importance measures for machine learn-
ing model interpretability, Congres lambda-mu23, Saclay, France, 10-13 octobre 2022. https:
//hal.science/hal-03741384

https://hal.science/hal-04102053
https://hal.science/hal-03741384
https://hal.science/hal-03741384

addelman_const 7

B. Iooss, R. Kennet and P. Secchi, 2022, Different views of interpretability, In: Interpretability for
Industry 4.0: Statistical and Machine Learning Approaches, A. Lepore, B. Palumbo and J-M. Poggi
(Eds), Springer.

B. Iooss and A. Saltelli, 2017, Introduction: Sensitivity analysis. In: Springer Handbook on Uncer-
tainty Quantification, R. Ghanem, D. Higdon and H. Owhadi (Eds), Springer.

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

addelman_const Addelman and Kempthorne construction

Description

addelman_const implements the Addelman and Kempthorne construction of orthogonal arrays of
strength two.

Usage

addelman_const(dimension, levels, choice="U")

Arguments

dimension The number of columns of the orthogonal array.

levels The number of levels of the orthogonal array. Either a prime number or a prime
power number.

choice A character from the list ("U","V","W","X") specifying which orthogonal array
to construct (see "Details").

Details

The method of Addelman and Kempthorne allows to construct up to four orthogonal arrays. choice
specify which orthogonal array is to be constructed. Note that the four orthognal arrays depends on
each others through linear equations.

Value

A matrix corresponding to the orthogonal array constructed.

Author(s)

Laurent Gilquin

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications,
Springer Series in Statistics.

8 correlRatio

Examples

dimension <- 6
levels <- 7
OA <- addelman_const(dimension,levels,choice="U")

correlRatio Correlation Ratio

Description

correlRatio computes the correlation ratio between a quantitative variable and a qualitative vari-
able

Usage

correlRatio(X, y)

Arguments

X a vector containing the quantitative variable.

y a vector containing the qualitative variable (e.g. a factor).

Value

The value of the correlation ratio

Author(s)

Bertrand Iooss

References

L. Clouvel, B. Iooss, V. Chabridon, M. Il Idrissi and F. Robin, 2024, An overview of variance-based
importance measures in the linear regression context: comparative analyses and numerical tests,
Preprint. https://hal.science/hal-04102053

Examples

x <- runif(100)
y <- round(x)
correlRatio(x,y)

https://hal.science/hal-04102053

decoupling 9

decoupling Decoupling Simulations and Estimations

Description

tell and ask are S3 generic methods for decoupling simulations and sensitivity measures esti-
mations. In general, they are not used by the end-user for a simple R model, but rather for an
external computational code. Most of the sensitivity analyses objects of this package overload
tell, whereas ask is overloaded for iterative methods only. extract is used as a post-treatment of
a sobolshap_knn object

Usage

tell(x, y = NULL, ...)
ask(x, ...)
extract(x, ...)

Arguments

x a typed list storing the state of the sensitivity study (parameters, data, estimates),
as returned by sensitivity analyses objects constructors, such as src, morris,
etc.

y a vector of model responses.

... additional arguments, depending on the method used.

Details

When a sensitivity analysis method is called with no model (i.e. argument model = NULL), it gen-
erates an incomplete object x that stores the design of experiments (field X), allowing the user to
launch "by hand" the corresponding simulations. The method tell allows to pass these simulation
results to the incomplete object x, thereafter estimating the sensitivity measures.

The extract method is useful if in a first step the Shapley effects have been computed and thus
sensitivity indices for all possible subsets are available. The resulting sobolshap_knn object can
be post-treated by extract to get first-order and total Sobol indices very easily.

When the method is iterative, the data to simulate are not stored in the sensitivity analysis object x,
but generated at each iteration with the ask method; see for example sb.

Value

tell doesn’t return anything. It computes the sensitivity measures, and stores them in the list x.
Side effect: tell modifies its argument x.

ask returns the set of data to simulate.

extract returns an object, from a sobolshap_knn object, containing first-order and total Sobol
indices.

10 delsa

Author(s)

Gilles Pujol and Bertrand Iooss

Examples

Example of use of fast99 with "model = NULL"
x <- fast99(model = NULL, factors = 3, n = 1000,

q = "qunif", q.arg = list(min = -pi, max = pi))
y <- ishigami.fun(x$X)
tell(x, y)
print(x)
plot(x)

delsa Distributed Evaluation of Local Sensitivity Analysis

Description

delsa implements Distributed Evaluation of Local Sensitivity Analysis to calculate first order pa-
rameter sensitivity at multiple locations in parameter space. The locations in parameter space can
either be obtained by a call to parameterSets or by specifying X0 directly, in which case the prior
variance of each parameter varprior also needs to be specified. Via plot (which uses functions of
the package ggplot2 and reshape2), the indices can be visualized.

Usage

delsa(model = NULL, perturb=1.01,
par.ranges, samples, method,
X0, varprior, varoutput,
...)

S3 method for class 'delsa'
tell(x, y = NULL,...)

S3 method for class 'delsa'
print(x, ...)

S3 method for class 'delsa'
plot(x, which=1:3, ask = dev.interactive(), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

perturb Perturbation used to calculate sensitivity at each evaluation location

par.ranges A named list of minimum and maximum parameter values

samples Number of samples to generate. For the "grid" and "innergrid" method,
corresponds to the number of samples for each parameter, and may be a vector.

delsa 11

method Sampling scheme. See parameterSets

X0 Parameter values at which to evaluate sensitivity indices. Can be used instead of
specifying sampling method

varprior Prior variance. If X0 is specified, varprior must also be specified.

varoutput Output variance. If "summation" is specified (default value), the ouput variance
is computed by summing the first order effects. If "empirical" is specified, the
ouput variance is estimated frome the output sample.

... any other arguments for model which are passed unchanged each time it is
called.

x a list of class "delsa" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

which if a subset of the plots is required, specify a subset of the numbers 1:3

ask logical; if TRUE, the user is asked before each plot, see par(ask=.)

Details

print shows summary of the first order indices across parameter space.

plot shows: (1) the cumulative distribution function of first order sensitivity across parameter
space, (2) variation of first order sensitivity in relation to model response, and (3) sensitivity in
relation to parameter value.

Value

delsa returns a list of class "delsa", containing all the input arguments detailed before, plus the
following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

delsafirst the first order indices for each location in X0.

deriv the values of derivatives for each location in X0

Author(s)

Conversion for sensitivity package by Joseph Guillaume, based on original R code by Oldrich
Rakovec. Addition of the varoutput argument by Bertrand Iooss (2020).

References

Rakovec, O., M. C. Hill, M. P. Clark, A. H. Weerts, A. J. Teuling, R. Uijlenhoet (2014), Distributed
Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models, Water
Resour. Res., 50, 1-18

See Also

parameterSets which is used to generate points, sensitivity for other methods in the package

12 discrepancyCriteria_cplus

Examples

Test case : the non-monotonic Sobol g-function
(there are 8 factors, all following the uniform distribution on [0,1])

library(randtoolbox)
x <- delsa(model=sobol.fun,

par.ranges=replicate(8,c(0,1),simplify=FALSE),
samples=100,method="sobol")

Summary of sensitivity indices of each parameter across parameter space
print(x)

library(ggplot2)
library(reshape2)
plot(x)

discrepancyCriteria_cplus

Discrepancy measure

Description

Compute discrepancy criteria. This function uses a C++ implementation of the function discrepancyCriteria
from package DiceDesign.

Usage

discrepancyCriteria_cplus(design,type='all')

Arguments

design a matrix corresponding to the design of experiments. The discrepancy criteria
are computed for a design in the unit cube [0,1]d. If this condition is not satisfied
the design is automatically rescaled.

type type of discrepancies (single value or vector) to be computed:

’all’ all type of discrepancies (default)
’C2’ centered L2-discrepancy
’L2’ L2-discrepancy
’L2star’ L2star-discrepancy
’M2’ modified L2-discrepancy
’S2’ symmetric L2-discrepancy
’W2’ wrap-around L2-discrepancy

discrepancyCriteria_cplus 13

Details

The discrepancy measures how far a given distribution of points deviates from a perfectly uniform
one. Different discrepancies are available. For example, if we denote by V ol(J) the volume of a
subset J of [0; 1]d and A(X; J) the number of points of X falling in J , the L2 discrepancy is:

DL2(X) =

[∫
[0,1]2d

(
A(X, Ja,b)

n
− V ol(Ja,b)

)2

dadb

]1/2

where a = (a1; ...; ad)
′, b = (b1; ...; bd)

′ and Ja,b = [a1; b1) × ... × [ad; bd). The other L2-
discrepancies are defined according to the same principle with different form from the subset J .
Among all the possibilities, discrepancyCriteria_cplus implements only the L2 discrepancies be-
cause it can be expressed analytically even for high dimension.

Centered L2-discrepancy is computed using the analytical expression done by Hickernell (1998).
The user will refer to Pleming and Manteufel (2005) to have more details about the wrap around
discrepancy.

Value

A list containing the L2-discrepancies of the design.

Author(s)

Laurent Gilquin

References

Fang K.T, Li R. and Sudjianto A. (2006) Design and Modeling for Computer Experiments, Chap-
man & Hall.

Hickernell F.J. (1998) A generalized discrepancy and quadrature error bound. Mathematics of Com-
putation, 67, 299-322.

Pleming J.B. and Manteufel R.D. (2005) Replicated Latin Hypercube Sampling, 46th Structures,
Structural Dynamics & Materials Conference, 16-21 April 2005, Austin (Texas) – AIAA 2005-
1819.

See Also

The distance criterion provided by maximin_cplus

Examples

dimension <- 2
n <- 40
X <- matrix(runif(n*dimension),n,dimension)
discrepancyCriteria_cplus(X)

14 EPtest

EPtest Non-parametric variable significance test based on the empirical pro-
cess

Description

EPtest builds the non-parametric variable significance test from Klein and Rochet (2022) for the
null hypothesis H0 : Su = S where Su is the Sobol index for the inputs Xi, i ∈ u ans S is the
Sobol index for all the inputs in X .

Usage

EPtest(X, y, u = NULL, doe = NULL, Kdoe = 10, tau = 0.1)

Arguments

X a matrix or data.frame that contains the numerical inputs as columns.

y a vector of output.

u the vector of indices of the columns of X for which we want to test the signifi-
cance.

doe the design of experiment on which the empirical process is to be evaluated. It
should be independent from X.

Kdoe if doe is null and Kdoe is specified, the design of experiment is taken as Kdoe
points drawn uniformly independently on intervals delimited by the range of
each input.

tau a regularization parameter to approximate the limit chi2 distribution of the test
statistics under H0.

Value

EPtest returns a list containing:

statistics The test statistics that follows a chi-squared distribution under the null hypothe-
sis.

ddl The number of degrees of freedom used in the limit chi-square distribution for
the test.

p-value The test p-value.

Author(s)

Paul Rochet

References

T. Klein and P. Rochet, Test comparison for Sobol Indices over nested sets of variables, SIAM/ASA
Journal on Uncertainty Quantification 10.4 (2022): 1586-1600.

fast99 15

See Also

sobol

Examples

Model: Ishigami

n = 100
X = matrix(runif(3*n, -pi, pi), ncol = 3)

y = ishigami.fun(X)

Test the significance of X1, H0: S1 = 0
EPtest(X[, 1], y, u = NULL)

Test if X1 is sufficient to explain Y, H0: S1 = S123
EPtest(X, y, u = 1)

Test if X3 is significant in presence of X2, H0: S2 = S23
EPtest(X[, 2:3], y, u = 1)

fast99 Extended Fourier Amplitude Sensitivity Test

Description

fast99 implements the so-called "extended-FAST" method (Saltelli et al. 1999). This method
allows the estimation of first order and total Sobol’ indices for all the factors (alltogether 2p indices,
where p is the number of factors) at a total cost of n× p simulations.

Usage

fast99(model = NULL, factors, n, M = 4, omega = NULL,
q = NULL, q.arg = NULL, ...)

S3 method for class 'fast99'
tell(x, y = NULL, ...)
S3 method for class 'fast99'
print(x, ...)
S3 method for class 'fast99'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

16 fast99

n an integer giving the sample size, i.e. the length of the discretization of the
s-space (see Cukier et al.).

M an integer specifying the interference parameter, i.e. the number of harmonics
to sum in the Fourier series decomposition (see Cukier et al.).

omega a vector giving the set of frequencies, one frequency for each factor (see details
below).

q a vector of quantile functions names corresponding to wanted factors distribu-
tions (see details below).

q.arg a list of quantile functions parameters (see details below).

x a list of class "fast99" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

Details

If not given, the set of frequencies omega is taken from Saltelli et al. The first frequency of the vector
omega is assigned to each factor Xi in turn (corresponding to the estimation of Sobol’ indices Si

and STi
), other frequencies being assigned to the remaining factors.

If the arguments q and q.args are not given, the factors are taken uniformly distributed on [0, 1].
The argument q must be list of character strings, giving the names of the quantile functions (one
for each factor), such as qunif, qnorm. . . It can also be a single character string, meaning same
distribution for all. The argument q.arg must be a list of lists, each one being additional parameters
for the corresponding quantile function. For example, the parameters of the quantile function qunif
could be list(min=1, max=2), giving an uniform distribution on [1, 2]. If q is a single character
string, then q.arg must be a single list (rather than a list of one list).

Value

fast99 returns a list of class "fast99", containing all the input arguments detailed before, plus the
following components:

call the matched call.

X a data.frame containing the factors sample values.

y a vector of model responses.

V the estimation of variance.

D1 the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor.

Dt the estimations of VCE with respect to each factor complementary set of factors
("all but Xi").

Author(s)

Gilles Pujol

johnson 17

References

A. Saltelli, S. Tarantola and K. Chan, 1999, A quantitative, model independent method for global
sensitivity analysis of model output, Technometrics, 41, 39–56.

R. I. Cukier, H. B. Levine and K. E. Schuler, 1978, Nonlinear sensitivity analysis of multiparameter
model systems. J. Comput. Phys., 26, 1–42.

Examples

Test case : the non-monotonic Ishigami function
x <- fast99(model = ishigami.fun, factors = 3, n = 1000,

q = "qunif", q.arg = list(min = -pi, max = pi))
print(x)
plot(x)

johnson Johnson indices

Description

johnson computes the Johnson indices for correlated input relative importance by R2 decomposi-
tion for linear and logistic regression models. These indices allocates a share of R2 to each input
based on the relative weight allocation (RWA) system, in the case of dependent or correlated inputs.

Usage

johnson(X, y, rank = FALSE, logistic = FALSE, nboot = 0, conf = 0.95)
S3 method for class 'johnson'
print(x, ...)
S3 method for class 'johnson'
plot(x, ylim = c(0,1), ...)
S3 method for class 'johnson'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

X a data frame (or object coercible by as.data.frame) containing the design of
experiments (model input variables).

y a vector containing the responses corresponding to the design of experiments
(model output variables).

rank logical. If TRUE, the analysis is done on the ranks.

logistic logical. If TRUE, the analysis is done via a logistic regression (binomial GLM).

nboot the number of bootstrap replicates.

conf the confidence level of the bootstrap confidence intervals.

x the object returned by johnson.

18 johnson

data the object returned by johnson.

ylim the y-coordinate limits of the plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... arguments to be passed to methods, such as graphical parameters (see par).

Details

Logistic regression model (logistic = TRUE) and rank-based indices (rank = TRUE) are incompat-
ible.

Value

johnson returns a list of class "johnson", containing the following components:

call the matched call.

johnson a data frame containing the estimations of the johnson indices, bias and confi-
dence intervals.

Author(s)

Bertrand Iooss and Laura Clouvel

References

L. Clouvel, B. Iooss, V. Chabridon, M. Il Idrissi and F. Robin, 2024, An overview of variance-based
importance measures in the linear regression context: comparative analyses and numerical tests,
Preprint. https://hal.science/hal-04102053

B. Iooss, V. Chabridon and V. Thouvenot, Variance-based importance measures for machine learn-
ing model interpretability, Congres lambda-mu23, Saclay, France, 10-13 octobre 2022 https:
//hal.science/hal-03741384

J.W. Johnson, 2000, A heuristic method for estimating the relative weight of predictor variables in
multiple regression, Multivariate Behavioral Research, 35:1-19.

J.W. Johnson and J.M. LeBreton, 2004, History and use of relative importance indices in organiza-
tional research, Organizational Research Methods, 7:238-257.

See Also

src, lmg, pmvd, johnsonshap

Examples

##################################
Same example than the one in src()

a 100-sample with X1 ~ U(0.5, 1.5)
X2 ~ U(1.5, 4.5)

https://hal.science/hal-04102053
https://hal.science/hal-03741384
https://hal.science/hal-03741384

johnson 19

X3 ~ U(4.5, 13.5)

library(boot)
n <- 100
X <- data.frame(X1 = runif(n, 0.5, 1.5),

X2 = runif(n, 1.5, 4.5),
X3 = runif(n, 4.5, 13.5))

linear model : Y = X1 + X2 + X3

y <- with(X, X1 + X2 + X3)

sensitivity analysis

x <- johnson(X, y, nboot = 100)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

#################################
Same examples than the ones in lmg()

library(boot)
library(mvtnorm)

set.seed(1234)
n <- 1000
beta<-c(1,-1,0.5)
sigma<-matrix(c(1,0,0,

0,1,-0.8,
0,-0.8,1),

nrow=3,
ncol=3)

##########
Gaussian correlated inputs

X <-rmvnorm(n, rep(0,3), sigma)
colnames(X)<-c("X1","X2", "X3")

#########
Linear Model

y <- X%*%beta + rnorm(n,0,2)

Without Bootstrap confidence intervals
x<-johnson(X, y)
print(x)
plot(x)

20 johnsonshap

With Boostrap confidence intervals
x<-johnson(X, y, nboot=100, conf=0.95)
print(x)
plot(x)

Rank-based analysis
x<-johnson(X, y, rank=TRUE, nboot=100, conf=0.95)
print(x)
plot(x)

#######
Logistic Regression
y<-as.numeric(X%*%beta + rnorm(n)>0)
x<-johnson(X,y, logistic = TRUE)
plot(x)
print(x)

#################################
Test on a modified Linkletter fct with:
- multivariate normal inputs (all multicollinear)
- in dimension 50 (there are 42 dummy inputs)
- large-size sample (1e4)

library(mvtnorm)

n <- 1e4
d <- 50
sigma <- matrix(0.5,ncol=d,nrow=d)
diag(sigma) <- 1
X <- rmvnorm(n, rep(0,d), sigma)

y <- linkletter.fun(X)
joh <- johnson(X,y)
sum(joh$johnson) # gives the R2
plot(joh)

johnsonshap Johnson-Shapley indices

Description

johnsonshap computes the Johnson-Shapley indices for correlated input relative importance. These
indices allocate a share of the output variance to each input based on the relative weight allocation
system, in the case of dependent or correlated inputs.

Usage

johnsonshap(model = NULL, X1, N, nboot = 0, conf = 0.95)
S3 method for class 'johnsonshap'
print(x, ...)

johnsonshap 21

S3 method for class 'johnsonshap'
plot(x, ylim = c(0,1), ...)
S3 method for class 'johnsonshap'
ggplot(data, mapping = aes(), ylim = c(0, 1), ...,

environment = parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 a data frame (or object coercible by as.data.frame) containing a design of
experiments (model input variables).

N an integer giving the size of each replicated design for the Sobol’ indices com-
putations via the sobolrep() fct.

nboot the number of bootstrap replicates.

conf the confidence level of the bootstrap confidence intervals.

x the object returned by johnsonshap.

data the object returned by johnsonshap.

ylim the y-coordinate limits of the plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... arguments to be passed to methods, such as graphical parameters (see par).

Details

X1 is not used to run the model but just to perform the SVD; the model is run on a specific design
which is internally generated.

By using bootstrap, values in the columns ’bias’ and ’std. error’ are arbitrarily put at 0 because
of impossible computations; values in columns ’original’, ’min c.i.’ and ’max c.i.’ are correctly
computed.

Value

johnsonshap returns a list of class "johnsonshap", containing all the input arguments detailed
before, plus the following components:

call the matched call.

X a matrix containing the design of experiments.

sobrepZ the Sobol’ indices of the transformed inputs (independent)

Wstar the standardized weight matrix.

johnsonshap a data frame containing the estimations of the Johnson-Shapley indices, bias and
confidence intervals.

Author(s)

Bertrand Iooss

22 johnsonshap

References

B. Iooss and L. Clouvel, Une methode d’approximation des effets de Shapley en grande dimension,
54emes Journees de Statistique, Bruxelles, Belgique, July 3-7, 2023

See Also

johnson, shapleysobol_knn

Examples

library(ggplot2)
library(boot)

###
Test case: the non-monotonic Sobol g-function (with independent inputs)
n <- 1000
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- johnsonshap(model = sobol.fun, X1 = X, N = n)
print(x)
plot(x)
ggplot(x)

###
3D analytical toy functions described in Iooss & Clouvel (2023)

library(mvtnorm)

Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
2 correlated inputs
Cov3d2 <- function(rho){ # correl (X1,X2)

Cormat <- matrix(c(1,rho,0,rho,1,0,0,0,1),3,3)
return((sig %*% t(sig)) * Cormat)

}
mu3d <- c(1,0,0) ; sig3d <- c(0.25,1,1)
d <- 3 ; mu <- mu3d ; sig <- sig3d ; Covm <- Cov3d2
Xvec <- c("X1","X2","X3")

n <- 1e4 # initial sample size
N <- 1e4 # cost to estimate indices
rho <- 0.9 # correlation coef for dependent inputs' case

################
Linear model + a strong 2nd order interaction

toy3d <- function(x) return(x[,1]*(1+x[,1]*(cos(x[,2]+x[,3])^2)))
interaction X2X3
toy <- toy3d

Independent case

Covmat <- Covm(0)

johnsonshap 23

X <- as.data.frame(Xall(n))
Y <- toy(X)
joh <- johnson(X, Y, nboot=100)
print(joh)
johshap <- johnsonshap(model = toy, X1 = X, N = N, nboot=100)
print(johshap)
ggplot(johshap)

Dependent case

Covmat <- Covm(rho)
Xdep <- as.data.frame(Xall(n))
Ydep <- toy(Xdep)
joh <- johnson(Xdep, Ydep, nboot=0)
print(joh)
johshap <- johnsonshap(model = toy, X1 = Xdep, N = N, nboot=100)
print(johshap)
ggplot(johshap)

################
Strongly non-inear model + a strong 2nd order interaction

toy3dNL <- function(x) return(sin(x[,1]*pi/2)*(1+x[,1]*(cos(x[,2]+x[,3])^2)))
non linearity in X1
toy <- toy3dNL

Independent case

Covmat <- Covm(0)
X <- as.data.frame(Xall(n))
Y <- toy(X)
joh <- johnson(X, Y, nboot=100)
print(joh)
johshap <- johnsonshap(model = toy, X1 = X, N = N, nboot=100)
print(johshap)
ggplot(johshap)

Dependent case

Covmat <- Covm(rho)
Xdep <- as.data.frame(Xall(n))
Ydep <- toy(Xdep)
joh <- johnson(Xdep, Ydep, nboot=0)
print(joh)
johshap <- johnsonshap(model = NULL, X1 = Xdep, N = N, nboot=100)
y <- toy(johshap$X)
tell(johshap, y)
print(johshap)
ggplot(johshap)

24 lmg

lmg LMG Rˆ2 decomposition for linear and logistic regression models

Description

lmg computes the Lindeman, Merenda and Gold (LMG) indices for correlated input relative im-
portance by R2 decomposition for linear and logistic regression models. These indices allocates
a share of R2 to each input based on the Shapley attribution system, in the case of dependent or
correlated inputs.

Usage

lmg(X, y, logistic = FALSE, rank = FALSE, nboot = 0,
conf = 0.95, max.iter = 1000, parl = NULL)

S3 method for class 'lmg'
print(x, ...)
S3 method for class 'lmg'
plot(x, ylim = c(0,1), ...)

Arguments

X a matrix or data frame containing the observed covariates (i.e., features, input
variables...).

y a numeric vector containing the observed outcomes (i.e., dependent variable). If
logistic=TRUE, can be a numeric vector of zeros and ones, or a logical vector,
or a factor.

logistic logical. If TRUE, the analysis is done via a logistic regression(binomial GLM).

rank logical. If TRUE, the analysis is done on the ranks.

nboot the number of bootstrap replicates for the computation of confidence intervals.

conf the confidence level of the bootstrap confidence intervals.

max.iter if logistic=TRUE, the maximum number of iterative optimization steps allowed
for the logistic regression. Default is 1000.

parl number of cores on which to parallelize the computation. If NULL, then no par-
allelization is done.

x the object returned by lmg.

ylim the y-coordinate limits of the plot.

... arguments to be passed to methods, such as graphical parameters (see par).

Details

The computation is done using the subset procedure, defined in Broto, Bachoc and Depecker (2020),
that is computing all the R2 for all possible sub-models first, and then affecting the Shapley weights
according to the Lindeman, Merenda and Gold (1980) definition.

lmg 25

For logistic regression (logistic=TRUE), the R2 value is equal to:

R2 = 1− model deviance
null deviance

If either a logistic regression model (logistic = TRUE), or any column of X is categorical (i.e., of
class factor), then the rank-based indices cannot be computed. In both those cases, rank = FALSE
is forced by default (with a warning).

If too many cores for the machine are passed on to the parl argument, the chosen number of cores
is defaulted to the available cores minus one.

Value

lmg returns a list of class "lmg", containing the following components:

call the matched call.

lmg a data frame containing the estimations of the LMG indices.

R2s the estimations of the R2 for all possible sub-models.

indices list of all subsets corresponding to the structure of R2s.

w the Shapley weights.

conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap
(if nboot>0).

X the observed covariates.

y the observed outcomes.

logistic logical. TRUE if the analysis has been made by logistic regression.

boot logical. TRUE if bootstrap estimates have been produced.

nboot number of bootstrap replicates.

rank logical. TRUE if a rank analysis has been made.

parl number of chosen cores for the computation.

conf level for the confidence intervals by bootstrap.

Author(s)

Marouane Il Idrissi

References

Broto B., Bachoc F. and Depecker M. (2020) Variance Reduction for Estimation of Shapley Effects
and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification,
8(2).

D.V. Budescu (1993). Dominance analysis: A new approach to the problem of relative importance
of predictors in multiple regression. Psychological Bulletin, 114:542-551.

L. Clouvel, B. Iooss, V. Chabridon, M. Il Idrissi and F. Robin, 2024, An overview of variance-based
importance measures in the linear regression context: comparative analyses and numerical tests,
Preprint. https://hal.science/hal-04102053

https://hal.science/hal-04102053

26 lmg

U. Gromping (2006). Relative importance for linear regression in R: the Package relaimpo. Journal
of Statistical Software, 17:1-27.

M. Il Idrissi, V. Chabridon and B. Iooss (2021). Developments and applications of Shapley ef-
fects to reliability-oriented sensitivity analysis with correlated inputs, Environmental Modelling &
Software, 143, 105115, 2021

M. Il Idrissi, V. Chabridon and B. Iooss (2021). Mesures d’importance relative par decomposi-
tions de la performance de modeles de regression, Actes des 52emes Journees de Statistiques de la
Societe Francaise de Statistique (SFdS), pp 497-502, Nice, France, Juin 2021

B. Iooss, V. Chabridon and V. Thouvenot, Variance-based importance measures for machine learn-
ing model interpretability, Congres lambda-mu23, Saclay, France, 10-13 octobre 2022 https:
//hal.science/hal-03741384

Lindeman RH, Merenda PF, Gold RZ (1980). Introduction to Bivariate and Multivariate Analysis.
Scott, Foresman, Glenview, IL.

See Also

pcc, src, johnson, shapleyPermEx, shapleysobol_knn, pmvd, pme_knn

Examples

library(parallel)
library(doParallel)
library(foreach)
library(gtools)
library(boot)

library(mvtnorm)

set.seed(1234)
n <- 1000
beta<-c(1,-1,0.5)
sigma<-matrix(c(1,0,0,

0,1,-0.8,
0,-0.8,1),

nrow=3,
ncol=3)

############################
Gaussian correlated inputs

X <-rmvnorm(n, rep(0,3), sigma)
colnames(X)<-c("X1","X2", "X3")

#############################
Linear Model

y <- X%*%beta + rnorm(n,0,2)

Without Bootstrap confidence intervals
x<-lmg(X, y)

https://hal.science/hal-03741384
https://hal.science/hal-03741384

maximin_cplus 27

print(x)
plot(x)

With Boostrap confidence intervals
x<-lmg(X, y, nboot=100, conf=0.95)
print(x)
plot(x)

Rank-based analysis
x<-lmg(X, y, rank=TRUE, nboot=100, conf=0.95)
print(x)
plot(x)

############################
Logistic Regression
y<-as.numeric(X%*%beta + rnorm(n)>0)
x<-lmg(X,y, logistic = TRUE)
plot(x)
print(x)

Parallel computing
#x<-lmg(X,y, logistic = TRUE, parl=2)
#plot(x)
#print(x)

maximin_cplus Maximin criterion

Description

Compute the maximin criterion (also called mindist). This function uses a C++ implementation of
the function mindist from package DiceDesign.

Usage

maximin_cplus(design)

Arguments

design a matrix representing the design of experiments in the unit cube [0,1]d. If this
last condition is not fulfilled, a transformation into [0,1]d is applied before the
computation of the criteria.

Details

The maximin criterion is defined by:

maximin = min
xi∈X

(γi)

28 morris

where γi is the minimal distance between the point xi and the other points xk of the design.

A higher value corresponds to a more regular scaterring of design points.

Value

A real number equal to the value of the maximin criterion for the design.

Author(s)

Laurent Gilquin

References

Gunzburer M., Burkdart J. (2004) Uniformity measures for point samples in hypercubes https:
//people.sc.fsu.edu/~jburkardt/.

Jonshon M.E., Moore L.M. and Ylvisaker D. (1990) Minmax and maximin distance designs, J. of
Statis. Planning and Inference, 26, 131-148.

Chen V.C.P., Tsui K.L., Barton R.R. and Allen J.K. (2003) A review of design and modeling in
computer experiments, Handbook of Statistics, 22, 231-261.

See Also

discrepancy measures provided by discrepancyCriteria_cplus.

Examples

dimension <- 2
n <- 40
X <- matrix(runif(n*dimension),n,dimension)
maximin_cplus(X)

morris Morris’s Elementary Effects Screening Method

Description

morris implements the Morris’s elementary effects screening method (Morris, 1991). This method,
based on design of experiments, allows to identify the few important factors at a cost of r× (p+1)
simulations (where p is the number of factors). This implementation includes some improvements
of the original method: space-filling optimization of the design (Campolongo et al. 2007) and
simplex-based design (Pujol 2009).

https://people.sc.fsu.edu/~jburkardt/
https://people.sc.fsu.edu/~jburkardt/

morris 29

Usage

morris(model = NULL, factors, r, design, binf = 0, bsup = 1,
scale = TRUE, ...)

S3 method for class 'morris'
tell(x, y = NULL, ...)
S3 method for class 'morris'
print(x, ...)
S3 method for class 'morris'
plot(x, identify = FALSE, atpen = FALSE, y_col = NULL,
y_dim3 = NULL, ...)

S3 method for class 'morris'
plot3d(x, alpha = c(0.2, 0), sphere.size = 1, y_col = NULL,
y_dim3 = NULL)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

r either an integer giving the number of repetitions of the design, i.e. the number
of elementary effect computed per factor, or a vector of two integers c(r1, r2)
for the space-filling improvement (Campolongo et al. 2007). In this case, r1 is
the wanted design size, and r2 (> r1) is the size of the (bigger) population in
which is extracted the design (this can throw a warning, see below).

design a list specifying the design type and its parameters:

• type = "oat" for Morris’s OAT design (Morris 1991), with the parameters:
– levels : either an integer specifying the number of levels of the design,

or a vector of integers for different values for each factor.
– grid.jump : either an integer specifying the number of levels that are

increased/decreased for computing the elementary effects, or a vector
of integers for different values for each factor. If not given, it is set to
grid.jump = 1. Notice that this default value of one does not follow
Morris’s recommendation of levels/2.

• type = "simplex" for simplex-based design (Pujol 2009), with the param-
eter:

– scale.factor : a numeric value, the homothety factor of the (isomet-
ric) simplexes. Edges equal one with a scale factor of one.

binf either an integer, specifying the minimum value for the factors, or a vector for
different values for each factor.

bsup either an integer, specifying the maximum value for the factors, or a vector for
different values for each factor.

scale logical. If TRUE, the input design of experiments is scaled after building the de-
sign and before computing the elementary effects so that all factors vary within
the range [0,1]. For each factor, the scaling is done relatively to its correspond-
ing bsup and binf.

30 morris

x a list of class "morris" storing the state of the screening study (parameters,
data, estimates).

y a vector of model responses.

identify logical. If TRUE, the user selects with the mouse the factors to label on the
(µ∗, σ) graph (see identify).

atpen logical. If TRUE (and identify = TRUE), the user-identified labels (more pre-
cisely: their lower-left corners) of the factors are plotted at the place where the
user had clicked (if near enough to one of the factor points). If FALSE (and
identify = TRUE), the labels are automatically adjusted to the lower, left, upper
or right side of the factor point. For further information, see identify. Defaults
to FALSE.

y_col an integer defining the index of the column of x$y to be used for plotting the
corresponding Morris statistics µ∗ and σ (only applies if x$y is a matrix or an
array). If set to NULL (as per default) and x$y is a matrix or an array, the first
column (respectively the first element in the second dimension) of x$y is used
(i.e. y_col = 1).

y_dim3 an integer defining the index in the third dimension of x$y to be used for plotting
the corresponding Morris statistics µ∗ and σ (only applies if x$y is an array). If
set to NULL (as per default) and x$y is a three-dimensional array, the first element
in the third dimension of x$y is used (i.e. y_dim3 = 1).

alpha a vector of three values between 0.0 (fully transparent) and 1.0 (opaque) (see
rgl.material). The first value is for the cone, the second for the planes.

sphere.size a numeric value, the scale factor for displaying the spheres.

... for morris: any other arguments for model which are passed unchanged each
time it is called. For plot.morris: arguments to be passed to plot.default.

Details

plot.morris draws the (µ∗, σ) graph.

plot3d.morris draws the (µ, µ∗, σ) graph (requires the rgl package). On this graph, the points are
in a domain bounded by a cone and two planes (application of the Cauchy-Schwarz inequality).

When using the space-filling improvement (Campolongo et al. 2007) of the Morris design, we
recommend to install before the "pracma" R package: its "distmat"" function makes running the
function with a large number of initial estimates (r2) significantly faster (by accelerating the inter-
point distances calculations).

This version of morris also supports matrices and three-dimensional arrays as output of model.

Value

morris returns a list of class "morris", containing all the input argument detailed before, plus the
following components:

call the matched call.

X a data.frame containing the design of experiments.

y either a vector, a matrix or a three-dimensional array of model responses (de-
pends on the output of model).

morris 31

ee • if y is a vector: a (r × p) - matrix of elementary effects for all the factors.
• if y is a matrix: a (r× p× ncol(y)) - array of elementary effects for all the

factors and all columns of y.
• if y is a three-dimensional array: a (r×p×dim(y)[2]×dim(y)[3]) - array

of elementary effects for all the factors and all elements of the second and
third dimension of y.

Notice that the statistics of interest (µ, µ∗ and σ) are not stored. They can be printed by the print
method, but to extract numerical values, one has to compute them with the following instructions:

If x$y is a vector:

mu <- apply(x$ee, 2, mean)
mu.star <- apply(x$ee, 2, function(x) mean(abs(x)))
sigma <- apply(x$ee, 2, sd)

If x$y is a matrix:

mu <- apply(x$ee, 3, function(M){
apply(M, 2, mean)

})
mu.star <- apply(abs(x$ee), 3, function(M){
apply(M, 2, mean)

})
sigma <- apply(x$ee, 3, function(M){
apply(M, 2, sd)

})

If x$y is a three-dimensional array:

mu <- sapply(1:dim(x$ee)[4], function(i){
apply(x$ee[, , , i, drop = FALSE], 3, function(M){
apply(M, 2, mean)

})
}, simplify = "array")
mu.star <- sapply(1:dim(x$ee)[4], function(i){
apply(abs(x$ee)[, , , i, drop = FALSE], 3, function(M){
apply(M, 2, mean)

})
}, simplify = "array")
sigma <- sapply(1:dim(x$ee)[4], function(i){
apply(x$ee[, , , i, drop = FALSE], 3, function(M){
apply(M, 2, sd)

})
}, simplify = "array")

It is highly recommended to use the function with the argument scale = TRUE to avoid an uncorrect
interpretation of factors that would have different orders of magnitude.

32 morris

Warning messages

"keeping r’ repetitions out of r" when generating the design of experiments, identical repetitions
are removed, leading to a lower number than requested.

Author(s)

Gilles Pujol, with contributions from Frank Weber (2016)

References

M. D. Morris, 1991, Factorial sampling plans for preliminary computational experiments, Techno-
metrics, 33, 161–174.

F. Campolongo, J. Cariboni and A. Saltelli, 2007, An effective screening design for sensitivity,
Environmental Modelling and Software, 22, 1509–1518.

G. Pujol, 2009, Simplex-based screening designs for estimating metamodels, Reliability Engineer-
ing and System Safety 94, 1156–1160.

See Also

morrisMultOut

Examples

Test case : the non-monotonic function of Morris
x <- morris(model = morris.fun, factors = 20, r = 4,

design = list(type = "oat", levels = 5, grid.jump = 3))
print(x)
plot(x)

library(rgl)
plot3d.morris(x) # (requires the package 'rgl')

Only for demonstration purposes: a model function returning a matrix
morris.fun_matrix <- function(X){

res_vector <- morris.fun(X)
cbind(res_vector, 2 * res_vector)

}
x <- morris(model = morris.fun_matrix, factors = 20, r = 4,

design = list(type = "oat", levels = 5, grid.jump = 3))
plot(x, y_col = 2)
title(main = "y_col = 2")

Also only for demonstration purposes: a model function returning a
three-dimensional array
morris.fun_array <- function(X){

res_vector <- morris.fun(X)
res_matrix <- cbind(res_vector, 2 * res_vector)
array(data = c(res_matrix, 5 * res_matrix),

dim = c(length(res_vector), 2, 2))

morrisMultOut 33

}
x <- morris(model = morris.fun_array, factors = 20, r = 4,

design = list(type = "simplex", scale.factor = 1))
plot(x, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")

morrisMultOut Morris’s Elementary Effects Screening Method for Multidimensional
Outputs

Description

morrisMultOut extend the Morris’s elementary effects screening method (Morris 1991) to model
with multidimensional outputs.

Usage

morrisMultOut(model = NULL, factors, r, design, binf = 0, bsup = 1,
scale = TRUE, ...)

S3 method for class 'morrisMultOut'
tell(x, y = NULL, ...)

Arguments

model NULL or a function returning a outputs a matrix having as columns the model
outputs.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

r either an integer giving the number of repetitions of the design, i.e. the number
of elementary effect computed per factor, or a vector of two integers c(r1, r2)
for the space-filling improvement (Campolongo et al. 2007). In this case, r1 is
the wanted design size, and r2 (> r1) is the size of the (bigger) population in
which is extracted the design (this can throw a warning, see below).

design a list specifying the design type and its parameters:

• type = "oat" for Morris’s OAT design (Morris 1991), with the parameters:
– levels : either an integer specifying the number of levels of the design,

or a vector of integers for different values for each factor.
– grid.jump : either an integer specifying the number of levels that are

increased/decreased for computing the elementary effects, or a vector
of integers for different values for each factor. If not given, it is set to
grid.jump = 1. Notice that this default value of one does not follow
Morris’s recommendation of levels/2.

• type = "simplex" for simplex-based design (Pujol 2009), with the param-
eter:

34 morrisMultOut

– scale.factor : a numeric value, the homothety factor of the (isomet-
ric) simplexes. Edges equal one with a scale factor of one.

binf either an integer, specifying the minimum value for the factors, or a vector for
different values for each factor.

bsup either an integer, specifying the maximum value for the factors, or a vector for
different values for each factor.

scale logical. If TRUE, the input design of experiments is scaled after building the de-
sign and before computing the elementary effects so that all factors vary within
the range [0,1]. For each factor, the scaling is done relatively to its correspond-
ing bsup and binf.

x a list of class "morris" storing the state of the screening study (parameters,
data, estimates).

y a vector of model responses.

... for morrisMultOut: any other arguments for model which are passed unchanged
each time it is called. For plot.morris: arguments to be passed to plot.default.

Details

All the methods available for object of class "morris" are available also for objects of class
"morrisMultOut". See the documentation relative to the function "morris" for more details.

Value

morrisMultOut returns a list of class "c(morrisMultOut, morris)", containing all the input ar-
gument detailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a matrix having as columns the model responses.

ee a vector of aggregated elementary effects.

Author(s)

Filippo Monari

References

Monari F. and P. Strachan, 2017. Characterization of an airflow network model by sensitivity anal-
ysis: parameter screening, fixing, prioritizing and mapping. Journal of Building Performance Sim-
ulation, 2017, 10, 17-36.

See Also

morris

parameterSets 35

Examples

mdl <- function (X) t(atantemp.fun(X))

x = morrisMultOut(model = mdl, factors = 4, r = 50,
design = list(type = "oat", levels = 5, grid.jump = 3), binf = -1, bsup = 5,

scale = FALSE)
print(x)
plot(x)

x = morrisMultOut(model = NULL, factors = 4, r = 50,
design = list(type = "oat", levels = 5, grid.jump = 3), binf = -1, bsup = 5,

scale = FALSE)
Y = mdl(x[['X']])
tell(x, Y)
print(x)
plot(x)

parameterSets Generate parameter sets

Description

Generate parameter sets from given ranges, with chosen sampling scheme

Usage

parameterSets(par.ranges, samples, method = c("sobol", "innergrid", "grid"))

Arguments

par.ranges A named list of minimum and maximum parameter values

samples Number of samples to generate. For the "grid" and "innergrid" method, may
be a vector of number of samples for each parameter.

method the sampling scheme; see Details

Details

Method "sobol" generates uniformly distributed Sobol low discrepancy numbers, using the sobol
function in the randtoolbox package.

Method "grid" generates a grid within the parameter ranges, including its extremes, with number
of points determined by samples

Method "innergrid" generates a grid within the parameter ranges, with edges of the grid offset
from the extremes. The offset is calculated as half of the resolution of the grid diff(par.ranges)/samples/2.

Value

the result is a matrix, with named columns for each parameter in par.ranges. Each row represents
one parameter set.

36 pcc

Author(s)

Joseph Guillaume, based on similar function by Felix Andrews

See Also

delsa, which uses this function

Examples

X.grid <- parameterSets(par.ranges=list(V1=c(1,1000),V2=c(1,4)),
samples=c(10,10),method="grid")

plot(X.grid)

X.innergrid<-parameterSets(par.ranges=list(V1=c(1,1000),V2=c(1,4)),
samples=c(10,10),method="innergrid")

points(X.innergrid,col="red")

library(randtoolbox)
X.sobol<-parameterSets(par.ranges=list(V1=c(1,1000),V2=c(1,4)),

samples=100,method="sobol")
plot(X.sobol)

pcc Partial Correlation Coefficients

Description

pcc computes the Partial Correlation Coefficients (PCC), Semi-Partial Correlation Coefficients
(SPCC), Partial Rank Correlation Coefficients (PRCC) or Semi-Partial Rank Correlation Coeffi-
cients (SPRCC), which are variance-based measures based on linear (resp. monotonic) assump-
tions, in the case of (linearly) correlated factors.

Usage

pcc(X, y, rank = FALSE, semi = FALSE, logistic = FALSE, nboot = 0, conf = 0.95)
S3 method for class 'pcc'
print(x, ...)
S3 method for class 'pcc'
plot(x, ylim = c(-1,1), ...)
S3 method for class 'pcc'
ggplot(data, mapping = aes(), ..., environment

= parent.frame(), ylim = c(-1,1))

pcc 37

Arguments

X a data frame (or object coercible by as.data.frame) containing the design of
experiments (model input variables).

y a vector containing the responses corresponding to the design of experiments
(model output variables).

rank logical. If TRUE, the analysis is done on the ranks.

semi logical. If TRUE, semi-PCC are computed.

logistic logical. If TRUE, the analysis is done via a logistic regression (binomial GLM).

nboot the number of bootstrap replicates.

conf the confidence level of the bootstrap confidence intervals.

x the object returned by pcc.

data the object returned by pcc.

ylim the y-coordinate limits of the plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... arguments to be passed to methods, such as graphical parameters (see par).

Details

Logistic regression model (logistic = TRUE) and rank-based indices (rank = TRUE) are incompat-
ible.

Value

pcc returns a list of class "pcc", containing the following components:

call the matched call.

PCC a data frame containing the estimations of the PCC indices, bias and confidence
intervals (if rank = TRUE and semi = FALSE).

PRCC a data frame containing the estimations of the PRCC indices, bias and confi-
dence intervals (if rank = TRUE and semi = FALSE).

SPCC a data frame containing the estimations of the PCC indices, bias and confidence
intervals (if rank = TRUE and semi = TRUE).

SPRCC a data frame containing the estimations of the PRCC indices, bias and confi-
dence intervals (if rank = TRUE and semi = TRUE).

Author(s)

Gilles Pujol and Bertrand Iooss

38 PLI

References

L. Clouvel, B. Iooss, V. Chabridon, M. Il Idrissi and F. Robin, 2023, An overview of variance-based
importance measures in the linear regression context: comparative analyses and numerical tests,
Preprint. https://hal.science/hal-04102053

B. Iooss, V. Chabridon and V. Thouvenot, Variance-based importance measures for machine learn-
ing model interpretability, Congres lambda-mu23, Saclay, France, 10-13 octobre 2022 https:
//hal.science/hal-03741384

J.W. Johnson and J.M. LeBreton, 2004, History and use of relative importance indices in organiza-
tional research, Organizational Research Methods, 7:238-257.

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

See Also

src, lmg, pmvd

Examples

a 100-sample with X1 ~ U(0.5, 1.5)
X2 ~ U(1.5, 4.5)
X3 ~ U(4.5, 13.5)
library(boot)
n <- 100
X <- data.frame(X1 = runif(n, 0.5, 1.5),

X2 = runif(n, 1.5, 4.5),
X3 = runif(n, 4.5, 13.5))

linear model : Y = X1^2 + X2 + X3
y <- with(X, X1^2 + X2 + X3)

sensitivity analysis
x <- pcc(X, y, nboot = 100)
print(x)
plot(x)

library(ggplot2)
ggplot(x)
ggplot(x, ylim = c(-1.5,1.5))

x <- pcc(X, y, semi = TRUE, nboot = 100)
print(x)
plot(x)

PLI Perturbed-Law based sensitivity Indices (PLI) for failure probability

https://hal.science/hal-04102053
https://hal.science/hal-03741384
https://hal.science/hal-03741384

PLI 39

Description

PLI computes the Perturbed-Law based Indices (PLI), also known as the Density Modification
Based Reliability Sensitivity Indices (DMBRSI), which are robustness indices related to a probabil-
ity of exceedence of a model output (i.e. a failure probability), estimated by a Monte Carlo method.
See Lemaitre et al. (2015).

Usage

PLI(failurepoints,failureprobabilityhat,samplesize,deltasvector,
InputDistributions,type="MOY",samedelta=TRUE)

Arguments

failurepoints a matrix of failure points coordinates, one column per variable.
failureprobabilityhat

the estimation of failure probability P through rough Monte Carlo method.

samplesize the size of the sample used to estimate P. One must have Pchap=dim(failurepoints)[1]/samplesize

deltasvector a vector containing the values of delta for which the indices will be computed.
InputDistributions

a list of list. Each list contains, as a list, the name of the distribution to be used
and the parameters. Implemented cases so far:

• For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaus-
sian, Left Truncated Gumbel. Using Gumbel requires the package evd.

• For a variance perturbation: Gaussian, Uniform.

type a character string in which the user will specify the type of perturbation wanted.
The sense of "deltasvector" varies according to the type of perturbation:

• type can take the value "MOY",in which case deltasvector is a vector of
perturbated means.

• type can take the value "VAR",in which case deltasvector is a vector of
perturbated variances, therefore needs to be positive integers.

samedelta a boolean used with the value "MOY" for type.

• If it is set at TRUE, the mean perturbation will be the same for all the
variables.

• If not, the mean perturbation will be new_mean = mean+sigma*delta where
mean, sigma are parameters defined in InputDistributions and delta is a
value of deltasvector.

Value

PLI returns a list of matrices, containing:

• A matrix where the PLI are stored. Each column corresponds to an input, each line corre-
sponds to a twist of amplitude delta.

• A matrix where their standard deviation are stored.

40 PLI

Author(s)

Paul Lemaitre and Bertrand Iooss

References

C. Gauchy and J. Stenger and R. Sueur and B. Iooss, An information geometry approach for robust-
ness analysis in uncertainty quantification of computer codes, Technometrics, 64:80-91, 2022.

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, Density modification
based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-
1223.

E. Borgonovo and B. Iooss, 2017, Moment independent importance measures and a common ratio-
nale, In: Springer Handbook on UQ, R. Ghanem, D. Higdon and H. Owhadi (Eds).

See Also

PLIquantile, PLIquantile_multivar, PLIsuperquantile, PLIsuperquantile_multivar

Examples

Model: Ishigami function with a treshold at -7
Failure points are those < -7

distributionIshigami = list()
for (i in 1:3){
distributionIshigami[[i]]=list("unif",c(-pi,pi))
distributionIshigami[[i]]$r=("runif")
}

Monte Carlo sampling to obtain failure points

N = 100000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = runif(N,-pi,pi)
T = ishigami.fun(X)
s = sum(as.numeric(T < -7)) # Number of failure
pdefchap = s/N # Failure probability
ptsdef = X[T < -7,] # Failure points

sensitivity indices with perturbation of the mean

v_delta = seq(-3,3,1/20)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="MOY",
samedelta=TRUE)
BIshm = Toto[[1]]
SIshm = Toto[[2]]

par(mfrow=c(1,1),mar=c(4,5,1,1))
plot(v_delta,BIshm[,2],ylim=c(-4,4),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)

PLI 41

points(v_delta,BIshm[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshm[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshm[,2]+1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,2]-1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,1]+1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,1]-1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,3]+1.96*SIshm[,3],col="red")
lines(v_delta,BIshm[,3]-1.96*SIshm[,3],col="red")
abline(h=0,lty=2)
legend(0,3,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

sensitivity indices with perturbation of the variance

v_delta = seq(1,5,1/4) # user parameter. (the true variance is 3.29)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="VAR",
samedelta=TRUE)
BIshv=Toto[[1]]
SIshv=Toto[[2]]

par(mfrow=c(2,1),mar=c(1,5,1,1)+0.1)
plot(v_delta,BIshv[,2],ylim=c(-.5,.5),xlab=expression(V_f),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red")
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red")

par(mar=c(4,5.1,1.1,1.1))
plot(v_delta,BIshv[,2],ylim=c(-30,.7),xlab=expression(V[f]),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red")
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red")
legend(2.5,-10,legend=c("X1","X2","X3"),col=c("darkgreen","black","red"),
pch=c(15,19,17),cex=1.5)

##
Example with an inverse probability transform
(to obtain Gaussian inputs from Uniform ones)

Monte Carlo sampling (the inputs are Uniform)

42 PLI

N = 100000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = runif(N,-pi,pi)
T = ishigami.fun(X)
s = sum(as.numeric(T < -7)) # Number of failure
pdefchap = s/N # Failure probability

Empirical transform (applied on the sample)

Xn <- matrix(0,nrow=N,ncol=3)
for (i in 1:3){

ecdfx <- ecdf(X[,i])
q <- ecdfx(X[,i])
Xn[,i] <- qnorm(q) # Gaussian anamorphosis
infinite max values => putting the symetrical values of min values
Xn[which(Xn[,i]==Inf),i] <- - Xn[which.min(Xn[,i]),i]
}

Visualization of a perturbed density (the one of X1 perturbed on the mean)
delta_mean_gauss <- 1 # perturbed value on the mean of the Gaussian transform
Xtr <- quantile(ecdfx,pnorm(Xn[,1] + delta_mean_gauss)) # backtransform

par(mfrow=c(1,1))
plot(density(Xtr), col="red") ; lines(density(X[,1]))

sensitivity indices with perturbation of the mean

distributionIshigami = list()
for (i in 1:3){
distributionIshigami[[i]]=list("norm",c(0,1))
distributionIshigami[[i]]$r=("rnorm")
}

ptsdef = Xn[T < -7,] # Failure points # failure points with Gaussian distrib.

v_delta = seq(-1.5,1.5,1/20)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="MOY",
samedelta=TRUE)
BIshm = Toto[[1]]
SIshm = Toto[[2]]

par(mfrow=c(1,1),mar=c(4,5,1,1))
plot(v_delta,BIshm[,2],ylim=c(-4,4),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshm[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshm[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshm[,2]+1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,2]-1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,1]+1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,1]-1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,3]+1.96*SIshm[,3],col="red")
lines(v_delta,BIshm[,3]-1.96*SIshm[,3],col="red")
abline(h=0,lty=2)
legend(0,3,legend=c("X1","X2","X3"),

PLIquantile 43

col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

PLIquantile Perturbed-Law based sensitivity Indices (PLI) for quantile

Description

PLIquantile computes the Perturbed-Law based Indices (PLI) for quantile, which are robustness
indices related to a quantile of a model output, estimated by a Monte Carlo method, See Sueur et
al. (2017) and Iooss et al. (2020).

Usage

PLIquantile(order,x,y,deltasvector,InputDistributions,type="MOY",samedelta=TRUE,
percentage=TRUE,nboot=0,conf=0.95,bootsample=TRUE)

Arguments

order the order of the quantile to estimate.

x the matrix of simulation points coordinates, one column per variable.

y the vector of model outputs.

deltasvector a vector containing the values of delta for which the indices will be computed.
InputDistributions

a list of list. Each list contains, as a list, the name of the distribution to be used
and the parameters. Implemented cases so far:

• For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaus-
sian, Left Truncated Gumbel. Using Gumbel requires the package evd.

• For a variance perturbation: Gaussian, Uniform.

type a character string in which the user will specify the type of perturbation wanted.
The sense of "deltasvector" varies according to the type of perturbation:

• type can take the value "MOY",in which case deltasvector is a vector of
perturbated means.

• type can take the value "VAR",in which case deltasvector is a vector of
perturbated variances, therefore needs to be positive integers.

samedelta a boolean used with the value "MOY" for type.

• If it is set at TRUE, the mean perturbation will be the same for all the
variables.

• If not, the mean perturbation will be new_mean = mean+sigma*delta where
mean, sigma are parameters defined in InputDistributions and delta is a
value of deltasvector.

percentage a boolean that defines the formula used for the PLI.

44 PLIquantile

• If it is set at FALSE, the initially proposed formula is used (see Sueur et al.,
2017).

• If not (set as TRUE), the PLI is given in percentage of variation of the
quantile (see Iooss et al., 2020).

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

bootsample If TRUE, the uncertainty about the original quantile estimation is taken into ac-
count in the PLI confidence intervals (see Iooss et al., 2021). If FALSE, standard
confidence intervals are computed for the PLI. It mainly changes the CI at small
delta values.

Value

PLIquantile returns a list of matrices (each column corresponds to an input, each line corresponds
to a twist of amplitude delta) containing the following components:

PLI the PLI.

PLICIinf the bootstrap lower confidence interval values of the PLI.

PLICIsup the bootstrap upper confidence interval values of the PLI.

quantile the perturbed quantile.

quantileCIinf the bootstrap lower confidence interval values of the perturbed quantile.

quantileCIsup the bootstrap upper confidence interval values of the perturbed quantile.

Author(s)

Paul Lemaitre, Bertrand Iooss, Thibault Delage and Roman Sueur

References

T. Delage, R. Sueur and B. Iooss, 2018, Robustness analysis of epistemic uncertainties propaga-
tion studies in LOCA assessment thermal-hydraulic model, ANS Best Estimate Plus Uncertainty
International Conference (BEPU 2018), Lucca, Italy, May 13-19, 2018.

C. Gauchy, J. Stenger, R. Sueur and B. Iooss, 2022, An information geometry approach for robust-
ness analysis in uncertainty quantification of computer codes, Technometrics, 64:80-91.

B. Iooss, V. Verges and V. Larget, 2022, BEPU robustness analysis via perturbed law-based sensi-
tivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, 236:855-865.

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density mod-
ification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation,
85:1200-1223.

R. Sueur, N. Bousquet, B. Iooss and J. Bect, 2016, Perturbed-Law based sensitivity Indices for
sensitivity analysis in structural reliability, Proceedings of the SAMO 2016 Conference, Reunion
Island, France, December 2016.

R. Sueur, B. Iooss and T. Delage, 2017, Sensitivity analysis using perturbed-law based indices for
quantiles and application to an industrial case, 10th International Conference on Mathematical
Methods in Reliability (MMR 2017), Grenoble, France, July 2017.

PLIquantile 45

See Also

PLI, PLIsuperquantile PLIquantile_multivar, PLIsuperquantile_multivar

Examples

Model: 3D function

distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))

Monte Carlo sampling

N = 5000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = rnorm(N,0,1)

Y = 2 * X[,1] + X[,2] + X[,3]/2
alpha <- 0.95 # quantile order

q95 = quantile(Y,alpha)

nboot=20 # put nboot=200 for consistency

sensitivity indices with perturbation of the mean

v_delta = seq(-1,1,1/10)
toto = PLIquantile(alpha,X,Y,deltasvector=v_delta,

InputDistributions=distribution,type="MOY",samedelta=TRUE,
percentage=FALSE,nboot=nboot)

Plotting the PLI

par(mar=c(4,5,1,1))
plot(v_delta,toto$PLI[,2],ylim=c(-1.5,1.5),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(0.8,1.5,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

Plotting the perturbed quantiles

par(mar=c(4,5,1,1))
plot(v_delta,toto$quantile[,2],ylim=c(1.5,6.5),xlab=expression(delta),

46 PLIquantile

ylab=expression(hat(q[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$quantile[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$quantile[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$quantileCIinf[,2],col="black")
lines(v_delta,toto$quantileCIsup[,2],col="black")
lines(v_delta,toto$quantileCIinf[,1],col="darkgreen")
lines(v_delta,toto$quantileCIsup[,1],col="darkgreen")
lines(v_delta,toto$quantileCIinf[,3],col="red")
lines(v_delta,toto$quantileCIsup[,3],col="red")
abline(h=q95,lty=2)
legend(0.5,2.4,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

###
Plotting the PLI in percentage with refined confidence intervals

toto = PLIquantile(alpha,X,Y,deltasvector=v_delta,
InputDistributions=distribution,type="MOY",samedelta=TRUE,
percentage=TRUE,nboot=nboot,bootsample=FALSE)

par(mar=c(4,5,1,1))
plot(v_delta,toto$PLI[,2],ylim=c(-0.6,0.6),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(0,0.6,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

###
another visualization by using the plotCI() fct
(from plotrix package) for the CI plotting(from Vanessa Verges)

library(plotrix)
parameters = list(colors=c("darkgreen","black","red"),

symbols=c(15,19,17),overlay=c(FALSE,TRUE,TRUE))
par(mar=c(4,5,1,1),xpd=TRUE)
for (i in 1:3){

plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],
cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
add=parameters$overlay[i], xlab="", ylab="")

}
title(xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),

main=bquote("PLI-quantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
") of Y="~2*X[1] + X[2] + X[3]/2))

abline(h=0,lty=2)
legend("topleft",legend=c("X1","X2","X3"),col=parameters$colors,

PLIquantile_multivar 47

pch=parameters$symbols,cex=1.5)

PLIquantile_multivar Perturbed-Law based sensitivity Indices (PLI) for quantile and simul-
taneous perturbations of 2 inputs

Description

PLIquantile_multivar computes the Perturbed-Law based Indices (PLI) for quantile and simultane-
ous perturbations of the means of 2 inputs, estimated by a Monte Carlo method.

Usage

PLIquantile_multivar(order,x,y,inputs,deltasvector,InputDistributions,samedelta=TRUE,
percentage=TRUE,nboot=0,conf=0.95,bootsample=TRUE)

Arguments

order the order of the quantile to estimate.

x the matrix of simulation points coordinates, one column per variable.

y the vector of model outputs.

inputs the vector of the two inputs’ indices for which the indices will be computed.

deltasvector a vector containing the values of the perturbed means for which the indices will
be computed. Warning: if samedelta=FALSE, deltasvector has to be the vector
of deltas (mean perturbations)

InputDistributions

a list of list. Each list contains, as a list, the name of the distribution to be
used and the parameters. Implemented cases so far (for a mean perturbation):
Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel.
Using Gumbel requires the package evd.

samedelta a boolean used with the value "MOY" for type.

• If it is set at TRUE, the mean perturbation will be the same for all the
variables.

• If not, the mean perturbation will be new_mean = mean+sigma*delta where
mean, sigma are parameters defined in InputDistributions and delta is a
value of deltasvector.

percentage a boolean that defines the formula used for the PLI.

• If it is set at FALSE, the initially proposed formula is used (see Sueur et al.,
2017).

• If not (set as TRUE), the PLI is given in percentage of variation of the
quantile (see Iooss et al., 2021).

48 PLIquantile_multivar

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

bootsample If TRUE, the uncertainty about the original quantile estimation is taken into ac-
count in the PLI confidence intervals (see Iooss et al., 2021). If FALSE, standard
confidence intervals are computed for the PLI. It mainly changes the CI at small
delta values.

Details

This function does not allow perturbations on the variance of the inputs’ distributions.

Value

PLIquantile_multivar returns a list of matrices (delta twist of input 1 (in rows) vs. delta twist of
input 2 (in columns)) containing the following components:

PLI the PLI.

PLICIinf the bootstrap lower confidence interval values of the PLI.

PLICIsup the bootstrap upper confidence interval values of the PLI.

quantile the perturbed quantile.

quantileCIinf the bootstrap lower confidence interval values of the perturbed quantile.

quantileCIsup the bootstrap upper confidence interval values of the perturbed quantile.

Author(s)

Bertrand Iooss

References

T. Delage, R. Sueur and B. Iooss, 2018, Robustness analysis of epistemic uncertainties propaga-
tion studies in LOCA assessment thermal-hydraulic model, ANS Best Estimate Plus Uncertainty
International Conference (BEPU 2018), Lucca, Italy, May 13-19, 2018.

B. Iooss, V. Verges and V. Larget, 2022, BEPU robustness analysis via perturbed law-based sensi-
tivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, 236:855-865.

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density mod-
ification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation,
85:1200-1223.

R. Sueur, N. Bousquet, B. Iooss and J. Bect, 2016, Perturbed-Law based sensitivity Indices for
sensitivity analysis in structural reliability, Proceedings of the SAMO 2016 Conference, Reunion
Island, France, December 2016.

R. Sueur, B. Iooss and T. Delage, 2017, Sensitivity analysis using perturbed-law based indices for
quantiles and application to an industrial case, 10th International Conference on Mathematical
Methods in Reliability (MMR 2017), Grenoble, France, July 2017.

PLIquantile_multivar 49

See Also

PLI, PLIquantile, PLIsuperquantile, PLIsuperquantile_multivar

Examples

Model: 3D function

distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))
N = 5000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = rnorm(N,0,1)
Y = 2 * X[,1] + X[,2] + X[,3]/2
alpha <- 0.95
nboot <- 20 # put nboot=200 for consistency

q95 = quantile(Y,alpha)
v_delta = seq(-1,1,1/10)
toto12 = PLIquantile_multivar(alpha,X,Y,c(1,2),deltasvector=v_delta,

InputDistributions=distribution,samedelta=TRUE)
toto = PLIquantile(alpha,X,Y,deltasvector=v_delta,InputDistributions=distribution,

type="MOY",samedelta=TRUE,nboot=0)

par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),,ylim=c(-1,1),xlab=expression(delta),

ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,2],col="black",pch=19,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
abline(h=0,lty=2)
legend(-1,1.,legend=c("X1","X2","X3","X1X2"),col=c("darkgreen","black","red","blue"),

pch=c(15,19,17,16),cex=1.5)

with bootstrap

v_delta = seq(-1,1,2/10)

toto12 = PLIquantile_multivar(alpha,X,Y,c(1,2),deltasvector=v_delta,
InputDistributions=distribution,samedelta=TRUE,nboot=nboot,bootsample=FALSE)

toto = PLIquantile(alpha,X,Y,deltasvector=v_delta,InputDistributions=distribution,
type="MOY",samedelta=TRUE,nboot=nboot,bootsample=FALSE)

par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),ylim=c(-1,1),xlab=expression(delta),

ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,2],col="black",pch=19,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,diag(toto12$PLICIinf),col="blue")
lines(v_delta,diag(toto12$PLICIsup),col="blue")
lines(v_delta,toto$PLICIinf[,2],col="black")

50 PLIsuperquantile

lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(-1,1,legend=c("X1","X2","X3","X1X2"),col=c("darkgreen","black","red","blue"),

pch=c(15,19,17,16),cex=1.5)

###
another visualizations by using the plotrix,
viridisLite, lattice and grid packages (from Vanessa Verges)

library(plotrix)

parameters = list(colors=c("darkgreen","black","red"),symbols=c(15,19,17))
par(mar=c(4,5,1,1),xpd=TRUE)
plotCI(v_delta,diag(toto12$PLI),ui=diag(toto12$PLICIsup),li=diag(toto12$PLICIinf),

xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),
main=bquote("PLI-quantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
") on "~X[1]~"and"~X[2]~"of Y="~2*X[1] + X[2] + X[3]/2),
cex=1.5,col="blue",pch=16)

for (i in 1:3){
plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],

cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
add=TRUE)

}
abline(h=0,lty=2)
legend("topleft",legend=c("X1","X2","X3","X1X2"),

col=c(parameters$colors,"blue"),pch=c(parameters$symbols,16),cex=1.5)

Visu of all the PLIs (at any paired combinations of deltas)

library(viridisLite)
library(lattice)
library(grid)

colnames(toto12$PLI) = round(v_delta,2)
rownames(toto12$PLI) = round(v_delta,2)
coul = viridis(100)
levelplot(toto12$PLI, col.regions = coul, xlab=bquote(delta[X~.(1)]),

ylab=bquote(delta[X~.(2)]), main=bquote(hat(PLI)[quantile[~X[1]~X[2]]]))

PLIsuperquantile Perturbed-Law based sensitivity Indices (PLI) for superquantile

PLIsuperquantile 51

Description

PLIsuperquantile computes the Perturbed-Law based Indices (PLI) for superquantile, which are
robustness indices related to a superquantile of a model output, estimated by a Monte Carlo method.
See Iooss et al. (2020).

Usage

PLIsuperquantile(order,x,y,deltasvector,InputDistributions,type="MOY",
samedelta=TRUE, percentage=TRUE,nboot=0,conf=0.95,bootsample=TRUE,bias=TRUE)

Arguments

order the order of the superquantile to estimate.
x the matrix of simulation points coordinates, one column per variable.
y the vector of model outputs.
deltasvector a vector containing the values of delta for which the indices will be computed.
InputDistributions

a list of list. Each list contains, as a list, the name of the distribution to be used
and the parameters. Implemented cases so far:

• For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaus-
sian, Left Truncated Gumbel. Using Gumbel requires the package evd.

• For a variance perturbation: Gaussian, Uniform.
type a character string in which the user will specify the type of perturbation wanted.

The sense of "deltasvector" varies according to the type of perturbation:
• type can take the value "MOY",in which case deltasvector is a vector of

perturbated means.
• type can take the value "VAR",in which case deltasvector is a vector of

perturbated variances, therefore needs to be positive integers.
samedelta a boolean used with the value "MOY" for type.

• If it is set at TRUE, the mean perturbation will be the same for all the
variables.

• If not, the mean perturbation will be new_mean = mean+sigma*delta where
mean, sigma are parameters defined in InputDistributions and delta is a
value of deltasvector.

percentage a boolean that defines the formula used for the PLI.
• If it is set at FALSE, the classical formula used in the bibliographical refer-

ences is used.
• If not (set as TRUE), the PLI is given in percentage of variation of the

superquantile (even if it is negative).
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
bootsample If TRUE, the uncertainty about the original quantile estimation is taken into ac-

count in the PLI confidence intervals (see Iooss et al., 2020). If FALSE, standard
confidence intervals are computed for the PLI. It mainly changes the CI at small
delta values.

52 PLIsuperquantile

bias defines the version of PLI-superquantile:

• If it is set at "TRUE", it gives the mean of outputs above the perturbed
quantile (alternative formula)

• If it is set at "FALSE", it gives the mean of perturbed outputs above the
perturbed quantile (original formula)

Value

PLIsuperquantile returns a list of matrices (each column corresponds to an input, each line cor-
responds to a twist of amplitude delta) containing the following components:

PLI the PLI.

PLICIinf the bootstrap lower confidence interval values of the PLI.

PLICIsup the bootstrap upper confidence interval values of the PLI.

superquantile the perturbed superquantile.
superquantileCIinf

the bootstrap lower confidence interval values of the perturbed superquantile.
superquantileCIsup

the bootstrap upper confidence interval values of the perturbed superquantile.

Author(s)

Bertrand Iooss

References

B. Iooss, V. Verges and V. Larget, 2022, BEPU robustness analysis via perturbed law-based sensi-
tivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, 236:855-865.

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density mod-
ification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation,
85:1200-1223.

See Also

PLI, PLIquantile, PLIsuperquantile_multivar

Examples

Model: 3D function

distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))

Monte Carlo sampling

N = 10000
X = matrix(0,ncol=3,nrow=N)

PLIsuperquantile 53

for(i in 1:3) X[,i] = rnorm(N,0,1)

Y = 2 * X[,1] + X[,2] + X[,3]/2
alpha <- 0.95

q95 = quantile(Y,alpha)
sq95a <- mean(Y*(Y>q95)/(1-alpha)) ; sq95b <- mean(Y[Y>q95])

nboot=20 # change to nboot=200 for consistency

sensitivity indices with perturbation of the mean

v_delta = seq(-1,1,1/10)
toto = PLIsuperquantile(alpha,X,Y,deltasvector=v_delta,

InputDistributions=distribution,type="MOY",samedelta=TRUE,
percentage=FALSE,nboot=nboot,bias=TRUE)

Plotting the PLI
par(mar=c(4,5,1,1))

plot(v_delta,toto$PLI[,2],ylim=c(-0.5,0.5),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(-1,0.5,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

Plotting the perturbed superquantiles
par(mar=c(4,5,1,1))

plot(v_delta,toto$superquantile[,2],ylim=c(3,7),xlab=expression(delta),
ylab=expression(hat(q[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$superquantile[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$superquantile[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$superquantileCIinf[,2],col="black")
lines(v_delta,toto$superquantileCIsup[,2],col="black")
lines(v_delta,toto$superquantileCIinf[,1],col="darkgreen")
lines(v_delta,toto$superquantileCIsup[,1],col="darkgreen")
lines(v_delta,toto$superquantileCIinf[,3],col="red")
lines(v_delta,toto$superquantileCIsup[,3],col="red")
abline(h=q95,lty=2)
legend(-1,7,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

Plotting the unbiased PLI in percentage with refined confidence intervals
toto = PLIsuperquantile(alpha,X,Y,deltasvector=v_delta,

InputDistributions=distribution,type="MOY",samedelta=TRUE,percentage=TRUE,
nboot=nboot,bootsample=FALSE,bias=FALSE)

54 PLIsuperquantile_multivar

par(mar=c(4,5,1,1))
plot(v_delta,toto$PLI[,2],ylim=c(-0.4,0.5),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(-1,0.5,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

##
another visualization by using the plotCI() fct
(from plotrix package) for the CI plotting (from Vanessa Verges)

library(plotrix)
parameters = list(colors=c("darkgreen","black","red"),symbols=c(15,19,17),

overlay=c(FALSE,TRUE,TRUE))
par(mar=c(4,5,1,1),xpd=TRUE)
for (i in 1:3){
plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],

cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
add=parameters$overlay[i], xlab="", ylab="")

}
title(xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),

main=bquote("PLI-superquantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
") of Y="~2*X[1] + X[2] + X[3]/2))

abline(h=0,lty=2)
legend("topleft",legend=c("X1","X2","X3"),

col=parameters$colors,pch=parameters$symbols,cex=1.5)

PLIsuperquantile_multivar

Perturbed-Law based sensitivity Indices (PLI) for superquantile and
simultaneous perturbations of 2 inputs

Description

PLIquantile_multivar computes the Perturbed-Law based Indices (PLI) for superquantile and si-
multaneous perturbations of the means of 2 inputs, estimated by a Monte Carlo method.

PLIsuperquantile_multivar 55

Usage

PLIsuperquantile_multivar(order,x,y,inputs,deltasvector,InputDistributions,
samedelta=TRUE, percentage=TRUE,nboot=0,conf=0.95,bootsample=TRUE,bias=TRUE)

Arguments

order the order of the quantile to estimate.

x the matrix of simulation points coordinates, one column per variable.

y the vector of model outputs.

inputs the vector of the two inputs’ indices for which the indices will be computed.

deltasvector a vector containing the values of the perturbed means for which the indices will
be computed. Warning: if samedelta=FALSE, deltasvector has to be the vector
of deltas (mean perturbations)

InputDistributions

a list of list. Each list contains, as a list, the name of the distribution to be
used and the parameters. Implemented cases so far (for a mean perturbation):
Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel.
Using Gumbel requires the package evd.

samedelta a boolean used with the value "MOY" for type.

• If it is set at TRUE, the mean perturbation will be the same for all the
variables.

• If not, the mean perturbation will be new_mean = mean+sigma*delta where
mean, sigma are parameters defined in InputDistributions and delta is a
value of deltasvector.

percentage a boolean that defines the formula used for the PLI.

• If it is set at FALSE, the initially proposed formula is used (see Sueur et al.,
2017).

• If not (set as TRUE), the PLI is given in percentage of variation of the
superquantile (see Iooss et al., 2021).

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

bootsample If TRUE, the uncertainty about the original quantile estimation is taken into ac-
count in the PLI confidence intervals (see Iooss et al., 2021). If FALSE, standard
confidence intervals are computed for the PLI. It mainly changes the CI at small
delta values.

bias defines the version of PLI-superquantile:

• If it is set at "TRUE", it gives the mean of outputs above the perturbed
quantile (alternative formula)

• If it is set at "FALSE", it gives the mean of perturbed outputs above the
perturbed quantile (original formula)

Details

This function does not allow perturbations on the variance of the inputs’ distributions.

56 PLIsuperquantile_multivar

Value

PLIsuperquantile_multivar returns a list of matrices (delta twist of input 1 (in rows) vs. delta
twist of input 2 (in columns)) containing the following components:

PLI the PLI.

PLICIinf the bootstrap lower confidence interval values of the PLI.

PLICIsup the bootstrap upper confidence interval values of the PLI.

quantile the perturbed quantile.

quantileCIinf the bootstrap lower confidence interval values of the perturbed superquantile.

quantileCIsup the bootstrap upper confidence interval values of the perturbed superquantile.

Author(s)

Bertrand Iooss

References

T. Delage, R. Sueur and B. Iooss, 2018, Robustness analysis of epistemic uncertainties propaga-
tion studies in LOCA assessment thermal-hydraulic model, ANS Best Estimate Plus Uncertainty
International Conference (BEPU 2018), Lucca, Italy, May 13-19, 2018.

B. Iooss, V. Verges and V. Larget, 2022, BEPU robustness analysis via perturbed law-based sensi-
tivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, 236:855-865.

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density mod-
ification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation,
85:1200-1223.

R. Sueur, N. Bousquet, B. Iooss and J. Bect, 2016, Perturbed-Law based sensitivity Indices for
sensitivity analysis in structural reliability, Proceedings of the SAMO 2016 Conference, Reunion
Island, France, December 2016.

R. Sueur, B. Iooss and T. Delage, 2017, Sensitivity analysis using perturbed-law based indices for
quantiles and application to an industrial case, 10th International Conference on Mathematical
Methods in Reliability (MMR 2017), Grenoble, France, July 2017.

See Also

PLI, PLIquantile, PLIsuperquantile, PLIquantile_multivar

Examples

Model: 3D function

distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))
N = 10000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = rnorm(N,0,1)

PLIsuperquantile_multivar 57

Y = 2 * X[,1] + X[,2] + X[,3]/2
alpha <- 0.95
nboot <- 20 # put nboot=200 for consistency

q95 = quantile(Y,alpha)
sq95a <- mean(Y*(Y>q95)/(1-alpha)) ; sq95b <- mean(Y[Y>q95])

v_delta = seq(-1,1,1/10)
toto12 = PLIsuperquantile_multivar(alpha,X,Y,c(1,2),deltasvector=v_delta,

InputDistributions=distribution,samedelta=TRUE,bias=FALSE)
toto = PLIsuperquantile(alpha,X,Y,deltasvector=v_delta,InputDistributions=distribution,

type="MOY",samedelta=TRUE,nboot=0,bias=FALSE)

par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),,ylim=c(-1,1),xlab=expression(delta),

ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,2],col="black",pch=19,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
abline(h=0,lty=2)
legend(-1,1.,legend=c("X1","X2","X3","X1X2"),col=c("darkgreen","black","red","blue"),

pch=c(15,19,17,16),cex=1.5)

with bootstrap (put in comment because too long for the CRAN tests)

v_delta = seq(-1,1,2/10)

toto12 = PLIsuperquantile_multivar(alpha,X,Y,c(1,2),deltasvector=v_delta,
InputDistributions=distribution,samedelta=TRUE,nboot=nboot,bootsample=FALSE,bias=FALSE)

toto = PLIsuperquantile(alpha,X,Y,deltasvector=v_delta,InputDistributions=distribution,
type="MOY",samedelta=TRUE,nboot=nboot,bootsample=FALSE,bias=FALSE)

par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),ylim=c(-1,1),xlab=expression(delta),

ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,2],col="black",pch=19,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,diag(toto12$PLICIinf),col="blue")
lines(v_delta,diag(toto12$PLICIsup),col="blue")
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(-1,1,legend=c("X1","X2","X3","X1X2"),col=c("darkgreen","black","red","blue"),

pch=c(15,19,17,16),cex=1.5)

###
another visualizations by using the plotrix,
viridisLite, lattice and grid packages (from Vanessa Verges)

58 plot.support

library(plotrix)
parameters = list(colors=c("darkgreen","black","red"),symbols=c(15,19,17))
par(mar=c(4,5,1,1),xpd=TRUE)
plotCI(v_delta,diag(toto12$PLI),ui=diag(toto12$PLICIsup),li=diag(toto12$PLICIinf),

xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),
main=bquote("PLI-superquantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
") on "~X[1]~"and"~X[2]~"of Y="~2*X[1] + X[2] + X[3]/2),
cex=1.5,col="blue",pch=16)

for (i in 1:3){
plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],

cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
add=TRUE)

}
abline(h=0,lty=2)
legend("topleft",legend=c("X1","X2","X3","X1X2"),

col=c(parameters$colors,"blue"),pch=c(parameters$symbols,16),cex=1.5)

Visu of all the PLIs (at any paired combinations of deltas)

library(viridisLite)
library(lattice)
library(grid)

colnames(toto12$PLI) = round(v_delta,2)
rownames(toto12$PLI) = round(v_delta,2)
coul = viridis(100)
levelplot(toto12$PLI,col.regions=coul,main=bquote(hat(PLI)[superquantile[~X[1]~X[2]]]),

xlab=bquote(delta[X~.(1)]),ylab=bquote(delta[X~.(2)]))

plot.support Support index functions: Measuring the effect of input variables over
their support

Description

Methods to plot the normalized support index functions (Fruth et al., 2016).

Usage

S3 method for class 'support'
plot(x, i = 1:ncol(x$X),

xprob = FALSE, p = NULL, p.arg = NULL,
ylim = NULL, col = 1:3, lty = 1:3, lwd = c(2,2,1), cex = 1, ...)

S3 method for class 'support'
scatterplot(x, i = 1:ncol(x$X),

xprob = FALSE, p = NULL, p.arg = NULL,
cex = 1, cex.lab = 1, ...)

plot.support 59

Arguments

x an object of class support.

i an optional vector of integers indicating the subset of input variables X_i for
plotting. Default is the entire set of input variables.

xprob an optional boolean indicating whether the inputs should be plotted in probabil-
ity scale.

p ,

p.arg list of probability names and parameters for the input distribution.

ylim ,

col ,

lty ,

lwd ,

cex ,

cex.lab usual graphical parameters.

... additional graphical parameters to be passed to scatterplot method (ggMarginal
function).

Details

If xprob = TRUE, the input variable X_i is plotted in probability scale according to the informations
provided in the arguments p, p.arg: The x-axis is thus F(x), where F is the cdf of X_i. If these
ones are not provided, the empirical distribution is used for rescaling: The x-axis is thus Fn(x),
where Fn is the empirical cdf of X_i.

Legend details:

zeta*T : normalized total support index function

zeta* : normalized 1st-order support index function

nu* : normalized DGSM

Notice that the sum of (normalized) DGSM (nu*) over all input variables is equal to 1. Furthermore,
the expectation of the total support index function (zeta*T) is equal to the (normalized) DGSM
(nu*).

Author(s)

O. Roustant

See Also

Estimation of support index functions: support

60 pme_knn

pme_knn Data-given proportional marginal effects estimation via nearest-
neighbors procedure

Description

pme_knn computes the proportional marginal effects (PME), from Herin et al. (2024) via a nearest
neighbor estimation. Parallelized computations are possible to accelerate the estimation process.
It can be used with categorical inputs (which are transformed with one-hot encoding before com-
puting the nearest-neighbors), dependent inputs and multiple outputs. For large sample sizes, the
nearest neighbour algorithm can be significantly accelerated by using approximate nearest neigh-
bour search.

Usage

pme_knn(model=NULL, X, method = "knn", tol = NULL, marg = T, n.knn = 2,
n.limit = 2000, noise = F, rescale = F, nboot = NULL,
boot.level = 0.8, conf=0.95, parl=NULL, ...)

S3 method for class 'pme_knn'
tell(x, y, ...)
S3 method for class 'pme_knn'
print(x, ...)
S3 method for class 'pme_knn'
plot(x, ylim = c(0,1), ...)
S3 method for class 'pme_knn'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

model a function defining the model to analyze, taking X as an argument.

X a matrix or data frame containing the observed inputs.

method the algorithm to be used for estimation, either "rank" or "knn", see details. De-
fault is method="knn".

tol tolerance under which an input is considered as being a zero input. See details.

marg whether to chose the closed Sobol’ (FALSE) or total Sobol’ (TRUE) indices as
value functions.

n.knn the number of nearest neighbours used for estimation.

n.limit sample size limit above which approximate nearest neighbour search is acti-
vated.

noise a logical which is TRUE if the model or the output sample is noisy. See details.

rescale a logical indicating if continuous inputs must be rescaled before distance compu-
tations. If TRUE, continuous inputs are first whitened with the ZCA-cor whiten-
ing procedure (cf. whiten() function in package whitening). If the inputs are

pme_knn 61

independent, this first step will have a very limited impact. Then, the resulting
whitened inputs are individually modified via a copula transform such that each
input has the same scale.

nboot the number of bootstrap resamples for the bootstrap estimate of confidence in-
tervals. See details.

boot.level a numeric between 0 and 1 for the proportion of the bootstrap sample size.

conf the confidence level of the bootstrap confidence intervals.

parl number of cores on which to parallelize the computation. If NULL, then no par-
allelization is done.

x the object returned by pme_knn.

data the object returned by pme_knn.

y a numeric univariate vector containing the observed outputs.

ylim the y-coordinate limits for plotting.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... additional arguments to be passed to model, or to the methods, such as graphical
parameters (see par).

Details

For method="rank", the estimator is defined in Gamboa et al. (2020) following Chatterjee (2019).For
first-order indices it is based on an input ranking (same algorithm as in sobolrank) while for higher
orders, it uses an approximate heuristic solution of the traveling salesman problem applied to the
input sample distances (cf. TSP() function in package TSP). For method="knn", ranking and TSP
are replaced by a nearest neighbour search as proposed in Broto et al. (2020) and in Azadkia &
Chatterjee (2020) for a similar coefficient.

The computation is done using the subset procedure, defined in Broto, Bachoc and Depecker (2020),
that is computing all the Sobol’ closed indices for all possible sub-models first, and then computing
the proportional values recursively, as detailed in Feldman (2005), but using an extension to non
strictly positive games (Herin et al., 2024).

Since boostrap creates ties which are not accounted for in the algorithm, confidence intervals are
obtained by sampling without replacement with a proportion of the total sample size boot.level,
drawn uniformly.

If the outputs are noisy, the argument noise can be used: it only has an impact on the estimation of
one specific sensitivity index, namely V ar(E(Y |X1, . . . , Xp))/V ar(Y). If there is no noise this
index is equal to 1, while in the presence of noise it must be estimated.

The distance used for subsets with mixed inputs (continuous and categorical) is the Euclidean dis-
tance, thanks to a one-hot encoding of categorical inputs.

If too many cores for the machine are passed on to the parl argument, the chosen number of cores
is defaulted to the available cores minus one.

If marg = TRUE (default), the chosen value function to compute the proportional values are the total
Sobol’ indices (dual of the underlying cooperative game). If marg = FALSE, then the closed Sobol’
indices are used instead. Differences may appear between the two.

62 pme_knn

Zero inputs are defined by the tol argument. If null, then inputs with:

ST
{i}) = 0

are considered as zero input in the detection of spurious variables. If provided, zero inputs are
detected when:

ST
{i} ≤ tol

Value

pme_knn returns a list of class "pme_knn":

call the matched call.

PME the estimations of the PME indices.

VE the estimations of the closed Sobol’ indices for all possible sub-models.

indices list of all subsets corresponding to the structure of VE.

method which estimation method has been used.

conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap
(if nboot>0).

X the observed covariates.

y the observed outcomes.

n.knn value of the n.knn argument.

rescale wheter the design matrix has been rescaled.

n.limit value of the n.limit argument.

boot.level value of the boot.level argument.

noise wheter the PME must sum up to one or not.

boot logical, wheter bootstrap confidence interval estimates have been performed.

nboot value of the nboot argument.

parl value of the parl argument.

conf value of the conf argument.

marg value of the marg argument.

tol value of the tol argument.

Author(s)

Marouane Il Idrissi, Margot Herin

References

Azadkia M., Chatterjee S., 2021), A simple measure of conditional dependence, Ann. Statist.
49(6):3070-3102.

Chatterjee, S., 2021, A new coefficient of correlation, Journal of the American Statistical Associa-
tion, 116:2009-2022.

pme_knn 63

Gamboa, F., Gremaud, P., Klein, T., & Lagnoux, A., 2022, Global Sensitivity Analysis: a novel
generation of mighty estimators based on rank statistics, Bernoulli 28: 2345-2374.

Broto B., Bachoc F. and Depecker M. (2020) Variance Reduction for Estimation of Shapley Effects
and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification,
8(2).

M. Herin, M. Il Idrissi, V. Chabridon and B. Iooss, Proportional marginal effects for sensitivity anal-
ysis with correlated inputs, Proceedings of the 10th International Conferenceon Sensitivity Analysis
of Model Output (SAMO 2022), p 42-43, Tallahassee, Florida, March 2022.

M. Herin, M. Il Idrissi, V. Chabridon and B. Iooss, Proportional marginal effects for global sensi-
tivity analysis, SIAM/ASA Journal of Uncertainty Quantification, 12:667-692 2024

M. Il Idrissi, V. Chabridon and B. Iooss (2021). Developments and applications of Shapley ef-
fects to reliability-oriented sensitivity analysis with correlated inputs. Environmental Modelling &
Software, 143, 105115.

B. Iooss, V. Chabridon and V. Thouvenot, Variance-based importance measures for machine learn-
ing model interpretability, Congres lambda-mu23, Saclay, France, 10-13 octobre 2022 https:
//hal.science/hal-03741384

Feldman, B. (2005) Relative Importance and Value SSRN Electronic Journal.

See Also

sobolrank, shapleysobol_knn, shapleyPermEx, shapleySubsetMc, lmg, pmvd

Examples

library(parallel)
library(doParallel)
library(foreach)
library(gtools)
library(boot)
library(RANN)

###
Linear Model with Gaussian correlated inputs

library(mvtnorm)

set.seed(1234)
n <- 1000
beta<-c(1,-1,0.5)
sigma<-matrix(c(1,0,0,

0,1,-0.8,
0,-0.8,1),

nrow=3,
ncol=3)

X <-rmvnorm(n, rep(0,3), sigma)
colnames(X)<-c("X1","X2", "X3")

https://hal.science/hal-03741384
https://hal.science/hal-03741384

64 pme_knn

y <- X%*%beta + rnorm(n,0,2)

Without Bootstrap confidence intervals
x<-pme_knn(model=NULL, X=X,

n.knn=3,
noise=TRUE)

tell(x,y)
print(x)
plot(x)

With Boostrap confidence intervals
x<-pme_knn(model=NULL, X=X,

nboot=10,
n.knn=3,
noise=TRUE,
boot.level=0.7,
conf=0.95)

tell(x,y)
print(x)
plot(x)

###
Test case: the Ishigami function
Example with given data and the use of approximate nearest neighbour search
n <- 5000
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- pme_knn(model = NULL, X = X, method = "knn", n.knn = 5,

n.limit = 2000)
tell(x,Y)
plot(x)

library(ggplot2) ; ggplot(x)

##
Test case : Linear model (3 Gaussian inputs including 2 dependent) with scaling
See Iooss and Prieur (2019)
library(mvtnorm) # Multivariate Gaussian variables
library(whitening) # For scaling
modlin <- function(X) apply(X,1,sum)
d <- 3
n <- 10000
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- (sig %*% t(sig)) * Cormat
Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
X <- Xall(n)
x <- pme_knn(model = modlin, X = X, method = "knn", n.knn = 5,

rescale = TRUE, n.limit = 2000)
print(x)

pmvd 65

plot(x)

pmvd Proportional Marginal Variance Decomposition indices for linear and
logistic models

Description

pmvd computes the PMVD indices derived from Feldman (2005) applied to the explained variance
(R2) as a performance metric. They allow for relative importance indices by R2 decomposition for
linear and logistic regression models. These indices allocate a share of R2 to each input based on
a Proportional attribution system, allowing for covariates with null regression coefficients to have
indices equal to 0, despite their potential dependence with other covariates (Exclusion principle).

Usage

pmvd(X, y, logistic = FALSE, tol = NULL, rank = FALSE, nboot = 0,
conf = 0.95, max.iter = 1000, parl = NULL)

S3 method for class 'pmvd'
print(x, ...)
S3 method for class 'pmvd'
plot(x, ylim = c(0,1), ...)

Arguments

X a matrix or data frame containing the observed covariates (i.e., features, input
variables...).

y a numeric vector containing the observed outcomes (i.e., dependent variable). If
logistic=TRUE, can be a numeric vector of zeros and ones, or a logical vector,
or a factor.

logistic logical. If TRUE, the analysis is done via a logistic regression(binomial GLM).

tol covariates with absolute marginal contributions less or equal to tol are omit-
ted. By default, if tol=NULL, only covariates with no marginal contribution are
omitted.

rank logical. If TRUE, the analysis is done on the ranks.

nboot the number of bootstrap replicates for the computation of confidence intervals.

conf the confidence level of the bootstrap confidence intervals.

max.iter if logistic=TRUE, the maximum number of iterative optimization steps allowed
for the logistic regression. Default is 1000.

parl number of cores on which to parallelize the computation. If NULL, then no par-
allelization is done.

x the object returned by lmg.

ylim the y-coordinate limits of the plot.

... arguments to be passed to methods, such as graphical parameters (see par).

66 pmvd

Details

The computation of the PMVD is done using the recursive method defined in Feldman (2005),
but using the subset procedure defined in Broto, Bachoc and Depecker (2020), that is computing
all the R2 for all possible sub-models first, and then computing P (.) recursively for all subsets of
covariates. See Il Idrissi et al. (2021).

For logistic regression (logistic=TRUE), the R2 value is equal to:

R2 = 1− model deviance
null deviance

If either a logistic regression model (logistic = TRUE), or any column of X is categorical (i.e., of
class factor), then the rank-based indices cannot be computed. In both those cases, rank = FALSE
is forced by default (with a warning).

If too many cores for the machine are passed on to the parl argument, the chosen number of cores
is defaulted to the available cores minus one.

Spurious covariates are defined by the tol argument. If null, then covariates with:

w({i}) = 0

are omitted, and their pmvd index is set to zero. In other cases, the spurious covariates are detected
by:

|w({i})| ≤ tol

Value

pmvd returns a list of class "pmvd", containing the following components:

call the matched call.

pmvd a data frame containing the estimations of the PMVD indices.

R2s the estimations of the R2 for all possible sub-models.

indices list of all subsets corresponding to the structure of R2s.

P the values of P (.) of all subsets for recursive computing. Equal to NULL if boot-
strap estimates are made.

conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap
(if nboot>0).

X the observed covariates.

y the observed outcomes.

logistic logical. TRUE if the analysis has been made by logistic regression.

boot logical. TRUE if bootstrap estimates have been produced.

nboot number of bootstrap replicates.

rank logical. TRUE if a rank analysis has been made.

parl number of chosen cores for the computation.

conf level for the confidence intervals by bootstrap.

pmvd 67

Author(s)

Marouane Il Idrissi

References

Broto B., Bachoc F. and Depecker M. (2020) Variance Reduction for Estimation of Shapley Effects
and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification,
8(2).

D.V. Budescu (1993). Dominance analysis: A new approach to the problem of relative importance
of predictors in multiple regression. Psychological Bulletin, 114:542-551.

L. Clouvel, B. Iooss, V. Chabridon, M. Il Idrissi and F. Robin, 2024, An overview of variance-based
importance measures in the linear regression context: comparative analyses and numerical tests,
Preprint. https://hal.science/hal-04102053

Feldman, B. (2005) Relative Importance and Value SSRN Electronic Journal.

U. Gromping (2006). Relative importance for linear regression in R: the Package relaimpo. Journal
of Statistical Software, 17:1-27.

M. Il Idrissi, V. Chabridon and B. Iooss (2021). Mesures d’importance relative par decomposi-
tions de la performance de modeles de regression, Actes des 52emes Journees de Statistiques de la
Societe Francaise de Statistique (SFdS), pp 497-502, Nice, France, Juin 2021

B. Iooss, V. Chabridon and V. Thouvenot, Variance-based importance measures for machine learn-
ing model interpretability, Congres lambda-mu23, Saclay, France, 10-13 octobre 2022 https:
//hal.science/hal-03741384

See Also

pcc, src, lmg, pme_knn

Examples

library(parallel)
library(gtools)
library(boot)

library(mvtnorm)

set.seed(1234)
n <- 100
beta<-c(1,-2,3)
sigma<-matrix(c(1,0,0,

0,1,-0.8,
0,-0.8,1),

nrow=3,
ncol=3)

############################
Gaussian correlated inputs

X <-rmvnorm(n, rep(0,3), sigma)

https://hal.science/hal-04102053
https://hal.science/hal-03741384
https://hal.science/hal-03741384

68 PoincareChaosSqCoef

#############################
Linear Model

y <- X%*%beta + rnorm(n)

Without Bootstrap confidence intervals
x<-pmvd(X, y)
print(x)
plot(x)

With Boostrap confidence intervals
x<-pmvd(X, y, nboot=100, conf=0.95)
print(x)
plot(x)

Rank-based analysis
x<-pmvd(X, y, rank=TRUE, nboot=100, conf=0.95)
print(x)
plot(x)

############################
Logistic Regression
y<-as.numeric(X%*%beta + rnorm(n)>0)
x<-pmvd(X,y, logistic = TRUE)
plot(x)
print(x)

Parallel computing
#x<-pmvd(X,y, logistic = TRUE, parl=2)
#plot(x)
#print(x)

PoincareChaosSqCoef Squared coefficients computation in generalized chaos

Description

This program computes the squared coefficient of the function decomposition in the tensor basis
formed by eigenfunctions of Poincare differential operators. After division by the variance of the
model output, it provides lower bounds of first-order and total Sobol’ indices.

Usage

PoincareChaosSqCoef(PoincareEigen, multiIndex, design, output, outputGrad = NULL,
inputIndex = 1, der = FALSE, method = "unbiased")

PoincareChaosSqCoef 69

Arguments

PoincareEigen output list from PoincareOptimal() function

multiIndex vector of indices (l1, ..., ld). A coordinate equal to 0 corresponds to the constant
basis function 1

design design of experiments (matrix of size n x d) with d the number of inputs and n
the number of observations

output vector of length n (y1, ..., yn) of output values at design points

outputGrad matrix n x d whose columns contain the output partial derivatives at design
points

inputIndex index of the input variable (between 1 and d)

der logical (default=FALSE): should we use the formula with derivatives to compute
the squared coefficient?

method "biased" or "unbiased" formula when estimating the squared integral. See squaredIntEstim

Details

Similarly to polynomial chaos, where tensors of polynomials are used, we consider here tensor
basis formed by eigenfunctions of Poincare differential operators. This basis is also orthonormal,
and Parseval formula lead to lower bound for (unnormalized) Sobol, total Sobol indices, and any
variance-based index. Denoting by (e1,l1...ed,ld) one tensor basis, the corresponding coefficient is
equal to

cl1,...,ld =< f, e1,l1...ed,ld >.

For a given input variable (say x1 to simplify notations), it can be rewritten with derivatives as:

cl1,...,ld =< df/dx1, de1,l1/dx1e2,l2...ed,ld > /eigenvalue1,l1

The function returns an estimate of c2l1,...,ld, corresponding to one of these two forms (derivative-
free, or derivative-based).

Value

An estimate of the squared coefficient.

Author(s)

Olivier Roustant and Bertrand Iooss

References

O. Roustant, F. Gamboa and B. Iooss, Parseval inequalities and lower bounds for variance-based
sensitivity indices, Electronic Journal of Statistics, 14:386-412, 2020

See Also

PoincareOptimal

70 PoincareChaosSqCoef

Examples

A simple example

g <- function(x, a){
res <- x[, 1] + a*x[, 1]*x[, 2]
attr(res, "grad") <- cbind(1 + a * x[, 2], a * x[, 1])
return(res)

}

n <- 1e3
set.seed(0)
X <- matrix(runif(2*n, min = -1/2, max = 1/2), nrow = n, ncol = 2)
a <- 3
fX <- g(X, a = a)

out_1 <- out_2 <- PoincareOptimal(distr = list("unif", -1/2, 1/2),
only.values = FALSE, der = TRUE,
method = "quad")

out <- list(out_1, out_2)

Lower bounds for X1
c2_10 <- PoincareChaosSqCoef(PoincareEigen = out, multiIndex = c(1, 0),

design = X, output = fX, outputGrad = attr(fX, "grad"),
inputIndex = 1, der = FALSE)

c2_11 <- PoincareChaosSqCoef(PoincareEigen = out, multiIndex = c(1, 1),
design = X, output = fX, outputGrad = attr(fX, "grad"),
inputIndex = 1, der = FALSE)

c2_10_der <- PoincareChaosSqCoef(PoincareEigen = out, multiIndex = c(1, 0),
design = X, output = fX, outputGrad = attr(fX, "grad"),
inputIndex = 1, der = TRUE)

c2_11_der <- PoincareChaosSqCoef(PoincareEigen = out, multiIndex = c(1, 1),
design = X, output = fX, outputGrad = attr(fX, "grad"),
inputIndex = 1, der = TRUE)

LB1 <- c(8/pi^4, c2_10, c2_10_der)
LB1tot <- LB1 + c(64/pi^8 * a^2, c2_11, c2_11_der)
LB <- cbind(LB1, LB1tot)
rownames(LB) <- c("True lower bound value",

"Estimated, no derivatives", "Estimated, with derivatives")
colnames(LB) <- c("D1", "D1tot")
cat("True values of D1 and D1tot:", c(1/12, 1/12 + a^2 / 144),"\n")
cat("Sample size: ", n, "\n")
cat("Lower bounds computed with the first Poincare eigenvalue:\n")
print(LB)
cat("\nN.B. Increase the sample size to see the convergence to true lower bound values.\n")

##
Flood model example (see Roustant et al., 2017, 2019)

library(evd) # Gumbel law

PoincareChaosSqCoef 71

library(triangle) # Triangular law

Flood model
Fcrues_full2=function(X,ans=0){

ans=1 gives Overflow output; ans=2 gives Cost output; ans=0 gives both
mat=matrix(X,ncol=8);
if (ans==0){ reponse=matrix(NA,nrow(mat),2);}
else{ reponse=rep(NA,nrow(mat));}
for (i in 1:nrow(mat)) {
H = (mat[i,1] / (mat[i,2]*mat[i,8]*sqrt((mat[i,4] - mat[i,3])/mat[i,7])))^(0.6) ;
S = mat[i,3] + H - mat[i,5] - mat[i,6] ;
if (S > 0){ Cp = 1 ;}
else{ Cp = 0.2 + 0.8 * (1 - exp(-1000 / S^4));}
if (mat[i,5]>8){ Cp = Cp + mat[i,5]/20 ;}
else{ Cp = Cp + 8/20 ;}
if (ans==0){

reponse[i,1] = S ;
reponse[i,2] = Cp ;

}
if (ans==1){ reponse[i] = S ;}
if (ans==2){ reponse[i] = Cp ;}

}
return(RES=reponse)

}

Flood model derivatives (by finite-differences)
dFcrues_full2 <- function(X, i, ans, eps){

der = X
X1 = X
X1[,i] = X[,i]+eps
der = (Fcrues_full2(X1,ans) - Fcrues_full2(X,ans))/(eps)
return(der)

}

Function for flood model inputs sampling
EchantFcrues_full2<-function(taille){

X = matrix(NA,taille,8)
X[,1] = rgumbel.trunc(taille,loc=1013.0,scale=558.0,min=500,max=3000)
X[,2] = rnorm.trunc(taille,mean=30.0,sd=8,min=15.)
X[,3] = rtriangle(taille,a=49,b=51,c=50)
X[,4] = rtriangle(taille,a=54,b=56,c=55)
X[,5] = runif(taille,min=7,max=9)
X[,6] = rtriangle(taille,a=55,b=56,c=55.5)
X[,7] = rtriangle(taille,a=4990,b=5010,c=5000)
X[,8] = rtriangle(taille,a=295,b=305,c=300)
return(X)

}

d <- 8
n <- 1e3
eps <- 1e-7 # finite-differences for derivatives
x <- EchantFcrues_full2(n)

72 PoincareChaosSqCoef

yy <- Fcrues_full2(x, ans=2)
y <- scale(yy, center = TRUE, scale = FALSE)[,1]
dy <- NULL
for (i in 1:d) dy <- cbind(dy, dFcrues_full2(x, i, ans=2, eps))

method <- "quad"
out_1 <- PoincareOptimal(distr = list("gumbel", 1013, 558), min=500,max=3000,

only.values = FALSE, der = TRUE, method = method)
out_2 <- PoincareOptimal(distr = list("norm", 30, 8), min=15, max=200,

only.values = FALSE, der = TRUE, method = method)
out_3 <- PoincareOptimal(distr = list("triangle", 49, 51, 50),

only.values = FALSE, der = TRUE, method = method)
out_4 <- PoincareOptimal(distr = list("triangle", 54, 56, 55),

only.values = FALSE, der = TRUE, method = method)
out_5 <- PoincareOptimal(distr = list("unif", 7, 9),

only.values = FALSE, der = TRUE, method = method)
out_6 <- PoincareOptimal(distr = list("triangle", 55, 56, 55.5),

only.values = FALSE, der = TRUE, method = method)
out_7 <- PoincareOptimal(distr = list("triangle", 4990, 5010, 5000),

only.values = FALSE, der = TRUE, method = method)
out_8 <- PoincareOptimal(distr = list("triangle", 295, 305, 300),

only.values = FALSE, der = TRUE, method = method)
out_ <- list(out_1,out_2,out_3,out_4,out_5,out_6,out_7,out_8)

c2 <- c2der <- c2tot <- c2totder <- rep(0,d)

for (i in 1:d){
m <- diag(1,d,d) ; m[,i] <- 1

for (j in 1:d){
cc <- PoincareChaosSqCoef(PoincareEigen = out_, multiIndex = m[j,],

design = x, output = y, outputGrad = NULL,
inputIndex = i, der = FALSE)

c2tot[i] <- c2tot[i] + cc
if (j == i) c2[i] <- cc

cc <- PoincareChaosSqCoef(PoincareEigen = out_, multiIndex = m[j,],
design = x, output = y, outputGrad = dy,
inputIndex = i, der = TRUE)

c2totder[i] <- c2totder[i] + cc
if (j == i) c2der[i] <- cc

}
}

print("Lower bounds of first-order Sobol' indices without derivatives:")
print(c2/var(y))
print("Lower bounds of first-order Sobol' indices with derivatives:")
print(c2der/var(y))

print("Lower bounds of total Sobol' indices without derivatives:")
print(c2tot/var(y))
print("Lower bounds of total Sobol' indices with derivatives:")
print(c2totder/var(y))

PoincareConstant 73

PoincareConstant Poincare constants for Derivative-based Global Sensitivity Measures
(DGSM)

Description

A DGSM is a sensitivity index relying on the integral (over the space domain of the input variables)
of the squared derivatives of a model output with respect to one model input variable. The product
between a DGSM and a Poincare Constant (Roustant et al., 2014: Roustant et al., 2017) gives
an upper bound of the total Sobol’ index corresponding to the same input (Lamboni et al., 2013;
Kucherenko and Iooss, 2016).

This Poincare constant depends on the type of probability distribution of the input variable. In the
particular case of log-concave distribution, analytical formulas are available for double-exponential
transport by the way of the median value (Lamboni et al., 2013). For truncated log-concave distri-
butions, different formulas are available (Roustant et al., 2014). For general distributions (truncated
or not), some Poincare constants can be computed via a relatively simple optimization process using
different formula coming from transport inequalities (Roustant et al., 2017).

Notice that the analytical formula based on the log-concave law cases is a subcase of the double-
exponential transport. In all cases, with this function, the smallest constant is obtained using the
logistic transport formula. PoincareOptimal allows to obtained the best (optimal) constant using
another (spectral) method.

IMPORTANT: This program is useless for the two following input variable distributions:

• uniform on [min,max] interval: The optimal Poincare constant is (max−min)2

pi2 .

• normal with a standard deviation sd: The optimal Poincare constant is sd2.

Usage

PoincareConstant(dfct=dnorm, qfct=qnorm, pfct=pnorm,
logconcave=FALSE, transport="logistic",
optimize.interval=c(-100, 100),
truncated=FALSE, min=0, max=1, ...)

Arguments

dfct the probability density function of the input variable

qfct the quantile function of the input variable

pfct the distribution function of the input variable

logconcave logical value: TRUE for a log-concave distribution (analyical formula will be
used). Requires argument ’dfct’ and ’qfct’. FALSE (default value) means that
the calculations will be performed using transport-based formulas (applicable
for log-concave and non-log concave cases)

74 PoincareConstant

transport If logconcave=FALSE, choice of the transport inequalities to be used: "dou-
ble_exp" (default value) for double exponential transport and "logistic" for lo-
gistic transport". Requires argument ’dfct’ and ’pfct’

optimize.interval

In the transport-based case (logconcave=FALSE), a vector containing the end-
points of the interval to be searched for the maximum of the function to be
optimized

truncated logical value: TRUE for a truncated distribution. Default value is FALSE

min the minimal bound in the case of a truncated distribution

max the maximal bound in the case of a truncated distribution

... additional arguments

Details

In the case of truncated distributions (truncated=TRUE), in addition to the min and max arguments:
- the truncated distribution name has to be passed in the ’dfct’ and ’pfct’ arguments if logcon-
cave=FALSE, - the non-truncated distribution name has to be passed in the ’dfct’ and ’qfct’ argu-
ments if logconcave=TRUE. Moreover, if min and max are finite, optimize.interval is required to
be defined as c(min,max).

Value

PoincareConstant returns the value of the Poincare constant.

Author(s)

Jana Fruth, Bertrand Iooss and Olivier Roustant

References

S. Kucherenko and B. Iooss, Derivative-based global sensitivity measures, In: R. Ghanem, D. Hig-
don and H. Owhadi (eds.), Handbook of Uncertainty Quantification, 2016.

M. Lamboni, B. Iooss, A-L. Popelin and F. Gamboa, Derivative-based global sensitivity measures:
General links with Sobol’ indices and numerical tests, Mathematics and Computers in Simulation,
87:45-54, 2013.

O. Roustant, F. Barthe and B. Iooss, Poincare inequalities on intervals - application to sensitivity
analysis, Electronic Journal of Statistics, Vol. 11, No. 2, 3081-3119, 2017.

O. Roustant, J. Fruth, B. Iooss and S. Kuhnt, Crossed-derivative-based sensitivity measures for
interaction screening, Mathematics and Computers in Simulation, 105:105-118, 2014.

See Also

PoincareOptimal

PoincareConstant 75

Examples

Exponential law (log-concave)
PoincareConstant(dfct=dexp,qfct=qexp,pfct=NULL,rate=1,

logconcave=TRUE) # log-concave assumption
PoincareConstant(dfct=dexp,qfct=NULL,pfct=pexp,rate=1,

optimize.interval=c(0, 15)) # logistic transport approach

Weibull law (log-concave)
PoincareConstant(dfct=dweibull,qfct=NULL,pfct=pweibull,

optimize.interval=c(0, 15),shape=1,scale=1) # logistic transport approach

Triangular law (log-concave)
library(triangle)
PoincareConstant(dfct=dtriangle, qfct=qtriangle, pfct=NULL, a=-1, b=1, c=0,

logconcave=TRUE) # log-concave assumption
PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, a=-1, b=1, c=0,

transport="double_exp", optimize.interval=c(-1,1)) # Double-exp transport
PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, a=-1, b=1, c=0,

optimize.interval=c(-1,1)) # Logistic transport calculation

Normal N(0,1) law truncated on [-1.87,+infty]
PoincareConstant(dfct=dnorm,qfct=qnorm,pfct=pnorm,mean=0,sd=1,logconcave=TRUE,

transport="double_exp", truncated=TRUE, min=-1.87, max=999) # log-concave hyp
Double-exponential transport approach
PoincareConstant(dfct=dnorm.trunc, qfct=qnorm.trunc, pfct=pnorm.trunc,

mean=0, sd=1, truncated=TRUE, min=-1.87, max=999, transport="double_exp",
optimize.interval=c(-1.87,20))

Logistic transport approach
PoincareConstant(dfct=dnorm.trunc, qfct=qnorm.trunc, pfct=pnorm.trunc,

mean=0, sd=1, truncated=TRUE, min=-1.87, max=999, optimize.interval=c(-1.87,20))

Gumbel law (log-concave)
library(evd)
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=NULL, loc=0, scale=1,

logconcave=TRUE, transport="double_exp") # log-concave assumption
PoincareConstant(dfct=dgumbel, qfct=NULL, pfct=pgumbel, loc=0, scale=1,

transport="double_exp", optimize.interval=c(-3,20)) # Double-exp transport
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1,

optimize.interval=c(-3,20)) # Logistic transport approach

Truncated Gumbel law (log-concave)
Double-exponential transport approach
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1,

logconcave=TRUE, transport="double_exp", truncated=TRUE,
min=-0.92, max=3.56) # log-concave assumption

PoincareConstant(dfct=dgumbel.trunc, qfct=NULL, pfct=pgumbel.trunc, loc=0, scale=1,
truncated=TRUE, min=-0.92, max=3.56, transport="double_exp",
optimize.interval=c(-0.92,3.56))

Logistic transport approach
PoincareConstant(dfct=dgumbel.trunc, qfct=qgumbel.trunc, pfct=pgumbel.trunc,

76 PoincareOptimal

loc=0, scale=1, truncated=TRUE, min=-0.92, max=3.56,
optimize.interval=c(-0.92,3.56))

PoincareOptimal Optimal Poincare constants for Derivative-based Global Sensitivity
Measures (DGSM)

Description

A DGSM is a sensitivity index relying on the integral (over the space domain of the input variables)
of the squared derivatives of a model output with respect to one model input variable. The product
between a DGSM and a Poincare Constant (Roustant et al., 2014: Roustant et al., 2017), on the
type of probability distribution of the input variable, gives an upper bound of the total Sobol’ index
corresponding to the same input (Lamboni et al., 2013; Kucherenko and Iooss, 2016).

This function provides the optimal Poincare constant as explained in Roustant et al. (2017). It
solves numerically the spectral problem corresponding to the Poincare inequality, with Neumann
conditions. The differential equation is f” - V’f’= - lambda f with f’(a) = f’(b) = 0. In addition, all
the spectral decomposition can be returned by the function. The eigenvalues are sorted in ascending
order, starting from zero. The information corresponding to the optimal constant is thus given in
the second column.

IMPORTANT: This program is useless for the two following input variable distributions:

• uniform on [min,max] interval: The optimal Poincare constant is (max−min)2

pi2 .

• normal with a standard deviation sd: The optimal Poincare constant is sd2.

Usage

PoincareOptimal(distr=list("unif",c(0,1)), min=NULL, max=NULL,
n = 500, method = c("quadrature", "integral"), only.values = TRUE,
der = FALSE, plot = FALSE, ...)

Arguments

distr a list or a function corresponding to the probability distribution.

• If it is a list, it contains the name of the R distribution of the variable and
its parameters. Possible choices are: "unif" (uniform), "norm" (normal),
"exp" (exponential), "triangle" (triangular from package triangle), "gum-
bel" (from package evd), "beta", "gamma", "weibull" and "lognorm" (log-
normal). The values of the distribution parameters have to be passed in
arguments in the same order than the corresponding R function.

• If it is a function, it corresponds to the pdf. Notice that the normalizing
constant has no impact on the computation of the optimal Poincare constant
and can be ommitted.

PoincareOptimal 77

min see below

max [min,max]: interval on which the distribution is truncated. Choose low and high
quantiles in case of unbounded distribution. Choose NULL for uniform and
triangular distributions

n number of discretization steps

method method of integration: "quadrature" (default value) uses the trapez quadrature
(close and quicker), "integral" is longer but does not make any approximation

only.values if TRUE, only eigen values are computed and returned, otherwise both eigen-
values and eigenvectors are returned (default value is TRUE)

der if TRUE, compute the eigenfunction derivatives (default value is FALSE)

plot logical:if TRUE and only.values=FALSE, plots a minimizer of the Rayleigh ra-
tio (default value is FALSE)

... additional arguments

Details

For the uniform, normal, triangular and Gumbel distributions, the optimal constants are computed
on the standardized correponding distributions (for a better numerical efficiency). In these cases,
the return optimal constant and eigenvalues correspond to original distributions.

Value

PoincareOptimal returns a list containing:

opt the optimal Poincare constant

values the eigenvalues in increasing order, starting from 0. Thus, the second one is the
spectral gap, equal to the inverse of the Poincare constant

vectors the values of eigenfunctions at knots

der the values of eigenfunction derivatives at knots

knots a sequence of length n formed by equally spaced real numbers in the support of
the probability distribution, used for discretization

Author(s)

Olivier Roustant and Bertrand Iooss

References

O. Roustant, F. Barthe and B. Iooss, Poincare inequalities on intervals - application to sensitivity
analysis, Electronic Journal of Statistics, Vol. 11, No. 2, 3081-3119, 2017.

O Roustant, F. Gamboa, B Iooss. Parseval inequalities and lower bounds # for variance-based
sensitivity indices. 2019. hal-02140127

See Also

PoincareConstant, PoincareChaosSqCoef

78 PoincareOptimal

Examples

uniform on [a, b]
a <- -1 ; b <- 1
out <- PoincareOptimal(distr = list("unif", a, b))
cat("Poincare constant (theory -- estimated):", (b-a)^2/pi^2, "--", out$opt, "\n")

truncated standard normal on [-1, 1]
the optimal Poincare constant is then equal to 1/3,
as -1 and 1 are consecutive roots of the 2nd Hermite polynomial X*X - 1.
out <- PoincareOptimal(distr = dnorm, min = -1, max = 1,

plot = TRUE, only.values = FALSE)
cat("Poincare constant (theory -- estimated):", 1/3, "--", out$opt, "\n")

truncated standard normal on [-1.87, +infty]
out <- PoincareOptimal(distr = list("norm", 0, 1), min = -1.87, max = 5,

method = "integral", n = 500)
print(out$opt)

truncated Gumbel(0,1) on [-0.92, 3.56]
library(evd)
out <- PoincareOptimal(distr = list("gumbel", 0, 1), min = -0.92, max = 3.56,

method = "integral", n = 500)
print(out$opt)

symetric triangular [-1,1]
library(triangle)
out <- PoincareOptimal(distr = list("triangle", -1, 1, 0), min = NULL, max = NULL)
cat("Poincare constant (theory -- estimated):", 0.1729, "--", out$opt, "\n")

Lognormal distribution
out <- PoincareOptimal(distr = list("lognorm", 1, 2), min = 3, max = 10,

only.values = FALSE, plot = TRUE, method = "integral")
print(out$opt)

Illustration for eigenfunctions on the uniform distribution
(corresponds to Fourier series)
b <- 1
a <- -b
out <- PoincareOptimal(distr = list("unif", a, b),

only.values = FALSE, der = TRUE, method = "quad")

Illustration for 3 eigenvalues

par(mfrow = c(3,2))
eigenNumber <- 1:3 # eigenvalue number
for (k in eigenNumber[1:3]){ # keep the 3 first ones (for graphics)

qosa 79

plot(out$knots, out$vectors[, k + 1], type = "l",
ylab = "", main = paste("Eigenfunction", k),
xlab = paste("Eigenvalue:", round(out$values[k+1], digits = 3)))

sgn <- sign(out$vectors[1, k + 1])
lines(out$knots, sgn * sqrt(2) * cos(pi * k * (out$knots/(b-a) + 0.5)),

col = "red", lty = "dotted")

plot(out$knots, out$der[, k + 1], type = "l",
ylab = "", main = paste("Eigenfunction derivative", k),
xlab = "")

sgn <- sign(out$vectors[1, k + 1])
lines(out$knots, - sgn * sqrt(2) / (b-a) * pi * k * sin(pi * k * (out$knots/(b-a) + 0.5)),

col = "red", lty = "dotted")
}

how to create a function for one eigenfunction and eigenvalue,
given N values
eigenFun <- approxfun(x = out$knots, y = out$vectors[, 2])
eigenDerFun <- approxfun(x = out$knots, y = out$der[, 2])
x <- runif(n = 3, min = -1/2, max = 1/2)
eigenFun(x)
eigenDerFun(x)

qosa Quantile-oriented sensitivity analysis

Description

qosa implements the estimation of first-order quantile-oriented sensitivity indices as defined in
Fort et al. (2016) with a kernel-based estimator of conditonal probability density functions closely
related to the one proposed by Maume-Deschamps and Niang (2018). qosa also supports a kernel-
based estimation of Sobol first-order indices (i.e. Nadaraya-Watson).

Usage

qosa(model = NULL, X1, X2 = NULL, type = "quantile", alpha = 0.1, split.sample = 2/3,
nsample = 1e4, nboot = 0, conf = 0.95, ...)
S3 method for class 'qosa'
tell(x, y = NULL, ...)
S3 method for class 'qosa'
print(x, ...)
S3 method for class 'qosa'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'qosa'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

80 qosa

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 a random sample of the inputs used for the estimation of conditional probability
density functions. If X2 is NULL, X1 is split in two samples, with the first
split.sample proportion of observations assigned to X1 and the rest to X2.

X2 a random sample of the inputs used to evaluate the conditional probability den-
sity functions. If NULL, it is constructed with the last (1-split.sample) pro-
portion of observations from X1, see above.

type a string specifying which first-order sensitivity indices must be estimated: quantile-
oriented indices (type="quantile") or Sobol’ indices (type="mean").

alpha if type="quantile" the quantile level.

split.sample if X2=NULL the proportion of observations from X1 assigned to the estimation of
conditional probability density functions.

nsample the number of samples from the conditional probability density functions used
to estimate the conditional quantiles (if type="quantile") or the conditional
means (if type="mean").

nboot the number of bootstrap replicates.

conf the confidence level for confidence intervals.

x a list of class "sobolrank" storing the state of the sensitivity study (parameters,
data, estimates).

data a list of class "sobolrank" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

Quantile-oriented sensitivty indices were defined as a special case of sensitivity indices based on
contrast functions in Fort et al. (2016). The estimator used by qosa follows closely the one proposed
by Maume-Deschamps & Niang (2018). The only difference is that Maume-Deschamps and Niang
(2018) use the following kernel-based estimate of the conditional cumulative distribution function:

F̂ (y∥X = x) =

∑n
i=1 Khx

(x−Xi)1{Yi < y}∑n
i=1 Khx

(x−Xi)

whereas we use

F̂ (y|X = x) =

∑n
i=1 Khx

(x−Xi)
∫ y

−∞ Khy
(t− Yi)dt∑n

i=1 Khx(x−Xi)
,

qosa 81

meaning that 1{Yi < y} is replaced by
∫ y

−∞ Khy (t− Yi)dt = Φ(y−Yi

hy
) where Φ is the cumulative

distribution function of the standard normal distribution (since kernel K is Gaussian). The two
definitions thus coincide when hy → 0. Our formula arises from a kernel density estimator of the
joint pdf with a diagonal bandwidth. In a future version, it will be genralized to a general bandwidth
matrix for improved performance.

Value

qosa returns a list of class "qosa", containing all the input arguments detailed before, plus the
following components:

call the matched call.

X a data.frame containing the design of experiments.

X1 a data.frame containing the design of experiments used for the estimation of
conditional probability density functions.

X a data.frame containing the design of experiments used for the evaluation of
conditional probability density functions.

y a vector of model responses.

S the estimations of the Sobol’ sensitivity indices.

Author(s)

Sebastien Da Veiga

References

Fort, J. C., Klein, T., and Rachdi, N. (2016). New sensitivity analysis subordinated to a contrast.
Communications in Statistics-Theory and Methods, 45(15), 4349-4364.

Maume-Deschamps, V., and Niang, I. (2018). Estimation of quantile oriented sensitivity indices.
Statistics & Probability Letters, 134, 122-127.

Examples

library(ks)
library(ggplot2)
library(boot)

Test case : difference of two exponential distributions (Fort et al. (2016))
We use two samples with different sizes
n1 <- 5000
X1 <- data.frame(matrix(rexp(2 * n1,1), nrow = n1))
n2 <- 1000
X2 <- data.frame(matrix(rexp(2 * n2,1), nrow = n2))
Y1 <- X1[,1] - X1[,2]
Y2 <- X2[,1] - X2[,2]
x <- qosa(model = NULL, X1, X2, type = "quantile", alpha = 0.1)
tell(x,c(Y1,Y2))
print(x)
ggplot(x)

82 sb

Test case : difference of two exponential distributions (Fort et al. (2016))
We use only one sample
n <- 1000 # put n=10000 for more consistency
X <- data.frame(matrix(rexp(2 * n,1), nrow = n))
Y <- X[,1] - X[,2]
x <- qosa(model = NULL, X1 = X, type = "quantile", alpha = 0.7)
tell(x,Y)
print(x)
ggplot(x)

Test case : the Ishigami function
We estimate first-order Sobol' indices (by specifying 'mean')
Next lines are put in comment because too long fro CRAN tests
#n <- 5000
#nboot <- 50
#X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
#x <- qosa(model = ishigami.fun, X1 = X, type = "mean", nboot = nboot)
#print(x)
#ggplot(x)

sb Sequential Bifurcations

Description

sb implements the Sequential Bifurcations screening method (Bettonvil and Kleijnen 1996).

Usage

sb(p, sign = rep("+", p), interaction = FALSE)
S3 method for class 'sb'
ask(x, i = NULL, ...)
S3 method for class 'sb'
tell(x, y, ...)
S3 method for class 'sb'
print(x, ...)
S3 method for class 'sb'
plot(x, ...)

Arguments

p number of factors.

sign a vector fo length p filled with "+" and "-", giving the (assumed) signs of the
factors effects.

interaction a boolean, TRUE if the model is supposed to be with interactions, FALSE other-
wise.

sb 83

x a list of class "sb" storing the state of the screening study at the current iteration.

y a vector of model responses.

i an integer, used to force a wanted bifurcation instead of that proposed by the
algorithm.

... not used.

Details

The model without interaction is

Y = β0 +

p∑
i=1

βiXi

while the model with interactions is

Y = β0 +

p∑
i=1

βiXi +
∑

1≤i<j≤p

γijXiXj

In both cases, the factors are assumed to be uniformly distributed on [−1, 1]. This is a difference
with Bettonvil et al. where the factors vary across [0, 1] in the former case, while [−1, 1] in the
latter.

Another difference with Bettonvil et al. is that in the current implementation, the groups are splitted
right in the middle.

Value

sb returns a list of class "sb", containing all the input arguments detailed before, plus the following
components:

i the vector of bifurcations.

y the vector of observations.

ym the vector of mirror observations (model with interactions only).

The groups effects can be displayed with the print method.

Author(s)

Gilles Pujol

References

B. Bettonvil and J. P. C. Kleijnen, 1996, Searching for important factors in simulation models with
many factors: sequential bifurcations, European Journal of Operational Research, 96, 180–194.

84 sensiFdiv

Examples

a model with interactions
p <- 50
beta <- numeric(length = p)
beta[1:5] <- runif(n = 5, min = 10, max = 50)
beta[6:p] <- runif(n = p - 5, min = 0, max = 0.3)
beta <- sample(beta)
gamma <- matrix(data = runif(n = p^2, min = 0, max = 0.1), nrow = p, ncol = p)
gamma[lower.tri(gamma, diag = TRUE)] <- 0
gamma[1,2] <- 5
gamma[5,9] <- 12
f <- function(x) { return(sum(x * beta) + (x %*% gamma %*% x))}

10 iterations of SB
sa <- sb(p, interaction = TRUE)
for (i in 1 : 10) {

x <- ask(sa)
y <- list()
for (i in names(x)) {
y[[i]] <- f(x[[i]])

}
tell(sa, y)

}
print(sa)
plot(sa)

sensiFdiv Sensitivity Indices based on Csiszar f-divergence

Description

sensiFdiv conducts a density-based sensitivity analysis where the impact of an input variable is
defined in terms of dissimilarity between the original output density function and the output density
function when the input variable is fixed. The dissimilarity between density functions is measured
with Csiszar f-divergences. Estimation is performed through kernel density estimation and the
function kde of the package ks.

Usage

sensiFdiv(model = NULL, X, fdiv = "TV", nboot = 0, conf = 0.95, ...)
S3 method for class 'sensiFdiv'
tell(x, y = NULL, ...)
S3 method for class 'sensiFdiv'
print(x, ...)
S3 method for class 'sensiFdiv'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'sensiFdiv'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

sensiFdiv 85

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X a matrix or data.frame representing the input random sample.

fdiv a string or a list of strings specifying the Csiszar f-divergence to be used. Avail-
able choices are "TV" (Total-Variation), "KL" (Kullback-Leibler), "Hellinger"
and "Chi2" (Neyman chi-squared).

nboot the number of bootstrap replicates

conf the confidence level for confidence intervals.

x a list of class "sensiFdiv" storing the state of the sensitivity study (parameters,
data, estimates).

data a list of class "sensiFdiv" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

Some of the Csiszar f-divergences produce sensitivity indices that have already been studied in
the context of sensitivity analysis. In particular, "TV" leads to the importance measure proposed
by Borgonovo (2007) (up to a constant), "KL" corresponds to the mutual information (Krzykacz-
Hausmann 2001) and "Chi2" produces the squared-loss mutual information. See Da Veiga (2015)
for details.

Value

sensiFdiv returns a list of class "sensiFdiv", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

S the estimations of the Csiszar f-divergence sensitivity indices. If several di-
vergences have been selected, Sis a list where each element encompasses the
estimations of the sensitivity indices for one of the divergence.

Author(s)

Sebastien Da Veiga, Snecma

86 sensiHSIC

References

Borgonovo E. (2007), A new uncertainty importance measure, Reliability Engineering and System
Safety 92(6), 771–784.

Da Veiga S. (2015), Global sensitivity analysis with dependence measures, Journal of Statistical
Computation and Simulation, 85(7), 1283–1305.

Krzykacz-Hausmann B. (2001), Epistemic sensitivity analysis based on the concept of entropy,
Proceedings of SAMO2001, 53–57.

See Also

kde, sensiHSIC

Examples

library(ks)

Test case : the non-monotonic Sobol g-function
n <- 100
X <- data.frame(matrix(runif(8 * n), nrow = n))

Density-based sensitivity analysis
the next lines are put in comment because too long for CRAN tests
#x <- sensiFdiv(model = sobol.fun, X = X, fdiv = c("TV","KL"), nboot=30)
#print(x)
#library(ggplot2)
#ggplot(x)

sensiHSIC Sensitivity Indices based on the Hilbert-Schmidt Independence Crite-
rion (HSIC)

Description

sensiHSIC allows to conduct global sensitivity analysis (GSA) in many different contexts thanks
to several sensitivity measures based on the Hilbert-Schmidt independence criterion (HSIC). The
so-called HSIC sensitivity indices depend on the kernels which are affected to the input variables
Xi as well as on the kernel which is affected to the output object Y . For each random entity, a
reproducing kernel Hilbert space (RKHS) is associated to the chosen kernel and allows to represent
probability distributions in an appropriate function space. The influence of Xi on Y is then mea-
sured through the distance between the joint probability distribution (true impact of Xi on Y in the
numerical model) and the product of marginal distributions (no impact of Xi on Y) after embedding
those distributions into a bivariate RKHS. Such a GSA approach has three main advantages:

• The input variables Xi may be correlated.

• Any kind of mathematical object is supported (provided that a kernel function is available).

sensiHSIC 87

• Accurate estimation is possible even in presence of very few data (no more than a hundred of
input-output samples).

In sensiHSIC, each input variable Xi is expected to be scalar (either discrete or continous). On the
contrary, a much wider collection of mathematical objects are supported for the output variable Y .
In particular, Y may be:

• A scalar output (either discrete or continous). If so, one single kernel family is selected
among the kernel collection.

• A low-dimensional vector output. If so, a kernel is selected for each output variable and the
final output kernel is built by tensorization.

• A high-dimensional vector output or a functional output. In this case, the output data must
be seen as time series observations. Three different methods are proposed.

1. A preliminary dimension reduction may be performed. In order to achieve this, a prin-
cipal component analysis (PCA) based on the empirical covariance matrix helps identify
the first terms of the Kharunen-Loeve expansion. The final output kernel is then built in
the reduced subspace where the functional data are projected.

2. The dynamic time warping (DTW) algorithm may be combined with a translation-
invariant kernel. The resulting DTW-based output kernel is well-adapted to measure sim-
ilarity between two given time series.

3. The global alignment kernel (GAK) may be directly applied on the functional data. Un-
like the DTW kernel, it was specifically designed to deal with time series and to measure
the impact of one input variable on the shape of the output curve.

Many variants of the original HSIC indices are now available in sensiHSIC.

• Normalized HSIC indices (R2-HSIC)
The original HSIC indices defined in Gretton et al. (2005) may be hard to interpret because they
do not admit a universal upper bound. A first step to overcome this difficulty was enabled by
Da Veiga (2015) with the definition of the R2-HSIC indices. The resulting sensitivity indices
can no longer be greater than 1.

• Target HSIC indices (T-HSIC)
They were thought by Marrel and Chabridon (2021) to meet the needs of target sensitivity
analysis (TSA). The idea is to measure the impact of each input variable Xi on a specific part
of the output distribution (for example the upper tail). To achieve this, a weight function w is
applied on Y before computing HSIC indices.

• Conditional HSIC indices (C-HSIC)
They were thought by Marrel and Chabridon (2021) to meet the needs of conditional sensi-
tivity analysis (CSA). The idea is to measure the impact of each input variable Xi on Y when
a specific event occurs. This conditioning event is detected on the output variable Y and its
amplitude is taken into account thanks to a weight function w.

• HSIC-ANOVA indices
To improve the interpretability of HSIC indices, Da Veiga (2021) came up with an ANOVA-
like decomposition that allows to establish a strict separation of main effects and interaction
effects in the HSIC paradigm. The first-order and total-order HSIC-ANOVA indices are then de-
fined just as the first-order and total-order Sobol’ indices. However, this framework only holds
if two major assumptions are verified: the input variables Xi must be mutually independent
and all input kernels must belong to the very restrained class of ANOVA kernels.

88 sensiHSIC

As most sensitivity measures, HSIC indices allow to rank the input variables Xi according to the
influence they have on the output variable Y . They can also be used for a screening purpose, that is
to distinguish between truly influential input variables and non-influential input variables. The user
who is interested in this topic is invited to consult the documentation of the function testHSIC.

Usage

sensiHSIC(model = NULL, X, target = NULL, cond = NULL,
kernelX = "rbf", paramX = NA,
kernelY = "rbf", paramY = NA,
estimator.type = "V-stat",
nboot = 0, conf = 0.95,
anova = list(obj = "no", is.uniform = TRUE),
sensi = NULL,
save.GM = list(KX = TRUE, KY = TRUE), ...)

S3 method for class 'sensiHSIC'
tell(x, y = NULL, ...)

S3 method for class 'sensiHSIC'
print(x, ...)

S3 method for class 'sensiHSIC'
plot(x, ylim = c(0, 1), ...)

Arguments

model A function, or a statistical model with a predict method. It defines the input-
output model that needs to be studied.

X A n-by-p matrix containing all input samples. It comprises n joint observations
of the p input variables.

• If the user is only wanting to estimate HSIC indices or R2-HSIC indices, the
input variables can be correlated.

• If the user is also wanting to estimate HSIC-ANOVA indices, the input vari-
ables have to be mutually independent.

target A list of options to perform TSA. At least, target must contain an option named
"c". For other options, there exist default assignments.

• type is a string specifying the weight function. Available choices include
"indicTh", "zeroTh", "logistic" and "exp1side". Default value is
"exp1side".

– "indicTh" and "zeroTh" only depend on a threshold parameter.
– "logistic" and "exp1side" depend on both a threshold parameter

and a smoothness parameter.
• c is a scalar value specifying the threshold parameter.
• upper is a boolean indicating whether the target region is located above

(TRUE) or below (FALSE) the threshold parameter c. Only relevant when
type is "indicTh", "zeroTh" or "exp1side". Default value is TRUE.

sensiHSIC 89

• param is a scalar value specifying the smoothness parameter. Only relevant
when type is "logistic" or "exp1side". Default value is 1.

cond A list of options to perform CSA. At least, cond must contain an option named
"c". For other options, there exist default assignments.

• type is a string specifying the weight function. Available choices include
"indicTh", "zeroTh", "logistic" and "exp1side". Default value is
"exp1side".

– "indicTh" and "zeroTh" only depend on a threshold parameter.
– "logistic" and "exp1side" depend on both a threshold parameter

and a smoothness parameter.
• c is a scalar value specifying the threshold parameter.
• upper is a boolean indicating whether the conditioning region is located

above (TRUE) or below (FALSE) the threshold parameter c. Only relevant
when type is "indicTh", "zeroTh" or "exp1side". Default value is TRUE.

• param is a scalar value specifying the smoothness parameter. Only relevant
if type is "logistic" or "exp1side". Default value is 1.

kernelX A string or a vector of p strings that specifies how to choose input kernels.

• If only one string is provided, the associated kernel is affected to all inputs.
• For dimension-wise kernel selection, a vector of p strings must be provided.

For each input variable, available choices include "categ" (categorical kernel),
"dcov" (covariance kernel of the fractional Brownian motion), "invmultiquad"
(inverse multiquadratic kernel), "laplace" (exponential kernel), "linear" (dot-
product kernel), "matern3" (Matern 3/2 kernel), "matern5" (Matern 5/2 ker-
nel), "raquad" (rationale quadratic kernel), "rbf" (Gaussian kernel), "sobolev1"
(Sobolev kernel with smoothness parameter r = 1) and "sobolev2" (Sobolev
kernel with smoothness parameter r = 2).
In addition, let us assume that all input variables are uniformly distributed on
[0, 1]. Under this assumption, the kernels "laplace", "matern3", "matern5"
and "rbf" can be easily transformed into ANOVA kernels. The resulting kernels
are respectively called "laplace_anova", "matern3_anova", "matern5_anova"
and "rbf_anova".

• One-parameter kernels: "categ", "dcov", "invmultiquad", "laplace",
"laplace_anova", "matern3", "matern3_anova", "matern5", "matern5_anova",
"raquad", "rbf" and "rbf_anova".

• Parameter-free kernels: "linear", "sobolev1" and "sobolev2".

paramX A scalar value or a vector of p values with input kernel parameters.

• If paramX=NA, input kernel parameters are computed automatically with
rules of thumb.

• If paramX is a scalar value, it is affected to all input kernels.
• For dimension-wise kernel parametrization, a vector of p values must be

provided. If kernelX combines one-parameter kernels and parameter-free
kernels, NA must be specified for parameter-free kernels.

kernelY A string, a vector of q strings or a list of options that specifies how to construct
the output kernel. Regardless of its mathematical nature, the model output must
be envisioned as a q-dimensional random vector.

90 sensiHSIC

To deal with a scalar output or a low-dimensional vector output, it is advised
to select one kernel per output dimension and to tensorize all selected kernels.
In this case, kernelY must be a string or a vector of q strings.

• If only one string is provided, the associated kernel is repeated q times.
• For dimension-wise kernel selection, a vector of q strings must be provided.

Have a look at kernelX for an exhaustive list of available kernels.
To deal with a high-dimensional vector output or a functional output, it is
advised to reduce dimension or to use a dedicated kernel. In this case, kernelY
must be specified as a list of options. At least, kernelY must contain an option
named "method". For other options, there exist default assignments.

• method is a string indicating the strategy used to construct the output ker-
nel. Available choices include "PCA" (dimension reduction through princi-
pal component analysis), "DTW" (dynamic type warping) and "GAK" (global
alignment kernel).

1. If method="PCA", the following options may also be specified:

• data.centering is a boolean indicating whether the input samples
must be centered before performing the preliminary PCA. Default value
is TRUE.

• data.scaling is a boolean indicating whether the input samples must
be scaled before performing the preliminary PCA. Default value is
TRUE.

• fam is a string specifying the input kernel which is applied on principal
components. Available choices only include "dcov", "invmultiquad",
"laplace", "linear", "matern3", "matern5", "raquad" and "rbf".
Default value is "rbf".

• expl.var is a scalar value (between 0 and 1) specifying the expected
percentage of output variance that must be explained by PCA. Default
value is 0.95.

• PC is the expected number of principal components in PCA. Default
value is NA.

• combi is a string indicating how the final output kernel is built in the
reduced subspace. Available options include "sum" or "prod". The
chosen kernel in fam is applied on all principal components before sum-
mation (if "sum") or tensorization (if "prod").

• position is a string indicating whether weights have to be involved
in the construction of the final output kernel in the reduced subspace.
Available choices include "nowhere" (no weights), "intern" (weights
applied on principal components) or "extern" (weights applied on ker-
nels). Default value is "intern".

Remark: expl.var and PC are conflicting options. Only one of both needs
to be specified and the other one must be set to NA. If both are specified,
expl.var is prioritized. If both are set to NA, expl.var is then set to its
default value.

2. If method="DTW", the following option may also be specified:

sensiHSIC 91

• fam is a string specifying the translation-invariant kernel which is com-
bined with DTW. Available choices only include "invmultiquad",
"laplace", "matern3", "matern5", "raquad" and "rbf". Default
value is "rbf".

3. If method="GAK", there is no other option to specify.

paramY A scalar value or a vector of values with output kernel parameters.

• If paramY=NA, output kernel parameters are computed automatically with
rules of thumb.

In other cases, paramY must be specified in agreement with kernelY.
Case 1: kernelY is a string or a vector of q strings.
paramY must be a scalar value or a vector of q values with output kernel param-
eters.

• If paramY is a scalar value, it is affected to all output kernels.
• For dimension-wise kernel parametrization, a vector of q values must be

provided. If kernelY combines one parameter kernels and parameter-free
kernels, NA must be specified for parameter-free kernels.

Case 2: kernelY is a list of options with method="PCA".
paramY must be set to NA because the parameters involved in the final output
kernel are computed automatically. Their optimal tuning depends on the reduced
subspace given by PCA.
Case 3: kernelY is a list of options with method="DTW".
paramY must be set to NA.
Case 4: kernelY is a list of options with method="GAK".
paramY must be a vector of 2 values. If the user only wants to specify one param-
eter, the other one must be set to NA. The two parameters correspond to the argu-
ments sigma and window.size in the function gak from the package dtwclust.
However, automatical computation (specified by paramY=NA) is strongly advised
for this kind of output kernel.

estimator.type A string specifying the kind of estimator used for HSIC indices. Available
choices include "U-stat" (U-stastics) and "V-stat" (V-statistics). U-statistics
are unbiased estimators. V-statistics are biased estimators but they become un-
biased asymptotically. In the specific case of HSIC indices, V-statistics are non-
negative estimators and they offer more flexibility for further test procedures
(see testHSIC). Both kinds of estimators can be computed with complexity
O(n2) where n denotes the sample size.

nboot Number of bootstrap replicates.

conf A scalar value (between 0 and 1) specifying the level of confidence intervals.

anova A list of parameters to achieve an ANOVA-like decomposition based on HSIC
indices. At least, anova must contain an option named "obj". For other options,
there exist default assignments.

• obj is a string specifying which kinds of HSIC-ANOVA indices are expected.
Available choices include "no" (anova is disabled), "FO" (first-order only),
"TO" (total-order only) and "both" (first-order and total-order).

92 sensiHSIC

• is.uniform is a boolean indicating whether the samples stored in X come
from random variables that are uniformly distributed on [0, 1]. Let us recall
that HSIC-ANOVA indices can only be computed by means of ANOVA ker-
nels. Among available kernels, only "laplace_anova", "matern3_anova",
"matern5_anova", "rbf_anova", "sobolev1" and "sobole2" verify this
constraint (provided that all input variables are uniformly distributed on
[0, 1]).

– If is.uniform=TRUE, it is checked that each input data stored in X ac-
tually lies in [0, 1]. If this condition is not verified, an error is returned.

– If is.uniform=FALSE, non-parametric rescaling (based on empirical
distribution functions) is operated.

sensi An object of class "sensiHSIC" resulting from a prior call to the hereby func-
tion. If an object of class "sensiHSIC" is indeed provided, the following hap-
pens:

• If sensi contains an object named "KX", it is extracted from sensi and the
input Gram matrices (required to estimate HSIC indices) are not built from
X, kernelX and paramX.

• If sensi contains an object named "KY", it is extracted from sensi and the
output Gram matrix (required to estimate HSIC indices) is not built from
model, kernelY and paramY.

save.GM A list of parameters indicating whether Gram matrices have to be saved. The
list save.GM must contain options named "KX" and "KY".

• KX is a boolean indicating whether the input Gram matrices have to be
saved.

• KY is a boolean indicating whether the output Gram matrix has to be saved.

x An object of class "sensiHSIC" storing the state of the sensitivity study (pa-
rameters, data, estimates).

y A n-by-q matrix containing all output samples. It comprises n observations of
the q output variables.

ylim A vector of two values specifying the y-coordinate plotting limits.

... Any other arguments for model which are passed unchanged each time model is
called.

Details

Let (Xi, Y) be an input-output pair. The kernels assigned to Xi and Y are respectively denoted by
Ki and KY .

For many global sensitivity measures, the influence of Xi on Y is measured in the light of the
probabilistic dependence that exists within the input-output pair (Xi, Y). For this, a dissimilarity
measure is applied between the joint probability distribution (true impact of Xi and Y in the nu-
merical model) and the product of marginal distributions (no impact of Xi on Y). For instance,
Borgonovo’s sensitivity measure is built upon the total variation distance between those two proba-
bility distributions. See Borgonovo and Plischke (2016) for further details.

The HSIC-based sensitivity measure can be understood in this way since the index HSIC(Xi, Y)
results from the application of the Hilbert-Schmidt independence criterion (HSIC) on the pair

sensiHSIC 93

(Xi, Y). This criterion is nothing but a special kind of dissimilarity measure between the joint
probability distribution and the product of marginal distributions. This dissimilarity measure is
called the maximum mean discrepancy (MMD) and its definition relies on the selected kernels
Ki and KY . According to the theory of reproducing kernels, every kernel K is related to a repro-
ducing kernel Hilbert space (RKHS).Then, if K is affected to a random variable Z, any probability
distribution describing the random behavior of Z may be represented within the induced RKHS. In
this setup, the dissimilarity between the joint probability distribution and the product of marginal
distributions is then measured through the squared norm of their images into the bivariate RKHS.
The user is referred to Gretton et al. (2006) for additional details on the mathematical construction
of HSIC indices.

In practice, it may be difficult to understand how HSIC(Xi, Y) measures dependence within
(Xi, Y). An alternative definition relies on the concept of feature map. Let us recall that the
value taken by a kernel function can always be seen as the scalar product of two feature functions
lying in a feature space. Definition 1 in Gretton et al. (2005) introduces HSIC(Xi, Y) as the
Hilbert-Schmidt norm of a covariance-like operator between random features. For this reason, hav-
ing access to the input and output feature maps may help identify the dependence patterns captured
by HSIC(Xi, Y).

Kernels must be chosen very carefully. There exists a wide variety of kernels but only a few f them
meet the needs of GSA. As HSIC(Xi, Y) is supposed to be a dependence measure, it must be equal
to 0 if and only if Xi and Y are independent. A sufficient condition to enable this equivalence is to
take two characteristic kernels. The reader is referred to Fukumizu et al. (2004) for the mathematical
definition of a characteristic kernel and to Sriperumbur et al. (2010) for an overview of the major
related results. In particular:

• The Gaussian kernel, the Laplace kernel, the Matern 3/2 kernel and the Matern 5/2 kernel
(all defined on R2) are characteristic.

• The transformed versions of the four abovementioned kernels (all defined on [0, 1]2) are char-
acteristic.

• All Sobolev kernels (defined on [0, 1]2) are characteristic.

• The categorical kernel (defined on any discrete probability space) is characteristic.

Lemma 1 in Gretton et al. (2005) provides a third way of defining HSIC(Xi, Y). Since the asso-
ciated formula is only based on three expectation terms, the corresponding estimation procedures
are very simple and they do not ask for a large amount of input-output samples to be accurate.
Two kinds of estimators may be used for HSIC(Xi, Y): the V-statistic estimator (which is non
negative, biased and asymptotically unbiased) or the U-statistic estimator (unbiased). For both
estimators, the computational complexity is O(n2) where n is the sample size.

The user must always keep in mind the key steps leading to the estimation of HSIC(Xi, Y):

• Input samples are simulated and the corresponding output samples are computed with the
numerical model.

• An input kernel Ki and an output kernel KY are selected.

• In case of target sensitivity analysis: output samples are transformed by means of a weight
function w.

• The input and output Gram matrices are constructed.

• In case of conditional sensitivity analysis: conditioning weights are computed by means of
a weight function w.

94 sensiHSIC

• The final estimate is computed. It depends on the selected estimator type (either a U-statistic
or a V-statistic).

Kernel functions for random variables:
All what follows is written for a scalar output Y but the same is true for any scalar input Xi.
Let D denote the support of the output probability distribution. A kernel is a symmetric and
positive definite function defined on the domain D. Different kernel families are available in
sensiHSIC.

• To deal with continuous probability distributions on R, one can use:
– The covariance kernel of the fractional Browian motion ("dcov"), the inverse multi-

quadratic kernel ("invmultiquad"), the exponential kernel ("laplace"), the dot-product
kernel ("linear"), the Matern 3/2 kernel ("matern3"), the Matern 5/2 kernel ("matern5"),
the rationale quadratic kernel ("raquad") and the Gaussian kernel ("rbf").

• To deal with continuous probability distributions on [0, 1], one can use:
– Any of the abovementioned kernel (restricted to [0, 1]).
– The transformed exponential kernel ("laplace_anova"), the transformed Matern 3/2

kernel ("matern3_anova"), the transformed Matern 5/2 kernel ("matern5_anova"), the
transformed Gaussian kernel ("rbf_anova"), the Sobolev kernel with smoothness pa-
rameter r = 1 ("sobolev1") and the Sobolev kernel with smoothness parameter r = 2
("sobolev2").

• To deal with any discrete probability distribution, the categorical kernel ("categ") must be
used.

Two kinds of kernels must be distinguished:

• Parameter-free kernels: the dot-product kernel ("linear"), the Sobolev kernel with smooth-
ness parameter r = 1 ("sobolev1") and the Sobolev kernel with smoothness parameter
r = 2 ("sobolev2").

• One-parameter kernels: the categorical kernel ("categ"), the covariance kernel of the frac-
tional Brownian motion kernel ("dcov"), the inverse multiquadratic kernel ("invmultiquad"),
the exponential kernel ("laplace"), the transformed exponential kernel ("laplace_anova"),
the Matern 3/2 kernel ("matern3"), the transformed Matern 3/2 kernel ("matern3_anova"),
the Matern 5/2 kernel ("matern5"), the transformed Matern 5/2 kernel ("matern5_anova"),
the rationale quadratic kernel ("raquad"), the Gaussian kernel ("rbf") and the transformed
Gaussian kernel ("rbf_anova").

A major issue related to one-parameter kernels is how to set the parameter. It mainly depends on
the role played by the parameter in the kernel expression.

• For translation-invariant kernels and their ANOVA variants (that is all one-parameter kernels
except "categ" and "dcov"), the parameter may be interpreted as a correlation length (or a
scale parameter). The rule of thumb is to compute the empirical standard deviation of the
provided samples.

• For the covariance kernel of the fractional Brownian motion ("dcov"), the parameter is an
exponent. Default value is 1.

• For the categorical kernel ("categ"), the parameter has no physical sense. It is just a kind of
binary encoding.

– 0 means the user wants to use the basic categorical kernel.
– 1 means the user wants to use the weighted variant of the categorical kernel.

sensiHSIC 95

How to deal with a low-dimensional vector output?:
Let us assume that the output vector Y is composed of q random variables Y 1, ..., Y q.
A kernel Kj is affected to each output variable Y j and this leads to embed the j-th output prob-
ability distribution in a RKHS denoted by Hj. Then, the tensorization of H1, ...,Hq allows to
build the final RKHS, that is the RKHS where the q-variate output probability distribution describ-
ing the overall random behavior of Y will be embedded. In this situation:

• The final output kernel is the tensor product of all output kernels.
• The final output Gram matrix is the Hadamard product of all output Gram matrices.

Once the final output Gram matrix is built, HSIC indices can be estimated, just as in the case of a
scalar output.

How to deal with a high-dimensional vector output or a functional output?:
In sensiHSIC, three different methods are proposed in order to compute HSIC-based sensitivity
indices in presence of functional outputs.
Dimension reduction
This approach was initially proposed by Da Veiga (2015). The key idea is to approximate the ran-
dom functional output by the first terms of its Kharunen-Loeve expansion. This can be achived
with a principal component analysis (PCA) that is carried out on the empirical covariance ma-
trix.

• The eigenvectors (or principal directions) allow to approximate the (deterministic) func-
tional terms involved in the Kharunen-Loeve decomposition.

• The eigenvalues allow to determine how many principal directions are sufficient in order
to accurately represent the random function by means of its truncated Kharunen-Loeve ex-
pansion. The key idea behind dimension reduction is to keep as few principal directions as
possible while preserving a prescribed level of explained variance.

The principal components are the coordinates of the functional output in the low-dimensional
subspace resulting from PCA. There are computed for all output samples (time series observa-
tions). See Le Maitre and Knio (2010) for more detailed explanations.
The last step consists in constructing a kernel in the reduced subspace. One single kernel family
is selected and affected to all principal directions. Moreover, all kernel parameters are computed
automatically (with appropriate rules of thumb). Then, several strategies may be considered.

• The initial method described in Da Veiga (2015) is based on a direct tensorization. One can
also decide to sum kernels.

• This approach was improved by El Amri and Marrel (2021). For each principal direction, a
weight coefficient (equal the ratio between the eigenvalue and the sum of all selected eigen-
values) is computed.

– The principal components are multiplied by their respective weight coefficients before
summing kernels or tensorizing kernels.

– The kernels can also be directly applied on the principal components before being lin-
early combined according to the weight coefficients.

In sensiHSIC, all these strategies correspond to the following specifications in kernelY:

• Direct tensorization: kernelY=list(method="PCA", combi="prod", position="nowhere")

• Direct sum: kernelY=list(method="PCA", combi="sum", position="nowhere")

• Rescaled tensorization: kernelY=list(method="PCA", combi="prod", position="intern")

96 sensiHSIC

• Rescaled sum: kernelY=list(method="PCA", combi="sum", position="intern")

• Weighted linear combination: kernelY=list(method="PCA", combi="sum", position="extern")

Dynamic Time Warping (DTW)
The DTW algorithm developed by Sakoe and Chiba (1978) can be combined with a translation-
invariant kernel in order to create a kernel function for times series. The resulting DTW-based
output kernel is well-adapted to measure similarity between two given time series.
Suitable translation-invariant kernels include the inverse multiquadratic kernel ("invmultiquad"),
the exponential kernel ("laplace"), the Matern 3/2 kernel ("matern3"), the Matern 5/2 kernel
("matern5"), the rationale quadratic kernel ("raquad") and the Gaussian kernel ("rbf").
The user is warned against the fact that DTW-based kernels are not positive definite functions. As
a consequence, many theoretical properties do not hold anymore for HSIC indices.
For faster computations, sensiHSIC is using the function dtw_dismat from the package incDTW.
Global Alignment Kernel (GAK)
Unlike DTW-based kernels, the GAK is a positive definite function. This time-series kernel was
originally introduced in Cuturi et al. (2007) and further investigated in Cuturi (2011). It was
used to compute HSIC indices on a simplified compartmental epidemiological model in Da Veiga
(2021).
For faster computations, sensiHSIC is using the function gak from the package dtwclust.
In sensiHSIC, two GAK-related parameters may be tuned by the user with paramY. They exactly
correspond to the arguments sigma and window.size in the function gak.

About normalized HSIC indices (R2-HSIC):
No doubt interpretability is the major drawback of HSIC indices. This shortcoming led Da Veiga
(2021) to introduce a normalized version of HSIC(Xi, Y). The so-called R2-HSIC index is thus
defined as the ratio between HSIC(Xi, Y) and the square root of a normalizing constant equal
to HSIC(Xi,Xi) ∗HSIC(Y, Y).
This normalized sensitivity measure is inspired from the distance correlation measure proposed
by Szekely et al. (2007) and the resulting sensitivity indices are easier to interpret since they all
fall in the interval [0, 1].

About target HSIC indices (T-HSIC):
T-HSIC indices were designed by Marrel and Chabridon (2021) for TSA. They are only defined
for a scalar output. Vector and functional outputs are not supported. The main idea of TSA is to
measure the influence of each input variable Xi on a modified version of Y . To do so, a prelim-
inary mathematical transform w (called the weight function) is applied on Y . The collection of
HSIC indices is then estimated with respect to w(Y). Here are two examples of situations where
TSA is particularly relevant:

• How to measure the impact of Xi on the upper values taken by Y (for example the values
above a given threshold T)?

– To answer this question, one may take w(Y) = Y ∗ 1Y >T (zero-thresholding).
This can be specified in sensiHSIC with target=list(c=T, type="zeroTh", upper=TRUE).

• How to measure the influence of Xi on the occurrence of the event Y > T ?
– To answer this question, one may take w(Y) = 1Y <T (indicator-thresholding).

This can be specified in sensiHSIC with target=list(c=T, type="indicTh", upper=FALSE).
In Marrel and Chabridon (2021), the two situations described above are referred to as "hard
thresholding". To avoid using discontinuous weight functions, "smooth thresholding" may be
used instead.

sensiHSIC 97

• Spagnol et al. (2019): logistic transformation on both sides of the threshold T .
• Marrel and Chabridon (2021): exponential transformation above or below the threshold T .

These two smooth relaxation functions depend on a tuning parameter that helps control smooth-
ness. For further details, the user is invited to consult the documentation of the function weightTSA.
Remarks:

• When type="indicTh" (indicator-thesholding), w(Y) becomes a binary random variable.
Accordingly, the output kernel selected in kernelY must be the categorical kernel.

• In the spirit of R2-HSIC indices, T-HSIC indices can be normalized. The associated normal-
izing constant is equal to the square root of HSIC(Xi,Xi) ∗HSIC(w(Y), w(Y)).

• T-HSIC indices can be very naturally combined with the HSIC-ANOVA decomposition pro-
posed by Da Veiga (2021). As a consequence, the arguments target and anova in sensiHSIC
can be enabled simultaneously. Compared with basic HSIC indices, there are three main dif-
ferences: the input variables must be mutually independent, ANOVA kernels must be used for
all input variables and the output of interest is w(Y).

• T-HSIC indices can be very naturally combined with the tests of independence proposed in
testHSIC. In this context, the null hypothesis is H0: "Xi and w(Y) are independent".

About conditional HSIC indices (C-HSIC):
C-HSIC indices were designed by Marrel and Chabridon (2021) for CSA. They are only defined
for a scalar output. Vector and functional outputs are not supported. The idea is to measure the
impact of each input variable Xi on Y when a specific event occurs. This conditioning event is
defined on Y thanks to a weight function w. In order to compute the conditioning weights, w is
applied on the output samples and an empirical normalization is carried out (so that the overall
sum of conditioning weights is equal to 1). The conditioning weights are then combined with the
simulated Gram matrices in order to estimate C-HSIC indices. All formulas can be found in Marrel
and Chabridon (2021). Here is an exemple of a situation where CSA is particularly relevant:

• Let us imagine that the event Y > T coincides with a system failure.
How to measure the influence of Xi on Y when failure occurs?

– To answer this question, one may take w(Y) = 1Y >T (indicator-thresholding).
This can be specified in sensiHSIC with cond=list(c=T, type="indicTh", upper=TRUE).

The three other weight functions proposed for TSA (namely "zeroTh", "logistic" and "exp1side")
can also be used but the role they play is less intuitive to understand. See Marrel and Chabridon
(2021) for better explanations.
Remarks:

• Unlike what is pointed out for TSA, when type="thresholding", the output of interest
Y remains a continuous random variable. The categorical kernel is thus inappropriate. A
continuous kernel must be used instead.

• In the spirit of R2-HSIC indices, C-HSIC indices can be normalized. The associated normal-
izing constant is equal to the square root of C −HSIC(Xi,Xi) ∗ C −HSIC(Y, Y).

• Only V-statistics are supported to estimate C-HSIC indices. The reason is because the nor-
malized version of C-HSIC indices cannot always be estimated with U-statistics. In particu-
lar, the estimates of C −HSIC(Xi,Xi) ∗ C −HSIC(Y, Y) may be negative.

• C-HSIC indices cannot be combined with the HSIC-ANOVA decomposition proposed in Da
Veiga (2021). In fact, the conditioning operation is feared to introduce statistical dependence
among input variables, which forbids using HSIC-ANOVA indices. As a consequence, the
arguments cond and anova in sensiHSIC cannot be enabled simultaneously.

98 sensiHSIC

• C-HSIC indices can harly be combined with the tests of inpendence proposed in testHSIC.
This is only possible if type="indicTh". In this context, the null hypothesis is H0: "Xi and
Y are independent if the event described in cond occurs".

About HSIC-ANOVA indices:
In comparison with HSIC indices, R2-HSIC indices are easier to interpret. However, in terms of
interpretability, Sobol’ indices remain much more convenient since they can be understood as
shares of the total output variance. Such an interpretation is made possible by the Hoeffding
decomposition, also known as ANOVA decomposition.
It was proved in Da Veiga (2021) that an ANOVA-like decomposition can be achived for HSIC
indices under certain conditions:

• The input variables must be mutually independent (which was not required to compute all
other kinds of HSIC indices).

• ANOVA kernels must be assigned to all input variables.

This ANOVA setup allows to establish a strict separation between main effects and interaction
effects in the HSIC sense. The first-order and total-order HSIC-ANOVA indices are then defined in
the same fashion than first-order and total-order Sobol’ indices. It is worth noting that the HSIC-
ANOVA normalizing constant is equal to HSIC(X,Y) and is thus different from the one used for
R2-HSIC indices.
For a given probability measure P , an ANOVA kernel K is a kernel that can rewritten 1 + k
where k is an orthogonal kernel with respect to P . Among the well-known parametric families of
probability distributions and kernel functions, there are very few examples of orthogonal kernels.
One example is given by Sobolev kernels when there are matched with the uniform probability
measure on [0,1]. See Wahba et al. (1995) for further details on Sobolev kernels.
Moreover, several strategies to construct orthogonal kernels from non-orthogonal kernels are re-
called in Da Veiga (2021). One of them consists in translating the feature map so that the resulting
kernel becomes centered at the prescribed probability measure P . This can be done analytically
for some basic kernels (Gaussian, exponential, Matern 3/2 and Matern 5/2) when P is the uni-
form measure on [0, 1]. See Section 9 in Ginsbourger et al. (2016) for the corresponding formulas.
In sensiHSIC, ANOVA kernels are only available for the uniform probability measure on [0, 1].
This includes the Sobolev kernel with parameter r = 1 ("sobolev1"), the Sobolev kernel with
parameter r = 2 ("sobolev2"), the transformed Gaussian kernel ("rbf_anova"), the transformed
exponential kernel ("laplace_anova"), the transformed Matern 3/2 kernel ("matern3_anova")
and the transformed Matern 5/2 kernel ("matern5_anova").
As explained above, the HSIC-ANOVA indices can only be computed if all input variables are
uniformly distributed on [0, 1]. Because of this limitation, a preliminary reformulation is needed if
the GSA problem includes other kinds of input probability distributions. The probability integral
transform (PIT) must be applied on each input variable Xi. In addition, all quantile functions
must be encapsulated in the numerical model, which may lead to reconsider the way model is
specified. In sensiHSIC, if check=TRUE is selected in anova, it is checked that all input samples
lie in [0, 1]. If this is not the case, a non-parametric rescaling (based on empirical distribution
functions) is operated.
HSIC-ANOVA indices can be used for TSA. The only difference with GSA is the use of a weight
function w. On the contrary, CSA cannot be conducted with HSIC-ANOVA indices. Indeed, the
conditioning operation is feared to introduce statistical independence among the input variables,
which prevents using the HSIC-ANOVA approach.

sensiHSIC 99

Value

sensiHSIC returns a list of class "sensiHSIC". It contains all the input arguments detailed before,
except sensi which is not kept. It must be noted that some of them might have been altered,
corrected or completed.

kernelX A vector of p strings with input kernels.

paramX A vector of p values with input kernel parameters. For each one-parameter ker-
nel, a real number is returned. It is either the original value (if correct), a cor-
rected value (if not) or the default value (computed from a rule of thumb when
NA is specified). For each parameter-free kernel, NA is returned.

kernelY A vector of q strings or a list of options that specifies how the output kernel was
constructed. In the case where kernelY is a list of options with method="PCA",
kernelY contains additional information resulting from PCA.

• If kernelY initally contained an option named "expl.var", kernelY now
also contains an option named "PC" that provides the associated number of
principal components.

• If kernelY initially contained an option named "PC", kernelY now also
contains an option named "expl.var" that provides the associated per-
centage of output variance that is explained by PCA.

• If kernelY initally contained an option named "position" that was set to
"intern" or "extern", kernelY now contains an option named "ratios"
that provides the weights used to combine kernels in the reduced subspace
given by PCA.

paramY A vector of values with output kernel parameters.
Case 1: kernelY is a list of q strings.
paramY is a vector of q values. For each one-parameter kernel, a real number
is returned. It is either the original value (if correct), a corrected value or the
default value (computed with a rule of thumb if NA was initially specified). For
each parameter-free kernel, NA is returned.
Case 2: kernelY is a list of options with method="PCA".
paramY is a vector of PC values. For this method, let us recall that all kernels
belong to the same family which is specified by an option named "fam" within
kernelY. For each dimension in the reduced subspace, the kernel parameter is
computed (with a rule of thumb) from the corresponding principal component.
If the kernel in fam is parameter-free, paramY is a vector where NA is repeated
PC times.
Case 3: kernelY is a list of options with method="DTW".
paramY remains equal to NA.
Case 4: kernelY is a list of options with method="GAK".
paramY is a vector of 2 values. For each parameter, the returned value is either
the original value (if correct), a corrected value or the default value (computed
with a rule of thumb if NA was initially specified).

More importantly, the list of class "sensiHSIC" contains all expected results (output samples, sen-
sitivity measures and conditioning weights).

100 sensiHSIC

call The matched call.

y A n-row matrix containing all output samples. The i-th row in y is obtained
from the i-th row in X after computing the model response. If target is passed
to sensiHSIC, output samples in y are obtained after applying consecutively
model and the specified weight function.

HSICXY The estimated HSIC indices.

S The estimated R2-HSIC indices (also called normalized HSIC indices).

weights Only if cond is passed to sensiHSIC.
A vector of n values containing all conditioning weights. In the CSA context,
the conditioning factor is defined by w(Y)/E[w(Y)]. See Marrel and Chabridon
(2021) for further explanations.

Depending on what is specified in anova, the list of class "sensiHSIC" may also contain the fol-
lowing objects:

FO The estimated first-order HSIC-ANOVA indices.

TO The estimated total-order HSIC-ANOVA indices.

TO.num The estimated numerators of total-order HSIC-ANOVA indices.

denom The estimated common denominator of HSIC-ANOVA indices.

Author(s)

Sebastien Da Veiga, Amandine Marrel, Anouar Meynaoui, Reda El Amri and Gabriel Sarazin.

References

Borgonovo, E. and Plischke, E. (2016), Sensitivity analysis: a review of recent advances, European
Journal of Operational Research, 248(3), 869-887.

Cuturi, M., Vert, J. P., Birkenes, O. and Matsui, T. (2007), A kernel for time series based on global
alignments, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-
ICASSP’07 (Vol. 2, pp. II-413), IEEE.

Cuturi, M. (2011), Fast global alignment kernels, Proceedings of the 28th International Conference
on Machine Learning (ICML-11) (pp. 929-936).

Da Veiga, S. (2015), Global sensitivity analysis with dependence measures, Journal of Statistical
Computation and Simulation, 85(7), 1283-1305.

Da Veiga, S. (2021). Kernel-based ANOVA decomposition and Shapley effects: application to global
sensitivity analysis, arXiv preprint arXiv:2101.05487.

El Amri, M. R. and Marrel, A. (2021), More powerful HSIC-based independence tests, extension to
space-filling designs and functional data. https:/cea.hal.science/cea-03406956/

Fukumizu, K., Bach, F. R. and Jordan, M. I. (2004), Dimensionality reduction for supervised learn-
ing with reproducing kernel Hilbert spaces, Journal of Machine Learning Research, 5(Jan), 73-99.

Ginsbourger, D., Roustant, O., Schuhmacher, D., Durrande, N. and Lenz, N. (2016), On ANOVA
decompositions of kernels and Gaussian random field paths, Monte Carlo and Quasi-Monte Carlo
Methods (pp. 315-330), Springer, Cham.

https:/cea.hal.science/cea-03406956/

sensiHSIC 101

Gretton, A., Bousquet, O., Smola, A., and Scholkopf, B. (2005), Measuring statistical dependence
with Hilbert-Schmidt norms, International Conference on Algorithmic Learning Theory (pp. 63-
77), Springer, Berlin, Heidelberg.

Gretton, A., Borgwardt, K., Rasch, M., Scholkopf, B. and Smola, A. (2006), A kernel method for
the two-sample-problem, Advances in Neural Information Processing Systems, 19.

Le Maitre, O. and Knio, O. M. (2010), Spectral methods for uncertainty quantification with appli-
cations to computational fluid dynamics, Springer Science & Business Media.

Marrel, A. and Chabridon, V. (2021), Statistical developments for target and conditional sensitiv-
ity analysis: application on safety studies for nuclear reactor, Reliability Engineering & System
Safety, 214, 107711.

Sakoe, H. and Chiba, S. (1978), Dynamic programming algorithm optimization for spoken word
recognition, IEEE International Conference on Acoustics, Speech and Signal, 26(1), 43-49.

Spagnol, A., Riche, R. L. and Veiga, S. D. (2019), Global sensitivity analysis for optimization with
variable selection, SIAM/ASA Journal on Uncertainty Quantification, 7(2), 417-443.

Sriperumbudur, B., Fukumizu, K. and Lanckriet, G. (2010), On the relation between universality,
characteristic kernels and RKHS embedding of measures, Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (pp. 773-780). JMLR Workshop and Conference
Proceedings.

Szekely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007), Measuring and testing dependence by
correlation of distances, The Anals of Statistics, 35(6), 2769-2794.

Wahba, G., Wang, Y., Gu, C., Klein, R. and Klein, B. (1995), Smoothing spline ANOVA for expo-
nential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy:
the 1994 Neyman Memorial Lecture, The Annals of Statistics, 23(6), 1865-1895.

See Also

testHSIC, weightTSA

Examples

############################
HSIC indices for GSA
############################

Test case 1: the Friedman function
--> 5 input variables

GSA with a given model

n <- 800
p <- 5
X <- matrix(runif(n*p), n, p)

kernelX <- c("rbf", "rbf", "laplace", "laplace", "sobolev1")
paramX <- c(0.2, 0.3, 0.4, NA, NA)

kernel for X1: Gaussian kernel with given parameter 0.2

102 sensiHSIC

kernel for X2: Gaussian kernel with given parameter 0.3
kernel for X3: exponential kernel with given parameter 0.4
kernel for X4: exponential kernel with automatic computation of the parameter
kernel for X5: Sobolev kernel (r=1) with no parameter

kernelY <- "raquad"
paramY <- NA

sensi <- sensiHSIC(model=friedman.fun, X,
kernelX=kernelX, paramX=paramX,
kernelY=kernelY, paramY=paramY)

print(sensi)
plot(sensi)
title("GSA for the Friedman function")

GSA with given data

Y <- friedman.fun(X)
sensi <- sensiHSIC(model=NULL, X,

kernelX=kernelX, paramX=paramX,
kernelY=kernelY, paramY=paramY)

tell(sensi, y=Y)

print(sensi)

GSA from a prior object of class "sensiHSIC"

new.sensi <- sensiHSIC(model=friedman.fun, X,
kernelX=kernelX, paramX=paramX,
kernelY=kernelY, paramY=paramY,
estimator.type="U-stat",
sensi=sensi,
save.GM=list(KX=FALSE, KY=FALSE))

print(new.sensi)

U-statistics are computed without rebuilding all Gram matrices.
Those Gram matrices are not saved a second time.

##################################
HSIC-ANOVA indices for GSA
##################################

Test case 2: the Matyas function with Gaussian input variables
--> 3 input variables (including 1 dummy variable)

n <- 10^3
p <- 2

X <- matrix(rnorm(n*p), n, p)

The Sobolev kernel (with r=1) is used to achieve the HSIC-ANOVA decomposition.

sensiHSIC 103

Both first-order and total-order HSIC-ANOVA indices are expected.

AUTOMATIC RESCALING

kernelX <- "sobolev1"
anova <- list(obj="both", is.uniform=FALSE)

sensi.A <- sensiHSIC(model=matyas.fun, X, kernelX=kernelX, anova=anova)

print(sensi.A)
plot(sensi.A)
title("GSA for the Matyas function")

PROBLEM REFORMULATION

U <- matrix(runif(n*p), n, p)
new.matyas.fun <- function(U){ matyas.fun(qnorm(U)) }

kernelX <- "sobolev1"
anova <- list(obj="both", is.uniform=TRUE)

sensi.B <- sensiHSIC(model=new.matyas.fun, U, kernelX=kernelX, anova=anova)

print(sensi.B)

####################################
T-HSIC indices for target SA
####################################

Test case 3: the Sobol function
--> 8 input variables

n <- 10^3
p <- 8

X <- matrix(runif(n*p), n, p)

kernelY <- "categ"
target <- list(c=0.4, type="indicTh")

sensi <- sensiHSIC(model=sobol.fun, X, kernelY=kernelY, target=target)

print(sensi)
plot(sensi)
title("TSA for the Sobol function")

###
C-HSIC indices for conditional SA
###

Test case 3: the Sobol function
--> 8 input variables

104 sensiHSIC

n <- 10^3
p <- 8

X <- matrix(runif(n*p), n, p)

cond <- list(c=0.2, type="exp1side", upper=FALSE)

sensi <- sensiHSIC(model=sobol.fun, X, cond=cond)

print(sensi)
plot(sensi)
title("CSA for the Sobol function")

##
How to deal with discrete outputs?
##

Test case 4: classification of the Ishigami output
--> 3 input variables
--> 3 categories

classif <- function(X){

Ytemp <- ishigami.fun(X)
Y <- rep(NA, n)
Y[Ytemp<0] <- 0
Y[Ytemp>=0 & Ytemp<10] <- 1
Y[Ytemp>=10] <- 2

return(Y)

}

###

n <- 10^3
p <- 3

X <- matrix(runif(n*p, -pi, pi), n, p)

kernelY <- "categ"
paramY <- 0

sensi <- sensiHSIC(model=classif, X, kernelY=kernelY, paramY=paramY)
print(sensi)
plot(sensi)
title("GSA for the classified Ishigami function")

##
How to deal with functional outputs?
##

Test case 5: the arctangent temporal function

shapleyBlockEstimation 105

--> 3 input variables (including 1 dummy variable)

n <- 500
p <- 3

X <- matrix(runif(n*p,-7,7), n, p)

with a preliminary dimension reduction by PCA

kernelY <- list(method="PCA",
data.centering=TRUE, data.scaling=TRUE,
fam="rbf", expl.var=0.95, combi="sum", position="extern")

sensi <- sensiHSIC(model=atantemp.fun, X, kernelY=kernelY)

print(sensi)
plot(sensi)
title("PCA-based GSA for the arctangent temporal function")

with a kernel based on dynamic time warping

kernelY <- list(method="DTW", fam="rbf")

sensi <- sensiHSIC(model=atantemp.fun, X, kernelY=kernelY)

print(sensi)
plot(sensi)
title("DTW-based GSA for the arctangent temporal function")

with the global alignment kernel

kernelY <- list(method="GAK")

sensi <- sensiHSIC(model=atantemp.fun, X, kernelY=kernelY)

print(sensi)
plot(sensi)
title("GAK-based GSA for the arctangent temporal function")

shapleyBlockEstimation

Computation of the Shapley effects in the Gaussian linear framework
with an unknown block-diagonal covariance matrix

106 shapleyBlockEstimation

Description

shapleyBlockEstimation estimates the Shapley effects of a Gaussian linear model when the pa-
rameters are unknown and when the number of inputs is large, choosing the most likely block-
diagonal structure of the covariance matrix.

Usage

shapleyBlockEstimationS(Beta, S, kappa=0, M=20, tol=10^(-6))
shapleyBlockEstimationX(X, Y, delta=NULL, M=20, tol=10^(-6))

Arguments

Beta A vector containing the (estimated) coefficients of the linear model.

S Empirical covariance matrix of the inputs. Has to be positive semi-definite ma-
trix with same size that Beta.

X Matrix containing an i.i.d. sample of the inputs.

Y Vector containing the corresponding i.i.d. sample of the (noisy) output.

kappa The positive penalization coefficient that promotes block-diagonal matrices. It
is advised to choose kappa=0 to get the largest block structure such that the
maximal block size is M.

delta Positive number that fixes the positive penalization coefficient kappa to 1/(pndelta).
It is advised to choose delta to 2/3 for a positive penalisation or delta=NULL
to get the largest block structure such that the maximal block size is M.

M Maximal size of the estimate of the block-diagonal structure. The computation
time grows exponentially with M.

tol A relative tolerance to detect zero singular values of Sigma.

Details

If kappa = 0 or if delta = NULL, there is no penalization.

It is advised to choose M smaller or equal than 20. For M larger or equal than 25, the computation is
very long.

Value

shapleyBlockEstimationS and shapleyblockEstimationX return a list containing the following
compopents:

label a vector containing the label of the group of each input variable.

S_B the block-diagonal estimated covariance matrix of the inputs.

Shapley a vector containing all the estimated Shapley effects.

Author(s)

Baptiste Broto, CEA LIST

shapleyBlockEstimation 107

References

B. Broto, F. Bachoc, L. Clouvel and J-M Martinez, 2022,Block-diagonal covariance estimation
and application to the Shapley effects in sensitivity analysis, SIAM/ASA Journal on Uncertainty
Quantification, 10, 379–403.

B. Broto, F. Bachoc, M. Depecker, and J-M. Martinez, 2019, Sensitivity indices for independent
groups of variables, Mathematics and Computers in Simulation, 163, 19–31.

B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: com-
parisons with Sobol’ indices, numerical estimation and applications, International Journal of Un-
certainty Quantification, 9, 493–514.

A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs,
SIAM/ASA Journal of Uncertainty Quantification, 5, 986–1002.

See Also

shapleyLinearGaussian, shapleyPermEx, shapleyPermRand, shapleySubsetMc

Examples

packages for the plots of the matrices
library(gplots)
library(graphics)

the following function improves the plots of the matrices
sig=function(x,alpha=0.4)
{

return(1/(1+exp(-x/alpha)))
}

1) we generate the parameters by groups in order

K=4 # number or groups

pk=rep(0,K)
for(k in 1:K)
{

pk[k]=round(6+4*runif(1))
}
p=sum(pk)
Sigma_ord=matrix(0,nrow=p, ncol=p)
ind_min=0
L=5
for(k in 1:K)
{

p_k=pk[k]
ind=ind_min+(1:p_k)
ind_min=ind_min+p_k

A=2*matrix(runif(p_k*L),nrow=L,ncol=p_k)-1

108 shapleyBlockEstimation

Sigma_ord[ind,ind]=t(A)%*%A + 0.2*diag(rep(1,p_k))
}

image((0:p)+0.5,(0:p)+0.5,z=sig(Sigma_ord),col=cm.colors(100), zlim=c(0,1),
ylim=c(p+0.5,0.5), main=expression(Sigma["order"]),
cex.main=3,ylab = "", xlab = "",axes=FALSE)

box()

Beta_ord=3*runif(p)+1
eta_ord=shapleyLinearGaussian(Beta=Beta_ord, Sigma=Sigma_ord)
barplot(eta_ord,main=expression(eta["order"]),cex.axis = 2,cex.main=3)

2) We sample the input variables to get an input vector more general

samp=sample(1:p)
Sigma=Sigma_ord[samp,samp]

image((0:p)+0.5,(0:p)+0.5,z=sig(Sigma),col=cm.colors(100), zlim=c(0,1),
ylim=c(p+0.5,0.5), main=expression(Sigma),
cex.main=3,ylab = "",xlab = "",axes=FALSE)

box()

Beta=Beta_ord[samp]
eta=shapleyLinearGaussian(Beta=Beta, Sigma=Sigma)
barplot(eta,main=expression(eta),cex.axis = 2,cex.main=3)

3) We generate the observations with these parameters

n=5*p #sample size

C=chol(Sigma)
X0=matrix(rnorm(p*n),ncol=p)
X=X0%*%C

S=var(X) #empirical covariance matrix
image((0:p)+0.5,(0:p)+0.5,z=sig(S),col=cm.colors(100), zlim=c(0,1),

ylim=c(p+0.5,0.5), main=expression(S),
cex.main=3,ylab = "", xlab = "",axes=FALSE)

box()

beta0=rnorm(1)
Y=X%*%as.matrix(Beta)+beta0+0.2*rnorm(p)

shapleyLinearGaussian 109

4) We estimate the block-diagonal covariance matrix
and the Shapley effects using the observations
We assume that we know that the groups are smaller than 15

Estim=shapleyBlockEstimationX(X,Y,delta=3/4, M=15, tol=10^(-6))

eta_hat=Estim$Shapley
S_B=Estim$S_B

image((0:p)+0.5,(0:p)+0.5,z=sig(S_B),col=cm.colors(100), zlim=c(0,1),
ylim=c(p+0.5,0.5), main=expression(S[hat(B)]),
cex.main=3,ylab = "",xlab = "",axes=FALSE)

box()

barplot(eta_hat,main=expression(hat(eta)),cex.axis = 2,cex.main=3)

sum(abs(eta_hat-eta))

shapleyLinearGaussian Computation of the Shapley effects in the linear Gaussian framework

Description

shapleyLinearGaussian implements the computation of the Shapley effects in the linear Gaussian
framework, using the linear model (without the value at zero) and the covariance matrix of the
inputs. It uses the block-diagonal covariance trick of Broto et al. (2019) which allows to go through
high-dimensional cases (nb of inputs > 25). It gives a warning in case of dim(block) > 25.

Usage

shapleyLinearGaussian(Beta, Sigma, tol=10^(-6))

Arguments

Beta a vector containing the coefficients of the linear model (without the value at
zero).

Sigma covariance matrix of the inputs. Has to be positive semi-definite matrix with
same size that Beta.

tol a relative tolerance to detect zero singular values of Sigma.

Value

shapleyLinearGaussian returns a numeric vector containing all the Shapley effects.

Author(s)

Baptiste Broto

110 shapleyLinearGaussian

References

B. Broto, F. Bachoc, M. Depecker, and J-M. Martinez, 2019, Sensitivity indices for independent
groups of variables, Mathematics and Computers in Simulation, 163, 19–31.

B. Broto, F. Bachoc, L. Clouvel and J-M Martinez, 2022,Block-diagonal covariance estimation
and application to the Shapley effects in sensitivity analysis, SIAM/ASA Journal on Uncertainty
Quantification, 10, 379–403.

B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: com-
parisons with Sobol’ indices, numerical estimation and applications, International Journal for Un-
certainty Quantification, 9, 493–514.

A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs,
SIAM/ASA Journal of Uncertainty Quantification, 5, 986–1002.

See Also

shapleyBlockEstimation, shapleyPermEx, shapleyPermRand, shapleySubsetMc, shapleysobol_knn,
johnsonshap

Examples

library(MASS)
library(igraph)

First example:

p=5 #dimension
A=matrix(rnorm(p^2),nrow=p,ncol=p)
Sigma=t(A)%*%A
Beta=runif(p)
Shapley=shapleyLinearGaussian(Beta,Sigma)
plot(Shapley)

Second Example, block-diagonal:

K=5 #number of groups
m=5 # number of variables in each group
p=K*m
Sigma=matrix(0,ncol=p,nrow=p)

for(k in 1:K)
{

A=matrix(rnorm(m^2),nrow=m,ncol=m)
Sigma[(m*(k-1)+1):(m*k),(m*(k-1)+1):(m*k)]=t(A)%*%A

}
we mix the variables:
samp=sample(1:p,p)
Sigma=Sigma[samp,samp]

Beta=runif(p)
Shapley=shapleyLinearGaussian(Beta,Sigma)

shapleyPermEx 111

plot(Shapley)

shapleyPermEx Estimation of Shapley effects by examining all permutations of inputs
(Agorithm of Song et al, 2016), in cases of independent or dependent
inputs

Description

shapleyPermEx implements the Monte Carlo estimation of the Shapley effects (Owen, 2014) and
their standard errors by examining all permutations of inputs (Song et al., 2016; Iooss and Prieur,
2019). It also estimates full first order and independent total Sobol’ indices (Mara et al., 2015). The
function also allows the estimations of all these sensitivity indices in case of dependent inputs. The
total cost of this algorithm is Nv + d!× (d− 1)×No×Ni model evaluations.

Usage

shapleyPermEx(model = NULL, Xall, Xset, d, Nv, No, Ni = 3, colnames = NULL, ...)
S3 method for class 'shapleyPermEx'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'shapleyPermEx'
print(x, ...)
S3 method for class 'shapleyPermEx'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'shapleyPermEx'
ggplot(data, mapping = aes(), ylim = c(0, 1), title = NULL,

..., environment = parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

Xall Xall(n) is a function to generate a n-sample of a d-dimensional input vector
(following the required joint distribution).

Xset Xset(n, Sj, Sjc, xjc) is a function to generate a n-sample of a d-dimensional input
vector corresponding to the indices in Sj conditional on the input values xjc with
the index set Sjc (following the required joint distribution).

d number of inputs.

Nv Monte Carlo sample size to estimate the output variance.

No Outer Monte Carlo sample size to estimate the expectation of the conditional
variance of the model output.

Ni Inner Monte Carlo sample size to estimate the conditional variance of the model
output.

colnames Optional: A vector containing the names of the inputs.

112 shapleyPermEx

x a list of class "shapleyPermEx" storing the state of the sensitivity study (pa-
rameters, data, estimates).

data a list of class "shapleyPermEx" storing the state of the sensitivity study (pa-
rameters, data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

title a title of the plot with ggplot() function.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

This function requires R package "gtools".

The default values Ni = 3 is the optimal one obtained by the theoretical analysis of Song et al., 2016.

The computations of the standard errors (and then the confidence intervals) come from Iooss and
prieur (2019). Based on the outer Monte carlo loop (calculation of expectation of conditional vari-
ance), the variance of the Monte carlo estimate is divided by No. The standard error is then averaged
over the exact permutation loop. The confidence intervals at 95% correspond to +- 1.96 standard
deviations.

Value

shapleyPermEx returns a list of class "shapleyPermEx", containing all the input arguments de-
tailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used.

E the estimation of the ouput mean.

V the estimation of the ouput variance.

Shapley the estimations of the Shapley effects.

SobolS the estimations of the full first-order Sobol’ indices.

SobolT the estimations of the independent total sensitivity Sobol’ indices.

Users can ask more ouput variables with the argument return.var (for example, the list of permu-
tations perms).

Author(s)

Bertrand Iooss, Eunhye Song, Barry L. Nelson, Jeremy Staum

shapleyPermEx 113

References

B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: com-
parisons with Sobol’ indices, numerical estimation and applications, International Journal for Un-
certainty Quantification, 9, 493–514.

T. Mara, S. Tarantola, P. Annoni, 2015, Non-parametric methods for global sensitivity analysis of
model output with dependent inputs, Environmental Modeling & Software 72, 173–183.

A.B. Owen, 2014, Sobol’ indices and Shapley value, SIAM/ASA Journal of Uncertainty Quantifi-
cation, 2, 245–251.

A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs,
SIAM/ASA Journal of Uncertainty Quantification, 5, 986–1002.

E. Song, B.L. Nelson, and J. Staum, 2016, Shapley effects for global sensitivity analysis: Theory
and computation, SIAM/ASA Journal of Uncertainty Quantification, 4, 1060–1083.

See Also

shapleyPermRand, shapleyLinearGaussian, shapleySubsetMc, shapleysobol_knn, lmg

Examples

##################################
Test case : the Ishigami function (3 uniform independent inputs)
See Iooss and Prieur (2019)

library(gtools)

d <- 3
Xall <- function(n) matrix(runif(d*n,-pi,pi),nc=d)
Xset <- function(n, Sj, Sjc, xjc) matrix(runif(n*length(Sj),-pi,pi),nc=length(Sj))

x <- shapleyPermEx(model = ishigami.fun, Xall=Xall, Xset=Xset, d=d, Nv=1e4, No = 1e3, Ni = 3)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

##################################
Test case : Linear model (3 Gaussian inputs including 2 dependent)
See Iooss and Prieur (2019)

library(ggplot2)
library(gtools)
library(mvtnorm) # Multivariate Gaussian variables
library(condMVNorm) # Conditional multivariate Gaussian variables

modlin <- function(X) apply(X,1,sum)

d <- 3

114 shapleyPermRand

mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- (sig %*% t(sig)) * Cormat

Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)

Xset <- function(n, Sj, Sjc, xjc){
if (is.null(Sjc)){
if (length(Sj) == 1){ rnorm(n,mu[Sj],sqrt(Covmat[Sj,Sj]))
} else{ mvtnorm::rmvnorm(n,mu[Sj],Covmat[Sj,Sj])}

} else{ condMVNorm::rcmvnorm(n, mu, Covmat, dependent.ind=Sj, given.ind=Sjc,
X.given=xjc)}}

x <- shapleyPermEx(model = modlin, Xall=Xall, Xset=Xset, d=d, Nv=1e4,
No = 1e3, Ni = 3)

print(x)
ggplot(x)

shapleyPermRand Estimation of Shapley effects by random permutations of inputs
(Agorithm of Song et al, 2016), in cases of independent or dependent
inputs

Description

shapleyPermRand implements the Monte Carlo estimation of the Shapley effects (Owen, 2014)
and their standard errors by randomly sampling permutations of inputs (Song et al., 2016). It also
estimates full first order and independent total Sobol’ indices (Mara et al., 2015), and their standard
errors. The function also allows the estimations of all these sensitivity indices in case of dependent
inputs. The total cost of this algorithm is Nv +m× (d− 1)×No×Ni model evaluations.

Usage

shapleyPermRand(model = NULL, Xall, Xset, d, Nv, m, No = 1, Ni = 3,
colnames = NULL, ...)

S3 method for class 'shapleyPermRand'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'shapleyPermRand'
print(x, ...)
S3 method for class 'shapleyPermRand'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'shapleyPermRand'
ggplot(data, mapping = aes(), ylim = c(0, 1),

title = NULL, ..., environment = parent.frame())

shapleyPermRand 115

Arguments

model a function, or a model with a predict method, defining the model to analyze.

Xall Xall(n) is a function to generate a n-sample of a d-dimensional input vector
(following the required joint distribution).

Xset Xset(n, Sj, Sjc, xjc) is a function to generate a n-sample of a d-dimensional input
vector corresponding to the indices in Sj conditional on the input values xjc with
the index set Sjc (following the required joint distribution).

d number of inputs.

Nv Monte Carlo sample size to estimate the output variance.

m Number of randomly sampled permutations.

No Outer Monte Carlo sample size to estimate the expectation of the conditional
variance of the model output.

Ni Inner Monte Carlo sample size to estimate the conditional variance of the model
output.

colnames Optional: A vector containing the names of the inputs.

x a list of class "shapleyPermRand" storing the state of the sensitivity study (pa-
rameters, data, estimates).

data a list of class "shapleyPermRand" storing the state of the sensitivity study (pa-
rameters, data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

title a title of the plot with ggplot() function.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

This function requires R package "gtools".

The default values No = 1 and Ni = 3 are the optimal ones obtained by the theoretical analysis of
Song et al., 2016.

The computations of the standard errors do not consider the samples to estimate expectation of
conditional variances. They are only made regarding the random permutations and are based on the
variance of the Monte carlo estimates divided by m. The confidence intervals at 95% correspond to
+- 1.96 standard deviations.

116 shapleyPermRand

Value

shapleyPermRand returns a list of class "shapleyPermRand", containing all the input arguments
detailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used.

E the estimation of the ouput mean.

V the estimation of the ouput variance.

Shapley the estimations of the Shapley effects.

SobolS the estimations of the full first-order Sobol’ indices.

SobolT the estimations of the independent total sensitivity Sobol’ indices.

Users can ask more ouput variables with the argument return.var (for example, the list of permu-
tations perms).

Author(s)

Bertrand Iooss, Eunhye Song, Barry L. Nelson, Jeremy Staum

References

B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: com-
parisons with Sobol’ indices, numerical estimation and applications, International Journal of Un-
certainty Quantification, 9, 493–514.

T. Mara, S. Tarantola, P. Annoni, 2015, Non-parametric methods for global sensitivity analysis of
model output with dependent inputs, Environmental Modeling & Software 72, 173–183.

A.B. Owen, 2014, Sobol’ indices and Shapley value, SIAM/ASA Journal of Uncertainty Quantifi-
cation, 2, 245–251.

A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs,
SIAM/ASA Journal of Uncertainty Quantification, 5, 986–1002.

E. Song, B.L. Nelson, and J. Staum, 2016, Shapley effects for global sensitivity analysis: Theory
and computation, SIAM/ASA Journal of Uncertainty Quantification, 4, 1060–1083.

See Also

shapleyPermEx, shapleyLinearGaussian, shapleySubsetMc, shapleysobol_knn

Examples

##################################
Test case : the Ishigami function
See Iooss and Prieur (2019)

shapleysobol_knn 117

library(gtools)

d <- 3
Xall <- function(n) matrix(runif(d*n,-pi,pi),nc=d)
Xset <- function(n, Sj, Sjc, xjc) matrix(runif(n*length(Sj),-pi,pi),nc=length(Sj))

x <- shapleyPermRand(model = ishigami.fun, Xall=Xall, Xset=Xset, d=d, Nv=1e4,
m=1e4, No = 1, Ni = 3)

print(x)
plot(x)

library(ggplot2)
ggplot(x)

##################################
Test case : Linear model (3 Gaussian inputs including 2 dependent)
See Iooss and Prieur (2019)

library(ggplot2)
library(gtools)
library(mvtnorm) # Multivariate Gaussian variables
library(condMVNorm) # Conditional multivariate Gaussian variables

modlin <- function(X) apply(X,1,sum)

d <- 3
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- (sig %*% t(sig)) * Cormat

Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)

Xset <- function(n, Sj, Sjc, xjc){
if (is.null(Sjc)){
if (length(Sj) == 1){ rnorm(n,mu[Sj],sqrt(Covmat[Sj,Sj]))
} else{ mvtnorm::rmvnorm(n,mu[Sj],Covmat[Sj,Sj])}

} else{ condMVNorm::rcmvnorm(n, mu, Covmat, dependent.ind=Sj, given.ind=Sjc,
X.given=xjc)}}

m <- 1e3 # put m)1e4 for more precised results
x <- shapleyPermRand(model = modlin, Xall=Xall, Xset=Xset, d=d, Nv=1e3, m = m,

No = 1, Ni = 3)
print(x)
ggplot(x)

shapleysobol_knn Data given Shapley effects estimation via nearest-neighbors procedure

118 shapleysobol_knn

Description

shapleysobol_knn implements the estimation of several sensitivity indices using only N model
evaluations via ranking (following Gamboa et al. (2020) and Chatterjee (2019)) or nearest neigh-
bour search (Broto et al. (2020) and Azadkia & Chatterjee (2020)). Parallelized computations are
possible to accelerate the estimation process. It can be used with categorical inputs (which are
transformed with one-hot encoding), dependent inputs and multiple outputs. Sensitivity indices of
any group of inputs can be computed, which means that in particular (full) first-order, (independent)
total Sobol indices and Shapley effects are accessible. For large sample sizes, the nearest neightbour
algorithm can be significantly accelerated by using approximate nearest neighbour search. It is also
possible to estimate Shapley effects with the random permutation approach of Castro et al.(2009),
where all the terms are obtained with ranking or nearest neighbours.

Usage

shapleysobol_knn(model=NULL, X, method = "knn", n.knn = 2, n.limit = 2000,
U = NULL, n.perm = NULL, noise = F, rescale = F, nboot = NULL,
boot.level = 0.8, conf=0.95, parl=NULL, ...)

S3 method for class 'shapleysobol_knn'
tell(x, y, ...)
S3 method for class 'shapleysobol_knn'
extract(x, ...)
S3 method for class 'shapleysobol_knn'
print(x, ...)
S3 method for class 'shapleysobol_knn'
plot(x, ylim = c(0,1), ...)
S3 method for class 'shapleysobol_knn'
ggplot(data, mapping = aes(), ylim = c(0, 1), ...,

environment = parent.frame())
S3 method for class 'sobol_knn'
print(x, ...)
S3 method for class 'sobol_knn'
plot(x, ylim = c(0,1), ...)

Arguments

model a function defining the model to analyze, taking X as an argument.

X a matrix or data frame containing the observed inputs.

method the algorithm to be used for estimation, either "rank" or "knn", see details. De-
fault is method="knn".

n.knn the number of nearest neighbours used for estimation.

n.limit sample size limit above which approximate nearest neighbour search is acti-
vated.

U an integer equal to 0 (total Sobol indices) or 1 (first-order Sobol indices) or a list
of vector indices defining the subsets of inputs whose sensitivity indices must
be computed or a matrix of 0s and 1s where each row encodes a subset of inputs
whose sensitivity indices must be computed (see examples). Default value is
NULL, meaning that Shapley values are returned (see details).

shapleysobol_knn 119

n.perm an integer, indicating the number of random permutations used for the Shapley
effects’ estimation. Default is n.perm=NULL, indicating that all possible permu-
tations are used.

noise a logical which is TRUE if the model or the output sample is noisy. See details.

rescale a logical indicating if continuous inputs must be rescaled before distance compu-
tations. If TRUE, continuous inputs are first whitened with the ZCA-cor whiten-
ing procedure (cf. whiten() function in package whitening). If the inputs are
independent, this first step will have a very limited impact. Then, the resulting
whitened inputs are individually modified via a copula transform such that each
input has the same scale.

nboot the number of bootstrap resamples for the bootstrap estimate of confidence in-
tervals. See details.

boot.level a numeric between 0 and 1 for the proportion of the bootstrap sample size.

conf the confidence level of the bootstrap confidence intervals.

parl number of cores on which to parallelize the computation. If NULL, then no par-
allelization is done.

x the object returned by shapleysobol_knn.

data the object returned by shapleysobol_knn.

y a numeric univariate vector containing the observed outputs.

ylim the y-coordinate limits for plotting.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... additional arguments to be passed to model, or to the methods, such as graphical
parameters (see par).

Details

For method="rank", the estimator is defined in Gamboa et al. (2020) following Chatterjee (2019).
For first-order indices it is based on an input ranking (same algorithm as in sobolrank) while for
higher orders, it uses an approximate heuristic solution of the traveling salesman problem applied
to the input sample distances (cf. TSP() function in package TSP). For method="knn", ranking and
TSP are replaced by a nearest neighbour search as proposed in Broto et al. (2020) and in Azadkia
& Chatterjee (2020) for a similar coefficient.

The computation is done using the subset procedure, defined in Broto, Bachoc and Depecker (2020),
that is computing all the Sobol’ closed indices for all possible sub-models first, and then affecting
the Shapley weights.

It is the same algorithm as sobolshap_knn with method = "knn" with a slight computational im-
provement (the search for weight affectations is done on much smaller matrices, stored in a list
indexed by their order), and ability to perform parallel computation and boostrap confidence inter-
val estimates.

Since boostrap creates ties which are not accounted for in the algorithm, confidence intervals are
obtained by sampling without replacement with a proportion of the total sample size boot.level,
drawn uniformly.

120 shapleysobol_knn

If the outputs are noisy, the argument noise can be used: it only has an impact on the estimation of
one specific sensitivity index, namely V ar(E(Y |X1, . . . , Xp))/V ar(Y). If there is no noise this
index is equal to 1, while in the presence of noise it must be estimated.

The distance used for subsets with mixed inputs (continuous and categorical) is the Euclidean dis-
tance, thanks to a one-hot encoding of categorical inputs.

If too many cores for the machine are passed on to the parl argument, the chosen number of cores
is defaulted to the available cores minus one.

If argument U is specified, only the estimated first-order or total Sobol’ indices are returned, or the
estimated closed Sobol’ indices for the selected subsets. The Shapley effects are not computed, and
thus, not returned.

The extract method can be used for extracting first-order and total Sobol’ indices, after the Shapley
effects have been computed. It returns a list containing both sensitivity indices.

Value

shapleysobol_knn returns a list of class "shapleysobol_knn" if U=NULL, containing the following
components:

call the matched call.

Shap the estimations of the Shapley effect indices.

VE the estimations of the closed Sobol’ indices for all possible sub-models.

indices list of all subsets corresponding to the structure of VE.

method which estimation method has been used.

n.perm number of random permutations.

w the Shapley weights.

conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap
(if nboot>0).

X the observed covariates.

y the observed outcomes.

n.knn value of the n.knn argument.

n.limit value of the n.limit argument.

U value of the U argument.

rescale wheter the design matrix has been rescaled.

n.limit maximum number of sample before nearest-neighbor approximation.

boot.level value of the boot.level argument.

noise wheter the Shapley values must sum up to one or not.

boot logical, wheter bootstrap confidence interval estimates have been performed.

nboot value of the nboot argument.

parl value of the parl argument.

conf value of the conf argument.

shapleysobol_knn 121

shapleysobol_knn returns a list of class "sobol_knn" if U, is specified, containing the following
components:

call the matched call.

Sobol the estimations of the Sobol’ indices.

indices list of all subsets corresponding to the structure of VE.

method which estimation method has been used.

conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap
(if nboot>0).

X the observed covariates.

y the observed outcomes.

U value of the U argument.

n.knn value of the n.knn argument.

rescale wheter the design matrix has been rescaled.

n.limit value of the n.limit argument.

boot.level value of the boot.level argument.

boot logical, wheter bootstrap confidence interval estimates have been performed.

nboot value of the nboot argument.

parl value of the parl argument.

conf value of the conf argument.

Author(s)

Marouane Il Idrissi, Sebastien Da Veiga

References

Azadkia M., Chatterjee S., 2021), A simple measure of conditional dependence, Ann. Statist.
49(6):3070-3102.

Chatterjee, S., 2021, A new coefficient of correlation, Journal of the American Statistical Associa-
tion, 116:2009-2022.

Gamboa, F., Gremaud, P., Klein, T., & Lagnoux, A., 2022, Global Sensitivity Analysis: a novel
generation of mighty estimators based on rank statistics, Bernoulli 28: 2345-2374.

Broto B., Bachoc F. and Depecker M. (2020) Variance Reduction for Estimation of Shapley Effects
and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification,
8(2).

Castro J., Gomez D, Tejada J. (2009). Polynomial calculation of the Shapley value based on sam-
pling. Computers & Operations Research, 36(5):1726-1730.

M. Il Idrissi, V. Chabridon and B. Iooss (2021). Developments and applications of Shapley ef-
fects to reliability-oriented sensitivity analysis with correlated inputs. Environmental Modelling &
Software, 143, 105115.

M. Il Idrissi, V. Chabridon and B. Iooss (2021). Mesures d’importance relative par decompositions
de la performance de modeles de regression, Preprint, 52emes Journees de Statistiques de la Societe
Francaise de Statistique (SFdS), pp. 497-502, Nice, France, Juin 2021

122 shapleysobol_knn

See Also

sobolrank, sobolshap_knn, shapleyPermEx, shapleySubsetMc, johnsonshap, lmg, pme_knn

Examples

library(parallel)
library(doParallel)
library(foreach)
library(gtools)
library(boot)
library(RANN)

###
Linear Model with Gaussian correlated inputs

library(mvtnorm)

set.seed(1234)
n <- 1000
beta<-c(1,-1,0.5)
sigma<-matrix(c(1,0,0,

0,1,-0.8,
0,-0.8,1),

nrow=3,
ncol=3)

X <-rmvnorm(n, rep(0,3), sigma)
colnames(X)<-c("X1","X2", "X3")

y <- X%*%beta + rnorm(n,0,2)

Without Bootstrap confidence intervals
x<-shapleysobol_knn(model=NULL, X=X,

n.knn=3,
noise=TRUE)

tell(x,y)
print(x)
plot(x)

#Using the extract method to get first-order and total Sobol' indices
extract(x)

With Boostrap confidence intervals
x<-shapleysobol_knn(model=NULL, X=X,

nboot=10,
n.knn=3,
noise=TRUE,
boot.level=0.7,
conf=0.95)

tell(x,y)

shapleysobol_knn 123

print(x)
plot(x)

#####################
Extracting Sobol' indices with Bootstrap confidence intervals

nboot <- 10 # put nboot=50 for consistency

#Total Sobol' indices
x<-shapleysobol_knn(model=NULL, X=X,

nboot=nboot,
n.knn=3,
U=0,
noise=TRUE,
boot.level=0.7,
conf=0.95)

tell(x,y)
print(x)
plot(x)

#First-order Sobol' indices
x<-shapleysobol_knn(model=NULL, X=X,

nboot=nboot,
n.knn=3,
U=1,
noise=TRUE,
boot.level=0.7,
conf=0.95)

tell(x,y)
print(x)
plot(x)

#Closed Sobol' indices for specific subsets (list)
x<-shapleysobol_knn(model=NULL, X=X,

nboot=nboot,
n.knn=3,
U=list(c(1,2), c(1,2,3), 2),
noise=TRUE,
boot.level=0.7,
conf=0.95)

tell(x,y)
print(x)
plot(x)

###
Test case: the non-monotonic Sobol g-function
Example with a call to a numerical model
First compute first-order indices with ranking

n <- 1000
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- shapleysobol_knn(model = sobol.fun, X = X, U = 1, method = "rank")

124 shapleysobol_knn

print(x)
plot(x)

library(ggplot2) ; ggplot(x)

We can use the output sample generated for this estimation to compute total indices
without additional calls to the model
x2 <- shapleysobol_knn(model = NULL, X = X, U = 0, method = "knn", n.knn = 5)
tell(x2,x$y)
plot(x2)

ggplot(x2)

###
Test case: the Ishigami function
Example with given data and the use of approximate nearest neighbour search
n <- 5000
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- shapleysobol_knn(model = NULL, X = X, U = NULL, method = "knn", n.knn = 5,

n.limit = 2000)
tell(x,Y)
plot(x)

library(ggplot2) ; ggplot(x)

Extract first-order and total Sobol indices
x1 <- extract(x) ; print(x1)

##
Test case : Linear model (3 Gaussian inputs including 2 dependent) with scaling
See Iooss and Prieur (2019)
library(mvtnorm) # Multivariate Gaussian variables
library(whitening) # For scaling
modlin <- function(X) apply(X,1,sum)
d <- 3
n <- 10000
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- (sig %*% t(sig)) * Cormat
Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
X <- Xall(n)
x <- shapleysobol_knn(model = modlin, X = X, U = NULL, method = "knn", n.knn = 5,

rescale = TRUE, n.limit = 2000)
print(x)
plot(x)

shapleySubsetMc 125

shapleySubsetMc Estimation of Shapley effects from data using nearest neighbors
method

Description

shapleySubsetMc implements the estimation of the Shapley effects from data using some nearest
neighbors method to generate according to the conditional distributions of the inputs. It can be used
with categorical inputs.

Usage

shapleySubsetMc(X,Y, Ntot=NULL, Ni=3, cat=NULL, weight=NULL, discrete=NULL,
noise=FALSE)

S3 method for class 'shapleySubsetMc'
plot(x, ylim = c(0, 1), ...)

Arguments

X a matrix or a dataframe of the input sample

Y a vector of the output sample

Ntot an integer of the approximate cost wanted

Ni the number of nearest neighbours taken for each point

cat a vector giving the indices of the input categorical variables

weight a vector with the same length of cat giving the weight of each categorical vari-
able in the product distance

discrete a vector giving the indices of the input variable that are real, and not categorical,
but that can take several times the same values

noise logical. If FALSE (the default), the variable Y is a function of X

x a list of class "shapleySubsetMc" storing the state of the sensitivity study
(Shapley effects, cost, names of inputs)

ylim y-coordinate plotting limits

... any other arguments for plotting

Details

If weight = NULL, all the categorical variables will have the same weight 1.

If Ntot = NULL, the nearest neighbours will be compute for all the n(2p − 2) points, where n is the
length of the sample. The estimation can be very long with this parameter.

126 shapleySubsetMc

Value

shapleySubsetMc returns a list of class "shapleySubsetMc", containing:

shapley the Shapley effects estimates.

cost the real total cost of these estimates: the total number of points for which the
nearest neighbours were computed.

names the labels of the input variables.

Author(s)

Baptiste Broto

References

B. Broto, F. Bachoc, M. Depecker, 2020, Variance reduction for estimation of Shapley effects and
adaptation to unknown input distribution, SIAM/ASA Journal of Uncertainty Quantification, 8:693-
716.

See Also

shapleyPermEx, shapleyPermRand, shapleyLinearGaussian, sobolrank, shapleysobol_knn

Examples

First example: the linear Gaussian framework

we generate a covariance matrice Sigma
p <- 4 #dimension
A <- matrix(rnorm(p^2),nrow=p,ncol=p)
Sigma <- t(A)%*%A # it means t(A)%*%A
C <- chol(Sigma)
n <- 500 #sample size (put n=2000 for more consistency)

Z=matrix(rnorm(p*n),nrow=n,ncol=p)
X=Z%*%C # X is a gaussian vector with zero mean and covariance Sigma
Y=rowSums(X)
Shap=shapleySubsetMc(X=X,Y=Y,Ntot=5000)
plot(Shap)

#Second example: The Sobol model with heterogeneous inputs

p=8 #dimension
A=matrix(rnorm(p^2),nrow=p,ncol=p)
Sigma=t(A)%*%A
C=chol(Sigma)
n=500 #sample size (put n=5000 for more consistency)

Z=matrix(rnorm(p*n),nrow=n,ncol=p)
X=Z

sobol 127

#we create discrete and categorical variables
X[,1]=round(X[,1]/2)
X[,2]=X[,2]>2
X[,4]=-2*round(X[,4])+4
X[(X[,6]>0 &X[,6]<1),6]=1

cat=c(1,2) # we choose to take X1 and X2 as categorical variables
(with the discrete distance)

discrete=c(4,6) # we indicate that X4 and X6 can take several times the same value

Y=sobol.fun(X)
Ntot <- 2000 # put Ntot=20000 for more consistency
Shap=shapleySubsetMc(X=X,Y=Y, cat=cat, discrete=discrete, Ntot=Ntot, Ni=10)

plot(Shap)

sobol Monte Carlo Estimation of Sobol’ Indices

Description

sobol implements the Monte Carlo estimation of the Sobol’ sensitivity indices (standard estimator).
This method allows the estimation of the indices of the variance decomposition, sometimes referred
to as functional ANOVA decomposition, up to a given order, at a total cost of (N +1)×n where N
is the number of indices to estimate. This function allows also the estimation of the so-called subset
(or group) indices, i.e. the first-order indices with respect to single multidimensional inputs.

Usage

sobol(model = NULL, X1, X2, order = 1, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobol'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobol'
print(x, ...)
S3 method for class 'sobol'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'sobol'

plotMultOut(x, ylim = c(0, 1), ...)
S3 method for class 'sobol'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

128 sobol

X1 the first random sample.
X2 the second random sample.
order either an integer, the maximum order in the ANOVA decomposition (all indices

up to this order will be computed), or a list of numeric vectors, the multidimen-
sional compounds of the wanted subset indices.

nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
x a list of class "sobol" storing the state of the sensitivity study (parameters, data,

estimates).
data a list of class "sobol" storing the state of the sensitivity study (parameters, data,

estimates).
y a vector of model responses.
return.var a vector of character strings giving further internal variables names to store in

the output object x.
ylim y-coordinate plotting limits.
mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-

plied in each layer added to the plot.
environment [Deprecated] Used prior to tidy evaluation.
... any other arguments for model which are passed unchanged each time it is

called.

Value

sobol returns a list of class "sobol", containing all the input arguments detailed before, plus the
following components:

call the matched call.
X a data.frame containing the design of experiments.
y a vector of model responses.
V the estimations of Variances of the Conditional Expectations (VCE) with respect

to one factor or one group of factors.
D the estimations of the terms of the ANOVA decomposition (not for subset in-

dices).
S the estimations of the Sobol’ sensitivity indices (not for subset indices).

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, D.boot and S.boot).

Author(s)

Gilles Pujol

References

I. M. Sobol, 1993, Sensitivity analysis for non-linear mathematical model, Math. Modelling Com-
put. Exp., 1, 407–414.

sobol2002 129

See Also

sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez,sobolEff, sobolSmthSpl,
sobolmara, sobolroalhs, fast99, sobolGP,sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,1])
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis
x <- sobol(model = sobol.fun, X1 = X1, X2 = X2, order = 2, nboot = 100)
print(x)
#plot(x)

library(ggplot2)
ggplot(x)

sobol2002 Monte Carlo Estimation of Sobol’ Indices (scheme by Saltelli 2002)

Description

sobol2002 implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices), at a total cost of (p+2)×n model evaluations.
These are called the Saltelli estimators.

Usage

sobol2002(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobol2002'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobol2002'
print(x, ...)
S3 method for class 'sobol2002'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'sobol2002'

plotMultOut(x, ylim = c(0, 1), ...)
S3 method for class 'sobol2002'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

130 sobol2002

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobol2002" storing the state of the sensitivity study (parameters,
data, estimates).

data a list of class "sobol2002" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is called

Details

BE CAREFUL! This estimator suffers from a conditioning problem when estimating the variances
behind the indices computations. This can seriously affect the Sobol’ indices estimates in case
of largely non-centered output. To avoid this effect, you have to center the model output before
applying "sobol2002". Functions "sobolEff", "soboljansen" and "sobolmartinez" do not
suffer from this problem.

Value

sobol2002 returns a list of class "sobol2002", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

sobol2007 131

Author(s)

Gilles Pujol

References

A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Computer
Physics Communication, 145, 580–297.

See Also

sobol, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolEff, sobolmara, sobolGP,
sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- sobol2002(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

sobol2007 Monte Carlo Estimation of Sobol’ Indices (improved formulas of
Mauntz: Sobol et al. (2007) and Saltelli et al. (2010))

Description

sobol2007 implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices), at a total cost of (p+2)×n model evaluations.
These are called the Mauntz estimators.

132 sobol2007

Usage

sobol2007(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobol2007'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobol2007'
print(x, ...)
S3 method for class 'sobol2007'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'sobol2007'

plotMultOut(x, ylim = c(0, 1), ...)
S3 method for class 'sobol2007'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobol2007" storing the state of the sensitivity study (parameters,
data, estimates).

data a list of class "sobol2007" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is called

Details

This estimator is good for small first-order and total indices.

BE CAREFUL! This estimator suffers from a conditioning problem when estimating the variances
behind the indices computations. This can seriously affect the Sobol’ indices estimates in case
of largely non-centered output. To avoid this effect, you have to center the model output before
applying "sobol2007". Functions "sobolEff", "soboljansen" and "sobolmartinez" do not
suffer from this problem.

sobol2007 133

Value

sobol2007 returns a list of class "sobol2007", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss

References

I.M. Sobol, S. Tarantola, D. Gatelli, S.S. Kucherenko and W. Mauntz, 2007, Estimating the approx-
imation errors when fixing unessential factors in global sensitivity analysis, Reliability Engineering
and System Safety, 92, 957–960.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola, 2010, Variance based
sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer
Physics Communications 181, 259–270.

See Also

sobol, sobol2002, sobolSalt, soboljansen, sobolmartinez, sobolEff, sobolmara, sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

134 sobolEff

x <- sobol2007(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

sobolEff Monte Carlo Estimation of Sobol’ Indices (formulas of Janon-Monod)

Description

sobolEff implements the Monte Carlo estimation of the Sobol’ sensitivity indices using the asymp-
totically efficient formulas in section 4.2.4.2 of Monod et al. (2006). Either all first-order indices or
all total-effect indices are estimated at a cost of N × (p+ 1) model calls or all closed second-order
indices are estimated at a cost of

(
N×p
2)

)
model calls.

Usage

sobolEff(model = NULL, X1, X2, order=1, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobolEff'
tell(x, y = NULL, ...)
S3 method for class 'sobolEff'
print(x, ...)
S3 method for class 'sobolEff'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'sobolEff'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

order an integer specifying the indices to estimate: 0 for total effect indices,1 for first-
order indices and 2 for closed second-order indices.

nboot the number of bootstrap replicates, or zero to use asymptotic standard deviation
estimates given in Janon et al. (2012).

conf the confidence level for confidence intervals.

x a list of class "sobolEff" storing the state of the sensitivity study (parameters,
data, estimates).

data a list of class "sobolEff" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

sobolEff 135

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

The estimator used by sobolEff is defined in Monod et al. (2006), Section 4.2.4.2 and studied under
the name T_N in Janon et al. (2012). This estimator is good for large first-order indices.

Value

sobolEff returns a list of class "sobolEff", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

S the estimations of the Sobol’ sensitivity indices.

Author(s)

Alexandre Janon, Laurent Gilquin

References

Monod, H., Naud, C., Makowski, D. (2006), Uncertainty and sensitivity analysis for crop models
in Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications,
Elsevier.

A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur (2014), Asymptotic normality and efficiency
of two Sobol index estimators, ESAIM: Probability and Statistics, 18:342-364.

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolSmthSpl

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,1])
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

136 sobolGP

x <- sobolEff(model = sobol.fun, X1 = X1, X2 = X2, nboot = 0)
print(x)

library(ggplot2)
ggplot(x)

sobolGP Kriging-based sensitivity analysis

Description

Perform a kriging-based global sensitivity analysis taking into account both the meta-model and
the Monte-Carlo errors. The Sobol indices are estimated with a Monte-Carlo integration and the
true function is substituted by a kriging model. It is built thanks to the function km of the package
DiceKriging. The complete conditional predictive distribution of the kriging model is considered
(not only the predictive mean).

Usage

sobolGP(
model,
type="SK",
MCmethod="sobol",
X1,
X2,
nsim=100,
nboot=1,
conf = 0.95,
sequential = FALSE,
candidate,
sequential.tot=FALSE,
max_iter = 1000)

S3 method for class 'sobolGP'
ask(x, tot = FALSE, ...)

S3 method for class 'sobolGP'
tell(x, y=NULL, xpoint=NULL, newcandidate=NULL, ...)

S3 method for class 'sobolGP'
print(x, ...)

S3 method for class 'sobolGP'
plot(x,...)

sobolGP 137

Arguments

model an object of class "km" specifying the kriging model built from package "DiceKriging"
(see km).

type a character string giving the type of the considered kriging model. "SK" refers
to simple kriging and "UK" refers to universal kriging (see km).

MCmethod a character string specifying the Monte-Carlo procedure used to estimate the
Sobol indices. The avaible methods are : "sobol", "sobol2002", "sobol2007",
"sobolEff" and "soboljansen".

X1 a matrix representing the first random sample.

X2 a matrix representing the second random sample.

nsim an integer giving the number of samples for the conditional Gaussian process. It
is used to quantify the uncertainty due to the kriging approximation.

nboot an integer representing the number of bootstrap replicates. It is used to quan-
tify the uncertainty due to the Monte-Carlo integrations. We recommend to set
nboot = 100.

conf a numeric representing the confidence intervals taking into account the uncer-
tainty due to the bootstrap procedure and the Gaussian process samples.

sequential a boolean. If sequential=TRUE, the procedure provides a new point where to
perform a simulation. It is the one minimizing the sum of the MAIN effect es-
timate variances. The variance is taken with respect to the conditional Gaussian
process. The new point is selected in the points candidate.

candidate a matrix representing the candidate points where the best new point to be sim-
ulated is selected. The lines represent the points and the columns represent the
dimension.

sequential.tot a boolean. If sequential.tot=TRUE, the procedure provides a new point where
to perform the simulation. It is the one minimizing the sum of the TOTAL effect
estimate. The variance is taken with respect to the conditional Gaussian process.
The new point is selected in the points candidate.

max_iter a numeric giving the maximal number of iterations for the propagative Gibbs
sampler. It is used to simulate the realizations of the Gaussian process.

x an object of class S3 "sobolGP" obtaining from the procedure sobolGP. It stores
the results of the Kriging-based global sensitivity analysis.

tot a boolean. If tot=TRUE, the procedure ask provides a point relative to the uncer-
tainty of the total Sobol’ indices (instead of first order’ ones).

xpoint a matrix representing a new point added to the kriging model.

y a numeric giving the response of the function at xpoint.

newcandidate a matrix representing the new candidate points where the best point to be simu-
lated is selected. If newcandidate=NULL, these points correspond to candidate
without the new point xpoint.

... any other arguments to be passed

138 sobolGP

Details

The function ask provides the new point where the function should be simulated. Furthermore,
the function tell performs a new kriging-based sensitivity analysis when the point x with the
corresponding observation y is added.

Value

An object of class S3 sobolGP.

• call : a list containing the arguments of the function sobolGP :

– X1 : X1
– X2 : X2
– conf : conf
– nboot : nboot
– candidate : candidate
– sequential : sequential
– max_iter : max_iter
– sequential.tot : sequential.tot
– model : model
– tot : tot
– method : MCmethod
– type : type
– nsim : nsim

• S : a list containing the results of the kriging-based sensitivity analysis for the MAIN effects:

– mean : a matrix giving the mean of the Sobol index estimates.
– var : a matrix giving the variance of the Sobol index estimates.
– ci : a matrix giving the confidence intervals of the Sobol index estimates according to
conf.

– varPG : a matrix giving the variance of the Sobol index estimates due to the Gaussian
process approximation.

– varMC : a matrix giving the variance of the Sobol index estimates due to the Monte-Carlo
integrations.

– xnew : if sequential=TRUE, a matrix giving the point in candidate which is the best to
simulate.

– xnewi : if sequential=TRUE, an integer giving the index of the point in candidate which
is the best to simulate.

• T : a list containing the results of the kriging-based sensitivity analysis for the TOTAL effects:

– mean : a matrix giving the mean of the Sobol index estimates.
– var : a matrix giving the variance of the Sobol index estimates.
– ci : a matrix giving the confidence intervals of the Sobol index estimates according to
conf.

– varPG : a matrix giving the variance of the Sobol index estimates due to the Gaussian
process approximation.

sobolGP 139

– varMC : a matrix giving the variance of the Sobol index estimates due to the Monte-Carlo
integrations.

– xnew : if sequential.tot=TRUE, a matrix giving the point in candidate which is the
best to simulate.

– xnewi : if sequential.tot=TRUE, an integer giving the index of the point in candidate
which is the best to simulate.

Author(s)

Loic Le Gratiet, EDF R&D

References

L. Le Gratiet, C. Cannamela and B. Iooss (2014), A Bayesian approach for global sensitivity anal-
ysis of (multifidelity) computer codes, SIAM/ASA J. Uncertainty Quantification 2-1, pp. 336-363.

See Also

sobol, sobol2002, sobol2007, sobolEff, soboljansen, sobolMultOut, km

Examples

library(DiceKriging)

#--------------------------------------#
kriging model building
#--------------------------------------#

d <- 2; n <- 16
design.fact <- expand.grid(x1=seq(0,1,length=4), x2=seq(0,1,length=4))
y <- apply(design.fact, 1, branin)

m <- km(design=design.fact, response=y)

#--------------------------------------#
sobol samples & candidate points
#--------------------------------------#

n <- 1000
X1 <- data.frame(matrix(runif(d * n), nrow = n))
X2 <- data.frame(matrix(runif(d * n), nrow = n))

candidate <- data.frame(matrix(runif(d * 100), nrow = 100))

#--------------------------------------#
Kriging-based Sobol
#--------------------------------------#

nsim <- 10 # put nsim <- 100
nboot <- 10 # put nboot <- 100

140 soboljansen

res <- sobolGP(
model = m,
type="UK",
MCmethod="sobol",
X1,
X2,
nsim = nsim,
conf = 0.95,
nboot = nboot,
sequential = TRUE,
candidate,
sequential.tot=FALSE,
max_iter = 1000
)

res
plot(res)

x <- ask(res)
y <- branin(x)

The following line doesn't work (uncorrected bug:
unused argument in km(), passed by update(), eval(), tell.sobolGP() ??)
#res.new <- tell(res,y,x)
#res.new

soboljansen Monte Carlo Estimation of Sobol’ Indices (improved formulas of
Jansen (1999) and Saltelli et al. (2010))

Description

soboljansen implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices), at a total cost of (p+2)×n model evaluations.
These are called the Jansen estimators.

Usage

soboljansen(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'soboljansen'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'soboljansen'
print(x, ...)
S3 method for class 'soboljansen'
plot(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...)
S3 method for class 'soboljansen'

plotMultOut(x, ylim = c(0, 1), ...)

soboljansen 141

S3 method for class 'soboljansen'
ggplot(data, mapping = aes(), ylim = c(0, 1), y_col = NULL,

y_dim3 = NULL, ..., environment = parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "soboljansen" storing the state of the sensitivity study (parame-
ters, data, estimates).

data a list of class "soboljansen" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

y_col an integer defining the index of the column of x$y to be used for plotting the
corresponding sensitivity indices (only applies if x$y is a matrix or an array). If
set to NULL (as per default) and x$y is a matrix or an array, the first column (re-
spectively the first element in the second dimension) of x$y is used (i.e. y_col
= 1).

y_dim3 an integer defining the index in the third dimension of x$y to be used for plotting
the corresponding sensitivity indices (only applies if x$y is an array). If set to
NULL (as per default) and x$y is a three-dimensional array, the first element in
the third dimension of x$y is used (i.e. y_dim3 = 1).

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... for soboljansen: any other arguments for model which are passed unchanged
each time it is called.

Details

This estimator is good for large first-order indices, and (large and small) total indices.

This version of soboljansen also supports matrices and three-dimensional arrays as output of
model. If the model output is a matrix or an array, V, S and T are matrices or arrays as well (depend-
ing on the type of y and the value of nboot).

The bootstrap outputs V.boot, S.boot and T.boot can only be returned if the model output is a
vector (using argument return.var). For matrix or array output, these objects can’t be returned.

142 soboljansen

Value

soboljansen returns a list of class "soboljansen", containing all the input arguments detailed
before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y either a vector, a matrix or a three-dimensional array of model responses (de-
pends on the output of model).

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss, with contributions from Frank Weber (2016)

References

M.J.W. Jansen, 1999, Analysis of variance designs for model output, Computer Physics Communi-
cation, 117, 35–43.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola, 2010, Variance based
sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer
Physics Communications 181, 259–270.

See Also

sobol, sobol2002, sobolSalt, sobol2007, sobolmartinez, sobolEff, sobolmara, sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

sobolmara 143

x <- soboljansen(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

Only for demonstration purposes: a model function returning a matrix
sobol.fun_matrix <- function(X){

res_vector <- sobol.fun(X)
cbind(res_vector, 2 * res_vector)

}
x_matrix <- soboljansen(model = sobol.fun_matrix, X1, X2)
plot(x_matrix, y_col = 2)
title(main = "y_col = 2")

Also only for demonstration purposes: a model function returning a
three-dimensional array
sobol.fun_array <- function(X){

res_vector <- sobol.fun(X)
res_matrix <- cbind(res_vector, 2 * res_vector)
array(data = c(res_matrix, 5 * res_matrix),

dim = c(length(res_vector), 2, 2))
}
x_array <- soboljansen(model = sobol.fun_array, X1, X2)
plot(x_array, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")

sobolmara Monte Carlo Estimation of Sobol’ Indices via matrix permutations

Description

sobolmara implements the Monte Carlo estimation of the first-order Sobol’ sensitivity indices us-
ing the formula of Mara and Joseph (2008), called the Mara estimator. This method allows the
estimation of all first-order p indices at a cost of 2N model calls (the random sample size), then
independently of p (the number of inputs).

Usage

sobolmara(model = NULL, X1, ...)
S3 method for class 'sobolmara'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobolmara'
print(x, ...)
S3 method for class 'sobolmara'

144 sobolmara

plot(x, ylim = c(0, 1), ...)
S3 method for class 'sobolmara'

plotMultOut(x, ylim = c(0, 1), ...)
S3 method for class 'sobolmara'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the random sample.

x a list of class "sobolmara" storing the state of the sensitivity study (parameters,
data, estimates).

data a list of class "sobolmara" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

The estimator used by sobolmara is based on rearragement of a unique matrix via random permuta-
tions (see Mara and Joseph, 2008). Bootstrap confidence intervals are not available.

Value

sobolmara returns a list of class "sobolmara", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

S the estimations of the Sobol’ sensitivity indices.

Author(s)

Bertrand Iooss

sobolmartinez 145

References

Mara, T. and Joseph, O.R. (2008), Comparison of some efficient methods to evaluate the main effect
of computer model factors, Journal of Statistical Computation and Simulation, 78:167–178

See Also

sobolroalhs, sobol, sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobolmara requires 1 sample
(there are 8 factors, all following the uniform distribution on [0,1])
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis
x <- sobolmara(model = sobol.fun, X1 = X1)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

sobolmartinez Monte Carlo Estimation of Sobol’ Indices (formulas of Martinez
(2011))

Description

sobolmartinez implements the Monte Carlo estimation of the Sobol’ indices for both first-order
and total indices using correlation coefficients-based formulas, at a total cost of (p+ 2)× n model
evaluations. These are called the Martinez estimators.

Usage

sobolmartinez(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobolmartinez'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobolmartinez'
print(x, ...)
S3 method for class 'sobolmartinez'
plot(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...)
S3 method for class 'sobolmartinez'
ggplot(data, mapping = aes(), ylim = c(0, 1), y_col = NULL,

y_dim3 = NULL, ..., environment = parent.frame())

146 sobolmartinez

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

nboot the number of bootstrap replicates, or zero to use theoretical formulas based on
confidence interfaces of correlation coefficient (Martinez, 2011).

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobolmartinez" storing the state of the sensitivity study (pa-
rameters, data, estimates).

data a list of class "sobolmartinez" storing the state of the sensitivity study (pa-
rameters, data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

y_col an integer defining the index of the column of x$y to be used for plotting the
corresponding sensitivity indices (only applies if x$y is a matrix or an array). If
set to NULL (as per default) and x$y is a matrix or an array, the first column (re-
spectively the first element in the second dimension) of x$y is used (i.e. y_col
= 1).

y_dim3 an integer defining the index in the third dimension of x$y to be used for plotting
the corresponding sensitivity indices (only applies if x$y is an array). If set to
NULL (as per default) and x$y is a three-dimensional array, the first element in
the third dimension of x$y is used (i.e. y_dim3 = 1).

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... for sobolmartinez: any other arguments for model which are passed unchanged
each time it is called

Details

This estimator supports missing values (NA or NaN) which can occur during the simulation of the
model on the design of experiments (due to code failure) even if Sobol’ indices are no more rigorous
variance-based sensitivity indices if missing values are present. In this case, a warning is displayed.

This version of sobolmartinez also supports matrices and three-dimensional arrays as output of
model. Bootstrapping (including bootstrap confidence intervals) is also supported for matrix or
array output. However, theoretical confidence intervals (for nboot = 0) are only supported for vector
output. If the model output is a matrix or an array, V, S and T are matrices or arrays as well
(depending on the type of y and the value of nboot).

The bootstrap outputs V.boot, S.boot and T.boot can only be returned if the model output is a
vector (using argument return.var). For matrix or array output, these objects can’t be returned.

sobolmartinez 147

Value

sobolmartinez returns a list of class "sobolmartinez", containing all the input arguments de-
tailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y either a vector, a matrix or a three-dimensional array of model responses (de-
pends on the output of model).

V the estimations of normalized variances of the Conditional Expectations (VCE)
with respect to each factor and also with respect to the complementary set of
each factor ("all but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss, with contributions from Frank Weber (2016)

References

J-M. Martinez, 2011, Analyse de sensibilite globale par decomposition de la variance, Presenta-
tion in the meeting of GdR Ondes and GdR MASCOT-NUM, January, 13th, 2011, Institut Henri
Poincare, Paris, France.

M. Baudin, K. Boumhaout, T. Delage, B. Iooss and J-M. Martinez, 2016, Numerical stability of
Sobol’ indices estimation formula, Proceedings of the SAMO 2016 Conference, Reunion Island,
France, December 2016

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, soboltouati, sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

148 sobolMultOut

x <- sobolmartinez(model = sobol.fun, X1, X2, nboot = 0)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

Only for demonstration purposes: a model function returning a matrix
sobol.fun_matrix <- function(X){

res_vector <- sobol.fun(X)
cbind(res_vector, 2 * res_vector)

}
x_matrix <- sobolmartinez(model = sobol.fun_matrix, X1, X2)
plot(x_matrix, y_col = 2)
title(main = "y_col = 2")

Also only for demonstration purposes: a model function returning a
three-dimensional array
sobol.fun_array <- function(X){

res_vector <- sobol.fun(X)
res_matrix <- cbind(res_vector, 2 * res_vector)
array(data = c(res_matrix, 5 * res_matrix),

dim = c(length(res_vector), 2, 2))
}
x_array <- sobolmartinez(model = sobol.fun_array, X1, X2)
plot(x_array, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")

sobolMultOut Monte Carlo Estimation of Aggregated Sobol’ Indices for multiple and
functional outputs

Description

sobolMultOut implements the aggregated Sobol’ indices for multiple outputs. It consists in aver-
aging all the Sobol indices weighted by the variance of their corresponding output. Moreover, this
function computes and plots the functional (unidimensional) Sobol’ indices for functional (unidi-
mensional) model output via plotMultOut. Sobol’ indices for both first-order and total indices are
estimated by Monte Carlo formulas.

Usage

sobolMultOut(model = NULL, q = 1, X1, X2, MCmethod = "sobol",
ubiquitous = FALSE, ...)

S3 method for class 'sobolMultOut'
print(x, ...)

sobolMultOut 149

S3 method for class 'sobolMultOut'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'sobolMultOut'

plotMultOut(x, ylim = c(0, 1), ...)
S3 method for class 'sobolMultOut'

ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment
= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

q dimension of the model output vector.

X1 the first random sample.

X2 the second random sample.

MCmethod a character string specifying the Monte-Carlo procedure used to estimate the
Sobol indices. The avaible methods are : "sobol", "sobol2002", "sobol2007",
"soboljansen", "sobolmara" and "sobolGP".

ubiquitous if TRUE, 1D functional Sobol indices are computed (default=FALSE).

x a list of class MCmethod storing the state of the sensitivity study (parameters,
data, estimates).

data a list of class MCmethod storing the state of the sensitivity study (parameters,
data, estimates).

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is called

Details

For this function, there are several gaps: the bootstrap estimation of confidence intervals is not
avalaible and the tell function does not work. Aggregated Sobol’ indices can be plotted with the
S3 method plot and ubiquitous Sobol’ indices can be visualized with the S3 method plotMultOut
(does not work for the "sobolGP" method).

Value

sobolMultOut returns a list of class MCmethod, containing all its input arguments, plus the follow-
ing components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of the aggregated Variances of the Conditional Expectations
(VCE) with respect to each factor and also with respect to the complementary
set of each factor ("all but Xi").

150 sobolMultOut

S the estimations of the aggregated Sobol’ first-order indices.

T the estimations of the aggregated Sobol’ total sensitivity indices.

Sfct the estimations of the functional Sobol’ first-order indices (if ubiquitous=TRUE
and plot.fct=TRUE).

Tfct the estimations of the functional Sobol’ total sensitivity indices (if ubiquitous=TRUE
and plot.fct=TRUE).

Author(s)

Bertrand Iooss

References

M. Lamboni, H. Monod and D. Makowski, 2011, Multivariate sensitivity analysis to measure global
contribution of input factors in dynamic models, Reliability Engineering and System Safety, 96:450-
459.

F. Gamboa, A. Janon, T. Klein and A. Lagnoux, 2014, Sensitivity indices for multivariate outputs,
Electronic Journal of Statistics, 8:575-603.

See Also

sobol, sobol2002, sobol2007, soboljansen, sobolmara, sobolGP

Examples

Tests on the functional toy fct 'Arctangent temporal function'

y0 <- atantemp.fun(matrix(c(-7,0,7,-7,0,7),ncol=2))
#plot(y0[1,],type="l")
#apply(y0,1,lines)

n <- 100
X <- matrix(c(runif(2*n,-7,7)),ncol=2)
y <- atantemp.fun(X)
plot(y0[2,],ylim=c(-2,2),type="l")
apply(y,1,lines)

Sobol indices computations

n <- 1000
X1 <- data.frame(matrix(runif(2*n,-7,7), nrow = n))
X2 <- data.frame(matrix(runif(2*n,-7,7), nrow = n))

sa <- sobolMultOut(model=atantemp.fun, q=100, X1, X2,
MCmethod="soboljansen", ubiquitous=TRUE)

print(sa)
plot(sa)
plotMultOut(sa)

sobolowen 151

library(ggplot2)
ggplot(sa)

sobolowen Monte Carlo Estimation of Sobol’ Indices (improved formulas of
Owen (2013)

Description

sobolowen implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices). Take as input 3 independent matrices. These
are called the Owen estimators.

Usage

sobolowen(model = NULL, X1, X2, X3, nboot = 0, conf = 0.95, varest = 2, ...)
S3 method for class 'sobolowen'
tell(x, y = NULL, return.var = NULL, varest = 2, ...)
S3 method for class 'sobolowen'
print(x, ...)
S3 method for class 'sobolowen'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'sobolowen'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

X3 the third random sample.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

varest choice for the variance estimator for the denominator of the Sobol’ indices.
varest=1 is for a classical estimator. varest=2 (default) is for the estimator pro-
posed in Janon et al. (2012).

x a list of class "sobolowen" storing the state of the sensitivity study (parameters,
data, estimates).

data a list of class "sobolowen" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

152 sobolowen

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is called

Value

sobolowen returns a list of class "sobolowen", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Taieb Touati and Bernardo Ramos

References

A. Owen, 2013, Better estimations of small Sobol’ sensitivity indices, ACM Transactions on Mod-
eling and Computer Simulations (TOMACS), 23(2), 11.

Janon, A., Klein T., Lagnoux A., Nodet M., Prieur C. (2012), Asymptotic normality and efficiency
of two Sobol index estimators. Accepted in ESAIM: Probability and Statistics.

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolEff

Examples

Test case : the non-monotonic Sobol g-function

The method of sobolowen requires 3 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000

sobolrank 153

X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
X3 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- sobolowen(model = sobol.fun, X1, X2, X3, nboot = 10) # put nboot=100
print(x)
plot(x)

library(ggplot2)
ggplot(x)

sobolrank First-order sensitivity indices estimation via ranking

Description

sobolrank implements the estimation of all first-order indices using only N model evaluations via
ranking following Gamboa et al. (2020) and inspired by Chatterjee (2019).

Usage

sobolrank(model = NULL, X, nboot = 0, conf = 0.95, nsample = round(0.8*nrow(X)),
...)

S3 method for class 'sobolrank'
tell(x, y = NULL, ...)
S3 method for class 'sobolrank'
print(x, ...)
S3 method for class 'sobolrank'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'sobolrank'
ggplot(data, mapping = aes(), ..., environment

= parent.frame(), ylim = c(0, 1))

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X a random sample of the inputs.

nboot the number of bootstrap replicates, see details.

conf the confidence level for confidence intervals, see details.

nsample the size of the bootstrap sample, see details.

x a list of class "sobolrank" storing the state of the sensitivity study (parameters,
data, estimates).

154 sobolrank

data a list of class "sobolrank" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

The estimator used by sobolrank is defined in Gamboa et al. (2020). It is based on ranking the inputs
as was first proposed by Chatterjee (2019) for a Cramer-Von Mises based estimator. All first-order
indices can be estimated with a single sample of size N. Since boostrap creates ties which are not
accounted for in the algorithm, confidence intervals are obtained by sampling without replacement
with a sample size nsample.

Value

sobolrank returns a list of class "sobolrank", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

S the estimations of the Sobol’ sensitivity indices.

Author(s)

Sebastien Da Veiga

References

Gamboa, F., Gremaud, P., Klein, T., & Lagnoux, A., 2022, Global Sensitivity Analysis: a novel
generation of mighty estimators based on rank statistics, Bernoulli 28: 2345-2374.

Chatterjee, S., 2021, A new coefficient of correlation, Journal of the American Statistical Associa-
tion, 116:2009-2022.

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolSmthSpl, sobolEff,
sobolshap_knn

sobolrec 155

Examples

Test case : the non-monotonic Sobol g-function
Example with a call to a numerical model
library(boot)
n <- 1000
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- sobolrank(model = sobol.fun, X = X, nboot = 100)
print(x)
library(ggplot2)
ggplot(x)
Test case : the Ishigami function
Example with given data
n <- 500
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- sobolrank(model = NULL, X)
tell(x,Y)
print(x)
ggplot(x)

sobolrec Recursive estimation of Sobol’ indices

Description

sobolrec implements a recursive version of the procedure introduced by Tissot & Prieur (2015)
using two replicated nested designs. This function estimates either all first-order indices or all
closed second-order indices at a total cost of 2×N model evaluations where N is the size of each
replicated nested design.

Usage

sobolrec(model=NULL, factors, layers, order, precision, method=NULL, tail=TRUE,
...)

S3 method for class 'sobolrec'
ask(x, index, ...)
S3 method for class 'sobolrec'
tell(x, y = NULL, index, ...)
S3 method for class 'sobolrec'
print(x, ...)
S3 method for class 'sobolrec'
plot(x, ylim = c(0,1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

156 sobolrec

layers If order=1, a vector specifying the respective sizes of each layer (see "Details").
If order=2, an integer specifying the size of all layers.

order an integer specifying which indices to estimate: 1 for first-order indices, 2 for
closed second-order indices.

precision a vector containing:

• the target precision for the stopping criterion.
• the number of steps for the stopping criterion (must be greater than 1).

tail a boolean specifying the method used to choose the number of levels of the
orthogonal array (see "Warning messages").

method If order=2, a character specifying the method to construct the orthogonal arrays
(see "Details"):

• "al" for the algebraic method
• "ar" for the accept-reject method

Set to NULL if order=1.

x a list of class "sobolrec" storing the state of the sensitivity study (parameters,
data, estimates).

index an integer specifying the step of the recursion

y the model response.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

Details

For first-order indices, layers is a vector:

(s1, ..., sm)

specifying the number m of layers of the nested design whose respective size are given by:

k−1∏
i=1

si, k = 2, ...,m+ 1

For closed second-order indices, layers directly specifies the size of all layers.

For each Sobol’ index S the stopping criterion writes:

| Sl−1 − Sl |< ϵ

This criterion is tested for the last l0 steps (including the current one). ϵ and l0 are respectively the
target precision and the number of steps of the stopping criterion specified in precision.

sobolrec uses either an algebraic or an accept-rejet method to construct the orthogonal arrays for
the estimation of closed second-order indices. The algebraic method is less precise than the accept-
reject method but offers more steps when the number of factors is small.

sobolrec automatically assigns a uniform distribution on [0,1] to each input. Transformations of
distributions (between U[0,1] and the wanted distribution) have to be performed before the call to
tell().

sobolrec 157

Value

sobolrec returns a list of class "sobolrec", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments (row concatenation of the
two replicated designs).

y a list of the response used at each step.

V a list of the model variance estimated at each step.

S a list of the Sobol’ indices estimated at each step.

steps the number of steps performed.

N the size of each replicated nested design.

Warning messages

"The value entered for layers is not the square of a prime number. It has been replaced by: "
When order=2, the value of layers must be the square of a prime power number. This warn-
ing message indicates that it was not the case and the value has been replaced depending on
tail. If tail=TRUE (resp. tail=FALSE) the new value of layers is equal to the square of the
prime number preceding (resp. following) the square root of layers.

"The value entered for layers is not satisfying the constraint. It has been replaced by: " the value
N for layers must satisfied the constraint N ≥ (d−1)2 where d is the number of factors. This
warning message indicates that N was replaced by the square of the prime number following
(or equals to) d− 1.

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications,
Springer Series in Statistics.

L. Gilquin, E. Arnaud, H. Monod and C. Prieur, 2021, Recursive estimation procedure of Sobol’
indices based on replicated designs, Computational and Applied Mathematics, 40:1–23.

Examples

Test case: the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,1])

first-order indices estimation
x <- sobolrec(model = sobol.fun, factors = 8, layers=rep(2,each=15), order=1,

precision = c(5*10^(-2),2), method=NULL, tail=TRUE)
print(x)

closed second-order indices estimation
x <- sobolrec(model = sobol.fun, factors = 8, layers=11^2, order=2,

precision = c(10^(-2),3), method="al", tail=TRUE)

158 sobolrep

print(x)

Test case: dealing with external model
put in comment because of bug with ask use !

#x <- sobolrec(model = NULL, factors = 8, layers=rep(2,each=15), order=1,
precision = c(5*10^(-2),2), method=NULL, tail=TRUE)
#toy <- sobol.fun
#k <- 1
#stop_crit <- FALSE
#while(!(stop_crit) & (k<length(x$layers))){
ask(x, index=k)
y <- toy(x$block)
tell(x, y, index=k)
stop_crit <- x$stop_crit
k <- k+1
#}
#print(x)

sobolrep Sobol’ indices estimation based on replicated orthogonal arrays

Description

sobolrep generalizes the estimation of the Sobol’ sensitivity indices introduced by Tissot & Prieur
(2015) using two replicated orthogonal arrays. This function estimates either

• all first-order and second-order indices at a total cost of 2×N model evaluations,

• or all first-order, second-order and total-effect indices at a total cost of N × (d + 2) model
evaluations,

where N = q2 and q ≥ d − 1 is a prime number corresponding to the number of levels of each
orthogonal array.

Usage

sobolrep(model = NULL, factors, N, tail=TRUE,
conf=0.95, nboot=0, nbrep=1, total=FALSE, ...)
S3 method for class 'sobolrep'
tell(x, y = NULL, ...)
S3 method for class 'sobolrep'
print(x, ...)
S3 method for class 'sobolrep'
plot(x, ylim = c(0,1), choice, ...)

sobolrep 159

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

N an integer giving the size of each replicated design (for a total of 2 ×N model
evaluations).

tail a boolean specifying the method used to choose the number of levels of the
orthogonal array (see "Warning messages").

conf the confidence level for confidence intervals.

nboot the number of bootstrap replicates.

nbrep the number of times the estimation procedure is repeated (see "Details").

total a boolean specifying whether or not total effect indices are estimated.

x a list of class "sobolrep" storing the state of the sensitivity study (parameters,
data, estimates).

y the model response.

ylim y-coordinate plotting limits.

choice an integer specifying which indices to plot: 1 for first-order indices, 2 for second-
order indices, 3 for total-effect indices.

... any other arguments for model which are passed unchanged each time it is
called.

Details

sobolrep automatically assigns a uniform distribution on [0,1] to each input. Transformations of
distributions (between U[0,1] and the wanted distribution) have to be performed before the call to
tell() (see "Examples").

nbrep specifies the number of times the estimation procedure is repeated. Each repetition makes
use of the orthogonal array structure to obtain a new set of Sobol’ indices. It is important to note
that no additional model evaluations are performed (the cost of the procedure remains the same).

Value

sobolrep returns a list of class "sobolrep", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments (row concatenation of the
two replicated designs).

y the response used.

RP the matrix of permutations.

V the model variance.

S a data.frame containing estimations of the first-order Sobol’ indices plus confi-
dence intervals if specified.

160 sobolrep

S2 a data.frame containing estimations of the second-order Sobol’ indices plus con-
fidence intervals if specified.

T a data.frame containing estimations of the total-effect indices plus confidence
intervals if specified.

Warning messages

"The value entered for N is not the square of a prime number. It has been replaced by: " the num-
ber of levels q of each orthogonal array must be a prime number. If N is not a square of a prime
number, then this warning message indicates that it was replaced depending on the value of
tail. If tail=TRUE (resp. tail=FALSE) the new value of N is equal to the square of the prime
number preceding (resp. following) the square root of N.

"The value entered for N is not satisfying the constraint N ≥ (d− 1)2. It has been replaced by: "
the following constraint must be satisfied N ≥ (d−1)2 where d is the number of factors. This
warning message indicates that N was replaced by the square of the prime number following
(or equals to) d− 1.

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications,
Springer Series in Statistics.

J-Y. Tissot and C. Prieur, 2015, A randomized orthogonal orray-based procedure for the estimation
of first- and second-order Sobol’ indices, J. Statist. Comput. Simulation, 85:1358-1381.

Examples

Test case: the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,1])

x <- sobolrep(model = sobol.fun, factors = 8, N = 1000, nboot=100, nbrep=1, total=FALSE)
print(x)
plot(x,choice=1)
plot(x,choice=2)

Test case: dealing with non-uniform distributions

x <- sobolrep(model = NULL, factors = 3, N = 1000, nboot=0, nbrep=1, total=FALSE)

X1 follows a log-normal distribution:
x$X[,1] <- qlnorm(x$X[,1])

X2 follows a standard normal distribution:
x$X[,2] <- qnorm(x$X[,2])

X3 follows a gamma distribution:
x$X[,3] <- qgamma(x$X[,3],shape=0.5)

toy example

sobolroalhs 161

toy <- function(x){rowSums(x)}
y <- toy(x$X)
tell(x, y)
print(x)
plot(x,choice=1)
plot(x,choice=2)

sobolroalhs Sobol’ Indices Estimation Using Replicated OA-based LHS

Description

sobolroalhs implements the estimation of the Sobol’ sensitivity indices introduced by Tissot &
Prieur (2015) using two replicated designs (Latin hypercubes or orthogonal arrays). This function
estimates either all first-order indices or all closed second-order indices at a total cost of 2 × N
model evaluations. For closed second-order indices N = q2 where q ≥ d − 1 is a prime number
corresponding to the number of levels of the orthogonal array, and where d indicates the number of
factors.

Usage

sobolroalhs(model = NULL, factors, N, p=1, order, tail=TRUE, conf=0.95, nboot=0, ...)
S3 method for class 'sobolroalhs'
tell(x, y = NULL, ...)
S3 method for class 'sobolroalhs'
print(x, ...)
S3 method for class 'sobolroalhs'
plot(x, ylim = c(0,1), ...)
S3 method for class 'sobolroalhs'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

N an integer giving the size of each replicated design (for a total of 2 ×N model
evaluations).

p an integer giving the number of model outputs.

order an integer giving the order of the indices (1 or 2).

tail a boolean specifying the method used to choose the number of levels of the
orthogonal array (see "Warning messages").

conf the confidence level for confidence intervals.

nboot the number of bootstrap replicates.

162 sobolroalhs

x a list of class "sobolroalhs" storing the state of the sensitivity study (parame-
ters, data, estimates).

data a list of class "sobolroalhs" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

sobolroalhs automatically assigns a uniform distribution on [0,1] to each input. Transformations
of distributions (between U[0,1] and the wanted distribution) have to be realized before the call to
tell() (see "Examples").

Missing values (i.e NA values) in outputs are automatically handled by the function.

This function also supports multidimensional outputs (matrices in y or as output of model). In this
case, aggregated Sobol’ indices are returned (see sobolMultOut).

Value

sobolroalhs returns a list of class "sobolroalhs", containing all the input arguments detailed
before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments (row concatenation of the
two replicated designs).

y the responses used.

OA the orthogonal array constructed (NULL if order=1).

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor.

S the estimations of the Sobol’ indices.

Warning messages

"The value entered for N is not the square of a prime number. It has been replaced by: " when
order= 2, the number of levels of the orthogonal array must be a prime number. If N is not a
square of a prime number, then this warning message indicates that it was replaced depending
on the value of tail. If tail=TRUE (resp. tail=FALSE) the new value of N is equal to the
square of the prime number preceding (resp. following) the square root of N.

"The value entered for N is not satisfying the constraint N ≥ (d− 1)2. It has been replaced by: "
when order= 2, the following constraint must be satisfied N ≥ (d− 1)2 where d is the num-
ber of factors. This warning message indicates that N was replaced by the square of the prime
number following (or equals to) d− 1.

sobolroalhs 163

Author(s)

Laurent Gilquin

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications,
Springer Series in Statistics.

F. Gamboa, A. Janon, T. Klein and A. Lagnoux, 2014, Sensitivity indices for multivariate outputs,
Electronic Journal of Statistics, 8:575-603.

J.Y. Tissot and C. Prieur, 2015, A randomized orthogonal orray-based procedure for the estimation
of first- and second-order Sobol’ indices, J. Statist. Comput. Simulation, 85:1358-1381.

See Also

sobolmara, sobolroauc, sobolMultOut

Examples

library(boot)
library(numbers)

####################
Test case: the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,1])

first-order sensitivity indices
x <- sobolroalhs(model = sobol.fun, factors = 8, N = 1000, order = 1, nboot=100)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

closed second-order sensitivity indices
x <- sobolroalhs(model = sobol.fun, factors = 8, N = 1000, order = 2, nboot=100)
print(x)
ggplot(x)

####################
Test case: dealing with non-uniform distributions

x <- sobolroalhs(model = NULL, factors = 3, N = 1000, order =1, nboot=0)

X1 follows a log-normal distribution:
x$X[,1] <- qlnorm(x$X[,1])

X2 follows a standard normal distribution:
x$X[,2] <- qnorm(x$X[,2])

164 sobolroauc

X3 follows a gamma distribution:
x$X[,3] <- qgamma(x$X[,3],shape=0.5)

toy example
toy <- function(x){rowSums(x)}
y <- toy(x$X)
tell(x, y)
print(x)
ggplot(x)

####################
Test case : multidimensional outputs

toy <- function(x){cbind(x[,1]+x[,2]+x[,1]*x[,2],2*x[,1]+3*x[,1]*x[,2]+x[,2])}
x <- sobolroalhs(model = toy, factors = 3, N = 1000, p=2, order =1, nboot=100)
print(x)
ggplot(x)

sobolroauc Sobol’ Indices estimation under inequality constraints

Description

sobolroauc deals with the estimation of Sobol’ sensitivity indices when there exists one or multiple
sets of constrained factors. Constraints within a set are expressed as inequality constraints (simplex
constraint). This function generalizes the procedure of Tissot and Prieur (2015) to estimate either
all first-order indices or all closed second-order indices at a total cost of 2×N model evaluations.
For closed second-order indices N = q2 where q ≥ d − 1 is a prime number denoting the number
of levels of the orthogonal array, and where d indicates the number of independent factors or sets of
factors.

Usage

sobolroauc(model = NULL, factors, constraints = NULL, N, p = 1, order,
tail = TRUE, conf = 0.95, nboot = 0, ...)

S3 method for class 'sobolroauc'
tell(x, y = NULL, ...)
S3 method for class 'sobolroauc'
print(x, ...)
S3 method for class 'sobolroauc'
plot(x, ylim = c(0,1), ...)
S3 method for class 'sobolroauc'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

sobolroauc 165

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

constraints a list giving the sets of constrained factors (see "Details").

N an integer giving the size of each replicated design (for a total of 2 ×N model
evaluations).

p an integer giving the number of model outputs.

order an integer giving the order of the indices (1 or 2).

tail a boolean specifying the method used to choose the number of levels of the
orthogonal array (see "Warning messages").

conf the confidence level for confidence intervals.

nboot the number of bootstrap replicates.

x a list of class "sobolroauc" storing the state of the sensitivity study (parame-
ters, data, estimates).

data a list of class "sobolroauc" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

Details

constraints list the sets of factors depending on each other through inequality constraints (see
"Examples"). A same factor is not allowed to appear in multiple sets. Factors not appearing in
constraints are assumed to be independent and follow each a uniform distribution on [0,1]. One
Sobol’ index is estimated for each independent factor or set of factors.

Missing values (i.e NA values) in the model responses are automatically handled by the function.

This function also supports multidimensional outputs (matrices in y or as output of model). In this
case, aggregated Sobol’ indices are returned (see sobolMultOut).

Value

sobolroauc returns a list of class "sobolroauc", containing all the input arguments detailed be-
fore, plus the following components:

call the matched call.

X a data.frame containing the design of experiments (concatenation of two repli-
cated designs).

166 sobolroauc

y the responses used.

OA the orthogonal array constructed (NULL if order=1).

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor.

S the estimations of the Sobol’ indices.

Warning messages

"The value entered for N is not the square of a prime number. It has been replaced by: " when
order= 2, the number of levels of the orthogonal array must be a prime number. If N is not a
square of a prime number, then this warning message indicates that it was replaced depending
on the value of tail. If tail=TRUE (resp. tail=FALSE) the new value of N is equal to the
square of the prime number preceding (resp. following) the square root of N.

"The value entered for N is not satisfying the constraint N ≥ (d− 1)2. It has been replaced by: "
when order= 2, the following constraint must be satisfied N ≥ (d − 1)2 where d is the
number of independent factors or sets of factors. This warning message indicates that N was
replaced by the square of the prime number following (or equals to) d− 1.

Author(s)

Laurent Gilquin

References

L. Devroye, 1986, Non-Uniform Random Variate Generation. Springer-Verlag.

J. Jacques, C. Lavergne and N. Devictor, 2006, Sensitivity Analysis in presence of model uncer-
tainty and correlated inputs. Reliability Engineering & System Safety, 91:1126-1134.

L. Gilquin, C. Prieur and E. Arnaud, 2015, Replication procedure for grouped Sobol’ indices esti-
mation in dependent uncertainty spaces, Information and Inference, 4:354-379.

J.Y. Tissot and C. Prieur, 2015, A randomized orthogonal orray-based procedure for the estimation
of first- and second-order Sobol’ indices, J. Statist. Comput. Simulation, 85:1358-1381.

See Also

sobolroalhs, sobolmara

Examples

library(boot)
library(numbers)

Test case: the non-monotonic Sobol g-function
(there are 8 factors, all following the uniform distribution on [0,1])

Suppose we have the inequality constraints: X1 <= X3 and X4 <= X6.

first-order sensitivity indices
x <- sobolroauc(model = sobol.fun, factors = 8, constraints = list(c(1,3),c(4,6)),

sobolSalt 167

N = 1000, order = 1, nboot=100)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

closed second-order sensitivity indices
x <- sobolroauc(model = sobol.fun, factors = 8, constraints = list(c(1,3),c(4,6)),

N = 1000, order = 2, nboot=100)
print(x)
ggplot(x)

sobolSalt Monte Carlo Estimation of Sobol’ Indices based on Saltelli schemes

Description

sobolSalt implements the Monte Carlo estimation of the Sobol’ indices for either both first-order
and total effect indices at the same time (alltogether 2p indices) at a total cost of n× (p+2) model
evaluations; or first-order, second-order and total indices at the same time (alltogether 2p+p× (p−
1)/2 indices) at a total cost of n× (2× p+ 2) model evaluations.

Usage

sobolSalt(model = NULL, X1, X2, scheme="A", nboot = 0, conf = 0.95, ...)
S3 method for class 'sobolSalt'
tell(x, y = NULL, ...)
S3 method for class 'sobolSalt'
print(x, ...)
S3 method for class 'sobolSalt'
plot(x, ylim = c(0, 1), choice, ...)
S3 method for class 'sobolSalt'
ggplot(data, mapping = aes(), ylim = c(0, 1), choice, ..., environment

= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample (containing n points).

X2 the second random sample (containing n points).

scheme a letter "A" or "B" indicating which scheme to use (see "Details")

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobolSalt" storing the state of the sensitivity study (parameters,
data, estimates).

168 sobolSalt

data a list of class "sobolSalt" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

choice an integer specifying which indices to plot: 1 for first-order and total effect
indices, 2 for second-order indices.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is called

Details

The estimators used are the one implemented in "sobolEff".

scheme specifies which Saltelli’s scheme is to be used: "A" to estimate both first-order and total
effect indices, "B" to estimate first-order, second-order and total effect indices.

Value

sobolSalt returns a list of class "sobolSalt", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used.

V the model variance.

S the estimations of the Sobol’ first-order indices.

S2 the estimations of the Sobol’ second-order indices (only for scheme "B").

T the estimations of the Sobol’ total sensitivity indices.

Author(s)

Laurent Gilquin

References

A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur (2014), Asymptotic normality and efficiency
of two Sobol index estimators, ESAIM: Probability and Statistics, 18:342-364.

A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Computer
Physics Communication, 145:580-297.

See Also

sobol, sobol2007, soboljansen, sobolmartinez, sobolEff

sobolshap_knn 169

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- sobolSalt(model = sobol.fun, X1, X2, scheme="A", nboot = 100)
print(x)
plot(x, choice=1)

library(ggplot2)
ggplot(x, choice=1)

sobolshap_knn Flexible sensitivity analysis via ranking / nearest neighbours

Description

WARNING: DEPRECATED function: use shapleysobol_knn instead. sobolshap_knn imple-
ments the estimation of several sensitivity indices using only N model evaluations via ranking (fol-
lowing Gamboa et al. (2020) and Chatterjee (2019)) or nearest neighbour search (Broto et al. (2020)
and Azadkia & Chatterjee (2020)). It can be used with categorical inputs (which are transformed
with one-hot encoding), dependent inputs and multiple outputs. Sensitivity indices of any group of
inputs can be computed, which means that in particular first-order/total Sobol indices and Shapley
effects are accessible. For large sample sizes, the nearest neightbour algorithm can be significantly
accelerated by using approximate nearest neighbour search. It is also possible to estimate Shap-
ley effects with the random permutation approach of Castro et al.(2009), where all the terms are
obtained with ranking or nearest neighbours.

Usage

sobolshap_knn(model = NULL, X, id.cat = NULL, U = NULL, method = "knn",
n.knn = 2, return.shap = FALSE, randperm = FALSE, n.perm = 1e4,
rescale = FALSE, n.limit = 2000, noise = FALSE, ...)

S3 method for class 'sobolshap_knn'
tell(x, y = NULL, ...)
S3 method for class 'sobolshap_knn'

extract(x, ...)
S3 method for class 'sobolshap_knn'

print(x, ...)

170 sobolshap_knn

S3 method for class 'sobolshap_knn'
plot(x, ylim = c(0, 1), type.multout = "lines", ...)
S3 method for class 'sobolshap_knn'

ggplot(data, mapping = aes(), ylim = c(0, 1),
type.multout = "lines", ..., environment = parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.
X a random sample of the inputs.
id.cat a vector with the indices of the categorical inputs.
U an integer equal to 0 (total Sobol indices) or 1 (first-order Sobol indices) or

a list of vector indices defining the subsets of inputs whose sensitivity indices
must be computed or a matrix of 0s and 1s where each row encodes a subset of
inputs whose sensitivity indices must be computed (see examples) or NULL (all
possible subsets).

method the algorithm to be used for estimation, either "rank" or "knn", see details.
n.knn the number of nearest neighbours used for estimation if method="knn".
return.shap a logical indicating if Shapley effects must be estimated, can only be TRUE if

U=NULL.
randperm a logical indicating if random permutations are used to estimate Shapley effects,

only if U=NULL and return.shap=TRUE.
n.perm the number of random permutations used for estimation if randperm=TRUE.
rescale a logical indicating if continuous inputs must be rescaled before distance compu-

tations. If TRUE, continuous inputs are first whitened with the ZCA-cor whiten-
ing procedure (cf. whiten() function in package whitening). If the inputs are
independent, this first step will have a very limited impact. Then, the resulting
whitened inputs are individually modified via a copula transform such that each
input has the same scale.

n.limit the sample size limit above which approximate nearest neighbour search is acti-
vated, only used if method="knn".

noise a logical which is TRUE if the model or the output sample is noisy, see details.
x a list of class "sobolshap_knn" storing the state of the sensitivity study (pa-

rameters, data, estimates).
data a list of class "sobolshap_knn" storing the state of the sensitivity study (pa-

rameters, data, estimates).
y a vector of model responses.
ylim y-coordinate plotting limits.
type.multout the plotting method in the case of multiple outputs, either "points" or "lines",

see examples.
mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-

plied in each layer added to the plot.
environment [Deprecated] Used prior to tidy evaluation.
... any other arguments for model which are passed unchanged each time it is

called.

sobolshap_knn 171

Details

For method="rank", the estimator is defined in Gamboa et al. (2020) following Chatterjee (2019).
For first-order indices it is based on an input ranking (same algorithm as in sobolrank) while for
higher orders, it uses an approximate heuristic solution of the traveling salesman problem applied
to the input sample distances (cf. TSP() function in package TSP). For method="knn", ranking and
TSP are replaced by a nearest neighbour search as proposed in Broto et al. (2020) and in Azadkia &
Chatterjee (2020) for a similar coefficient. The algorithm is the same as in shapleySubsetMc but
with an optimized implementation. In particular, the distance used for subsets with mixed inputs
(continuous and categorical) are the same but here the additional one-hot encoding of categorical
variables makes it possible to work only with Euclidean distances. Furthermore, a fast approximate
nearest neighbour search is also available, which is strongly recommended for large sample sizes.
The main difference with shapleySubsetMc is that here we use the entire N sample to compute all
indices, while in shapleySubsetMc the user can specify a total cost Ntot which performs a specific
allocation of sample sizes to the estimation of each index. In addition, the weights option is not
available here yet. If the outputs are noisy, the argument noise can be used: it only has an impact
on the estimation of one specific sensitivity index, namely V ar(E(Y |X1, . . . , Xp))/V ar(Y). If
there is no noise this index is equal to 1, while in the presence of noise it must be estimated.

When randperm=TRUE, Shapley effects are no longer estimated by computing all the possible sub-
sets of variables but only on subsets obtained with random permutations as proposed in Castro et
al.(2009). This is useful for problems with a large number of inputs, since the number of subsets
increases exponentially with dimension.

The extract method is useful if in a first step the Shapley effects have been computed and thus
sensitivity indices for all possible subsets are available. The resulting sobolshap_knn object can
be post-treated by extract to get first-order and total Sobol indices very easily.

Value

sobolshap_knn returns a list of class "sobolshap_knn", containing all the input arguments de-
tailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

U the subsets of inputs for which sensitivity indices have been computed.

S the estimations of the Sobol sensitivity indices (see details).

Shap the estimations of Shapley effects, if return.shap was set to TRUE.

order 0 (total indices), 1 (first-order indices) or NULL. Used for plotting defaults.

Author(s)

Sebastien Da Veiga

References

Azadkia M., Chatterjee S., 2021), A simple measure of conditional dependence, Ann. Statist.
49(6):3070-3102.

172 sobolshap_knn

Broto B., Bachoc F., Depecker M. (2020), Variance reduction for estimation of Shapley effects
and adaptation to unknown input distribution, SIAM/ASA Journal of Uncertainty Quantification,
8:693-716.

Castro J., Gomez D, Tejada J. (2009). Polynomial calculation of the Shapley value based on sam-
pling. Computers & Operations Research, 36(5):1726-1730.

Chatterjee, S., 2021, A new coefficient of correlation, Journal of the American Statistical Associa-
tion, 116:2009-2022.

Gamboa, F., Gremaud, P., Klein, T., & Lagnoux, A., 2022, Global Sensitivity Analysis: a novel
generation of mighty estimators based on rank statistics, Bernoulli 28: 2345-2374.

See Also

sobolrank, shapleysobol_knn, shapleySubsetMc

Examples

Test case: the non-monotonic Sobol g-function
Example with a call to a numerical model
First compute first-order indices with ranking
n <- 1000
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- sobolshap_knn(model = sobol.fun, X = X, U = 1, method = "rank")
print(x)
library(ggplot2)
ggplot(x)
We can use the output sample generated for this estimation to compute
total indices without additional calls to the model
x2 <- sobolshap_knn(model = NULL, X = X, U = 0, method = "knn", n.knn = 5)
tell(x2,x$y)
ggplot(x2)

Test case: the Ishigami function
Example with given data and the use of approximate nearest neighbour search
library(RANN)
n <- 5000
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- sobolshap_knn(model = NULL, X = X, U = NULL, method = "knn", n.knn = 5,

return.shap = TRUE, n.limit = 2000)
tell(x,Y)
library(ggplot2)
ggplot(x)
We can also extract first-order and total Sobol indices
x1 <- extract(x)
print(x1)

Test case : Linear model (3 Gaussian inputs including 2 dependent) with scaling
See Iooss and Prieur (2019)
library(mvtnorm) # Multivariate Gaussian variables
library(whitening) # For scaling
modlin <- function(X) apply(X,1,sum)

sobolSmthSpl 173

d <- 3
n <- 10000
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- (sig %*% t(sig)) * Cormat
Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
X <- Xall(n)
x <- sobolshap_knn(model = modlin, X = X, U = NULL, method = "knn", n.knn = 5,

return.shap = TRUE, rescale = TRUE, n.limit = 2000)
print(x)

Test case: functional toy fct 'Arctangent temporal function'
n <- 3000
X <- data.frame(matrix(runif(2*n,-7,7), nrow = n))
Y <- atantemp.fun(X)
x <- sobolshap_knn(model = NULL, X = X, U = NULL, method = "knn", n.knn = 5,

return.shap = TRUE, n.limit = 2000)
tell(x,Y)
library(ggplot2)
library(reshape2)
ggplot(x, type.multout="lines")

sobolSmthSpl Estimation of Sobol’ First Order Indices with B-spline Smoothing

Description

Determines the Si coefficient for singular parameters through B-spline smoothing with roughness
penalty.

Usage

sobolSmthSpl(Y, X)

Arguments

Y vector of model responses.

X matrix having as rows the input vectors corresponding to the responses in Y.

Details

WARNING: This function can give bad results for reasons that have not been yet investigated.

174 sobolTIIlo

Value

sobolSmthSpl returns a list of class "sobolSmthSpl" containing the following components:

call the matched call.

X the provided input matrix.

Y the provided matrix of model responses.

S a matrix having the following columns: Si (the estimated first order Sobol’ in-
dices), Si.e (the standard errors for the estimated first order Sobol’ indices) and
q0.05 (the 0.05 quantiles assuming for the Si indices Normal distributions cen-
tred on the Si estimates and with standard deviations the calculated standard
errors)

Author(s)

Filippo Monari

References

Saltelli, A; Ratto, M; Andres, T; Campolongo, F; Cariboni, J; Gatelli, D; Saisana, M & Tarantola,
S. Global Sensitivity Analysis: The Primer Wiley-Interscience, 2008

M Ratto and A. Pagano, 2010, Using recursive algorithms for the efficient identification of smooth-
ing spline ANOVA models, Advances in Statistical Analysis, 94, 367–388.

See Also

sobol, sobolEff, sobolGP

Examples

X = matrix(runif(5000), ncol = 10)
Y = sobol.fun(X)
sa = sobolSmthSpl(Y, X)
plot(sa)

sobolTIIlo Liu and Owen Estimation of Total Interaction Indices

Description

sobolTIIlo implements the asymptotically efficient formula of Liu and Owen (2006) for the es-
timation of total interaction indices as described e.g. in Section 3.4 of Fruth et al. (2014). Total
interaction indices (TII) are superset indices of pairs of variables, thus give the total influence of
each second-order interaction. The total cost of the method is

(
(1+N+

(N,2))×n

)
where N is the number of

indices to estimate. Asymptotic confidence intervals are provided. Via plotFG (which uses func-
tions of the package igraph), the TIIs can be visualized in a so-called FANOVA graph as described
in section 2.2 of Muehlenstaedt et al. (2012).

sobolTIIlo 175

Usage

sobolTIIlo(model = NULL, X1, X2, conf = 0.95, ...)
S3 method for class 'sobolTIIlo'
tell(x, y = NULL, ...)
S3 method for class 'sobolTIIlo'
print(x, ...)
S3 method for class 'sobolTIIlo'
plot(x, ylim = NULL, ...)
S3 method for class 'sobolTIIlo'
ggplot(data, mapping = aes(), ylim = NULL, ..., environment

= parent.frame())
S3 method for class 'sobolTIIlo'
plotFG(x)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

conf the confidence level for asymptotic confidence intervals, defaults to 0.95.

x a list of class "sobolTIIlo" storing the state of the sensitivity study (parame-
ters, data, estimates).

data a list of class "sobolTIIlo" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

ylim optional, the y limits of the plot.

Value

sobolTIIlo returns a list of class "sobolTIIlo", containing all the input arguments detailed be-
fore, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

V the estimation of the overall variance.

tii.unscaled the unscaled estimations of the TIIs.

tii.scaled the scaled estimations of the TIIs together with asymptotic confidence intervals.

176 sobolTIIpf

Author(s)

Jana Fruth

References

R. Liu, A. B. Owen, 2006, Estimating mean dimensionality of analysis of variance decompositions,
JASA, 101 (474), 712–721.

J. Fruth, O. Roustant, S. Kuhnt, 2014, Total interaction index: A variance-based sensitivity index
for second-order interaction screening, J. Stat. Plan. Inference, 147, 212–223.

T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt, 2012, Data-driven Kriging models based on
FANOVA-decomposition, Stat. Comput., 22 (3), 723–738.

See Also

sobolTIIpf

Examples

Test case : the Ishigami function

The method requires 2 samples
n <- 1000
X1 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
X2 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))

sensitivity analysis (the true values of the scaled TIIs are 0, 0.244, 0)
x <- sobolTIIlo(model = ishigami.fun, X1 = X1, X2 = X2)
print(x)

plot of tiis and FANOVA graph
plot(x)

library(ggplot2)
ggplot(x)

library(igraph)
plotFG(x)

sobolTIIpf Pick-freeze Estimation of Total Interaction Indices

sobolTIIpf 177

Description

sobolTIIpf implements the pick-freeze estimation of total interaction indices as described in Sec-
tion 3.3 of Fruth et al. (2014). Total interaction indices (TII) are superset indices of pairs of
variables, thus give the total influence of each second-order interaction. The pick-freeze estimation
enables the strategy to reuse evaluations of Saltelli (2002). The total costs are (1+N)×n where N
is the number of indices to estimate. Via plotFG, the TIIs can be visualized in a so-called FANOVA
graph as described in section 2.2 of Muehlenstaedt et al. (2012).

Usage

sobolTIIpf(model = NULL, X1, X2, ...)
S3 method for class 'sobolTIIpf'
tell(x, y = NULL, ...)
S3 method for class 'sobolTIIpf'
print(x, ...)
S3 method for class 'sobolTIIpf'
plot(x, ylim = NULL, ...)
S3 method for class 'sobolTIIpf'
ggplot(data, mapping = aes(), ylim = NULL, ..., environment

= parent.frame())
S3 method for class 'sobolTIIpf'
plotFG(x)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

x a list of class "sobolTIIpf" storing the state of the sensitivity study (parame-
ters, data, estimates).

data a list of class "sobolTIIpf" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is
called.

ylim optional, the y limits of the plot.

Value

sobolTIIpf returns a list of class "sobolTIIpf", containing all the input arguments detailed be-
fore, plus the following components:

call the matched call.

178 sobolTIIpf

X a data.frame containing the design of experiments.

y a vector of model responses.

V the estimation of the overall variance.

tii.unscaled the unscaled estimations of the TIIs together.

tii.scaled the scaled estimations of the TIIs.

Author(s)

Jana Fruth

References

J. Fruth, O. Roustant, S. Kuhnt, 2014, Total interaction index: A variance-based sensitivity index
for second-order interaction screening, J. Stat. Plan. Inference, 147, 212–223.

A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Comput.
Phys. Commun., 145, 580-297.

T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt, 2012, Data-driven Kriging models based on
FANOVA-decomposition, Stat. Comput., 22 (3), 723–738.

See Also

sobolTIIlo

Examples

Test case : the Ishigami function

The method requires 2 samples
n <- 1000
X1 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
X2 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))

sensitivity analysis (the true values are 0, 0.244, 0)
x <- sobolTIIpf(model = ishigami.fun, X1 = X1, X2 = X2)
print(x)

plot of tiis and FANOVA graph
plot(x)

library(ggplot2)
ggplot(x)

library(igraph)
plotFG(x)

soboltouati 179

soboltouati Monte Carlo Estimation of Sobol’ Indices (formulas of Martinez
(2011) and Touati (2016))

Description

soboltouati implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices using correlation coefficients-based formulas, at a total cost of (p + 2) × n model
evaluations. These are called the Martinez estimators. It also computes their confidence intervals
based on asymptotic properties of empirical correlation coefficients.

Usage

soboltouati(model = NULL, X1, X2, conf = 0.95, ...)
S3 method for class 'soboltouati'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'soboltouati'
print(x, ...)
S3 method for class 'soboltouati'
plot(x, ylim = c(0, 1), ...)
S3 method for class 'soboltouati'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment

= parent.frame())

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

conf the confidence level for confidence intervals, or zero to avoid their computation
if they are not needed.

x a list of class "soboltouati" storing the state of the sensitivity study (parame-
ters, data, estimates).

data a list of class "soboltouati" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... any other arguments for model which are passed unchanged each time it is called

180 soboltouati

Details

This estimator supports missing values (NA or NaN) which can occur during the simulation of the
model on the design of experiments (due to code failure) even if Sobol’ indices are no more rigorous
variance-based sensitivity indices if missing values are present. In this case, a warning is displayed.

Value

soboltouati returns a list of class "soboltouati", containing all the input arguments detailed
before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of normalized variances of the Conditional Expectations (VCE)
with respect to each factor and also with respect to the complementary set of
each factor ("all but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Author(s)

Taieb Touati, Khalid Boumhaout

References

J-M. Martinez, 2011, Analyse de sensibilite globale par decomposition de la variance, Presenta-
tion in the meeting of GdR Ondes and GdR MASCOT-NUM, January, 13th, 2011, Institut Henri
Poincare, Paris, France.

T. Touati, 2016, Confidence intervals for Sobol’ indices. Proceedings of the SAMO 2016 Confer-
ence, Reunion Island, France, December 2016.

T. Touati, 2017, Intervalles de confiance pour les indices de Sobol, 49emes Journees de la SFdS,
Avignon, France, Juin 2017.

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))

squaredIntEstim 181

X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- soboltouati(model = sobol.fun, X1, X2)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

squaredIntEstim Squared integral estimate

Description

This function provides two estimators of a squared expectation. The first one, naive, is the square
of the sample mean. It is positively biased. The second one is a U-statistics, and unbiased. The two
are equivalent for large sample sizes.

Usage

squaredIntEstim(x, method = "unbiased")

Arguments

x A vector of observations supposed to be drawn independently from a square
integrable random variable

method If "unbiased", computes the U-statistics, otherwise the square of the sample
mean is computed

Details

Let X1, ..., Xn be i.i.d. random variables. The aim is to estimate t = E(Xi)^2. The naive estimator
is the square of the sample mean: T1 = [(X1 + ... + Xn)/n]^2. It is positively biased, and the bias
is equal to s^2/n, where s^2 = var(X1). The U-statistics estimator is the average of Xi * Xj over all
unordered pairs (i,j). Equivalently, it is equal to T1 minus the (unbiased) sample variance divided
by n.

Value

A real number, corresponding to the estimated value of the squared integral.

Author(s)

O. Roustant

182 src

References

O. Roustant, F. Gamboa and B. Iooss, Parseval inequalities and lower bounds for variance-based
sensitivity indices, Electronic Journal of Statistics, 14:386-412, 2020

Van der Vaart, A. W. Asymptotic statistics. Vol. 3. Cambridge university press, 2000.

Examples

n <- 100 # sample size
nsim <- 100 # number of simulations
mu <- 0

T <- Tunb <- rep(NA, nsim)
theta <- mu^2 # E(X)^2, with X following N(mu, 1)

for (i in 1:nsim){
x <- rnorm(n, mean = mu, sd = 1)
T[i] <- squaredIntEstim(x, method = "biased")
Tunb[i] <- squaredIntEstim(x, method = "unbiased")

}

par(mfrow = c(1, 1))
boxplot(cbind(T, Tunb))
abline(h = theta, col = "red")
abline(h = c(mean(T), mean(Tunb)), col = c("blue", "cyan"), lty = "dotted")
look at the difference between median and mean

src Standardized Regression Coefficients

Description

src computes the Standardized Regression Coefficients (SRC), or the Standardized Rank Regres-
sion Coefficients (SRRC), which are sensitivity indices based on linear or monotonic assumptions
in the case of independent factors.

Usage

src(X, y, rank = FALSE, logistic = FALSE, nboot = 0, conf = 0.95)
S3 method for class 'src'
print(x, ...)
S3 method for class 'src'
plot(x, ylim = c(-1,1), ...)
S3 method for class 'src'
ggplot(data, mapping = aes(), ylim = c(-1, 1), ..., environment

= parent.frame())

src 183

Arguments

X a data frame (or object coercible by as.data.frame) containing the design of
experiments (model input variables).

y a vector containing the responses corresponding to the design of experiments
(model output variables).

rank logical. If TRUE, the analysis is done on the ranks.

logistic logical. If TRUE, the analysis is done via a logistic regression (binomial GLM).

nboot the number of bootstrap replicates.

conf the confidence level of the bootstrap confidence intervals.

x the object returned by src.

data the object returned by src.

ylim the y-coordinate limits of the plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

environment [Deprecated] Used prior to tidy evaluation.

... arguments to be passed to methods, such as graphical parameters (see par).

Details

Logistic regression model (logistic = TRUE) and rank-based indices (rank = TRUE) are incompat-
ible.

Value

src returns a list of class "src", containing the following components:

call the matched call.

SRC a data frame containing the estimations of the SRC indices, bias and confidence
intervals (if rank = FALSE).

SRRC a data frame containing the estimations of the SRRC indices, bias and confi-
dence intervals (if rank = TRUE).

Author(s)

Gilles Pujol and Bertrand Iooss

References

L. Clouvel, B. Iooss, V. Chabridon, M. Il Idrissi and F. Robin, 2023, An overview of variance-based
importance measures in the linear regression context: comparative analyses and numerical tests,
Preprint. https://hal.science/hal-04102053

B. Iooss, V. Chabridon and V. Thouvenot, Variance-based importance measures for machine learn-
ing model interpretability, Congres lambda-mu23, Saclay, France, 10-13 octobre 2022 https:
//hal.science/hal-03741384

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

https://hal.science/hal-04102053
https://hal.science/hal-03741384
https://hal.science/hal-03741384

184 support

See Also

pcc, lmg, pmvd

Examples

a 100-sample with X1 ~ U(0.5, 1.5)
X2 ~ U(1.5, 4.5)
X3 ~ U(4.5, 13.5)

library(boot)
n <- 100
X <- data.frame(X1 = runif(n, 0.5, 1.5),

X2 = runif(n, 1.5, 4.5),
X3 = runif(n, 4.5, 13.5))

linear model : Y = X1 + X2 + X3

y <- with(X, X1 + X2 + X3)

sensitivity analysis

x <- src(X, y, nboot = 100)
print(x)
plot(x)

library(ggplot2)
ggplot(x)

support Support index functions: Measuring the effect of input variables over
their support

Description

Function to estimate the first-order and total support index functions (Fruth et al., 2016).

Usage

support(model, X, Xnew = NULL, fX = NULL, gradfX = NULL, h = 1e-06, ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X a random sample.

Xnew an optional set of points where to visualize the support indices. If missing, X is
used.

fX an optional vector containing the evaluations of model at X. If missing, fX is
computed by evaluating model at X.

support 185

gradfX an optional vector containing the evaluations of the gradient of model at X. If
missing, gradfX is approximated by finite differences of model at X.

h a small number for computing finite differences (f(X_i + h) - f(X_i))/h. De-
fault is 1e-6.

... optional arguments to be passed to model.

Details

The first-order support index of f(X) relative to X_i is the squared conditional expectation of its
partial derivative with respect to X_i.

The total support index of f(X) relative to X_i is the conditional expectation of its squared partial
derivative with respect to X_i.

These two functions measure the local influence of X_i, in the global space of the other input
variables. Up to square transformations, support indices can be viewed as regression curves of
partial derivatives df(X)/dX_i with respect to X_i. Estimation is performed by smoothing from the
diagonal scatterplots (X_i, df/dX_i) with the function smooth.spline{stats} with the default
options.

For the sake of comparison, support index functions may be normalized. The proposed normal-
ization is the sum of the DGSM, equal to the sum of the overall means of total support functions.
Normalized support index functions can be plotted with the S3 method plot, as well as the under-
lying diagonal scatterplots of derivatives (S3 method scatterplot).

Value

main a matrix whose columns contain the first-order support index functions, esti-
mated at Xnew.

total a matrix whose columns contain the total support index functions, estimated at
Xnew.

DGSM a vector containing an estimation of DGSM.

X ...

Xnew ...

fX ...

gradfX ... see ’arguments’ section.

Author(s)

O. Roustant

References

J. Fruth, O. Roustant, S. Kuhnt, 2019, Support indices: Measuring the effects of input variables
over their support, Reliability Engineering and System Safety, 187:17-27.

See Also

S3 methods plot and scatterplot: plot.support

186 template.replace

Examples

ishigami function

n <- 5000
n.points <- 1000
d <- 3

set.seed(0)
X <- matrix(runif(d*n, min = -pi, max = pi), n, d)
Xnew <- matrix(seq(from = -pi, to = pi, length=n.points), n.points, d)

b <- support(model = ishigami.fun, X, Xnew)

plot method (x-axis in probability scale), of the normalized support index functions
plot(b, col = c("lightskyblue4", "lightskyblue1", "black"),

xprob = TRUE, p = 'punif', p.arg = list(min = -pi, max = pi), ylim = c(0, 2))

below : diagonal scatterplots of the gradient,
on which are based the estimation by smoothing
scatterplot(b, xprob = TRUE)

now with normal margins

X <- matrix(rnorm(d*n), n, d)
Xnew <- matrix(rnorm(d*n.points), n.points, d)
b <- support(model = ishigami.fun, X, Xnew)

plot(b, col = c("lightskyblue4", "lightskyblue1", "black"), xprob = FALSE)
scatterplot(b, xprob = FALSE, type = "histogram", bins = 10, cex = 1, cex.lab = 1.5)

template.replace Replace Values in a Template Text

Description

template.replace replaces keys within special markups with values in a so-called template file.
Pieces of R code can be put into the markups of the template file, and are evaluated during the
replacement.

Usage

template.replace(text, replacement, eval = FALSE,
key.pattern = NULL, code.pattern = NULL)

template.replace 187

Arguments

text vector of character strings, the template text.

replacement the list values to replace in text.

eval boolean, TRUE if the code within code.pattern has to be evaluated, FALSE oth-
erwise.

key.pattern custom pattern for key replacement (see below)

code.pattern custom pattern for code replacement (see below)

Details

In most cases, a computational code reads its inputs from a text file. A template file is like an
input file, but where some missing values, identified with generic keys, will be replaced by specific
values.

By default, the keys are enclosed into markups of the form $(KEY).

Code to be interpreted with R can be put in the template text. Pieces of code must be enclosed
into markups of the form @{CODE}. This is useful for example for formating the key values (see
example). For interpreting the code, set eval = TRUE.

Users can define custom patterns. These patterns must be perl-compatible regular expressions (see
regexpr. The default ones are:

key.pattern = "\\$\\(KEY\\)"
code.pattern = "@\\{CODE\\}"

Note that special characters have to be escaped both (one for perl, one for R).

Author(s)

Gilles Pujol

Examples

txt <- c("Hello $(name)!", "$(a) + $(b) = @{$(a)+$(b)}",
"pi = @{format(pi,digits=5)}")

replacement <- list(name = "world", a = 1, b = 2)
1. without code evaluation:
txt.rpl1 <- template.replace(txt, replacement)
print(txt.rpl1)
2. with code evalutation:
txt.rpl2 <- template.replace(txt, replacement, eval = TRUE)
print(txt.rpl2)

188 testHSIC

testHSIC Tests of Independence based on the Hilbert-Schmidt Independence
Criterion (HSIC)

Description

testHSIC allows to test independence among all input-output pairs (Xi, Y) after a preliminary
sensitivity analysis based on HSIC indices. testHSIC takes an object of class sensiHSIC (produced
by a prior call to the function sensiHSIC that estimates HSIC indices) and it returns the estimated
p-values after testing independence among all input-output pairs. For each input-output pair, having
access to the p-value helps the user decide whether the null hypothesis H0: "Xi and Y are inde-
pendent" must be accepted or rejected. If the kernels selected in sensiHSIC are all characteristic,
H0 can be rewritten "HSIC(Xi, Y) = 0" and this paves the way to several test procedures.

Depending on the sample size and the chosen test statistic (either a U-statistic or a V-statistic),
there are up to four different methods to test H0. The asymptotic test is recommended when
the sample size n is around a few hundreds (or more). When n is smaller, a permutation-based
test must be considered instead. As a general rule, permutation-based tests can always be applied
but a much heavier computational load is to be expected. However, if HSIC indices were initially
estimated with V-statistics, the Gamma test is a parametric method that offers an enticing tradeoff.

Usage

testHSIC(sensi, test.method = "Asymptotic", B = 3000,
seq.options = list(criterion = "screening", alpha = 0.05,

Bstart = 200, Bfinal = 5000, Bbatch = 100,
Bconv = 200, graph = TRUE))

S3 method for class 'testHSIC'
print(x, ...)

S3 method for class 'testHSIC'
plot(x, ylim = c(0, 1), err, ...)

Arguments

sensi An object of class "sensiHSIC" which is produced by a prior call to the function
sensiHSIC. In particular, sensi must contain objects named "KX" (3D-array
filled with all input Gram matrices), "KY" (output Gram matrix), "HSICXY" (es-
timated HSIC indices) and "estimator.type" (either "U-stat" or "V-stat").
In addition, if sensi results from a conditional sensitivity analysis, sensi must
also contain objects named "cond" (list of options describing the conditioning
event) and "weights" (normalized conditioning weights).

test.method A string specifying the numerical procedure used to estimate the p-values of the
HSIC-based independence tests. Available procedure include "Asymptotic"
(asymptotic test), "Permutation" (permutation-based test), "Seq_Permutation"
(sequential permutation-based test) and "Gamma" (Gamma test).

testHSIC 189

• If sensi contains V-statistics, the asymptotic test (resp. the Gamma test) is
recommended for large (resp. small) sample sizes. Otherwise, permutation-
based tests can be used as well.

• If sensi contains U-statistics, the Gamma test must not be employed. The
asymptotic test is recommended for large sample sizes. Otherwise, permutation-
based tests can be used as well.

B Number of random permutations carried out on the output samples before the
non-parametric estimation of p-values. Only relevant if test.method="Permutation".

seq.options A list of options guiding the sequential procedure. Only relevant if test.method="Seq_Permutation".

• criterion is a string specifying the stopping criterion. Available criteria
include "screening" (permutations stop as soons as the estimated p-values
have sufficiently converged so that they can be compared to the reference
threshold alpha), "ranking" (permutations stop as soon as the estimated
p-values have sufficiently converged so that they can be ranked) and "both"
(permutations stop as soon as the two previous criteria are fulfilled).

• alpha is a scalar value (between 0 and 1) specifying the type I error (proba-
bility of wrongly accepting H0). Only relevant if criterion is "screening"
or "both".

• Bstart is the initial number of random permutations before the first crite-
rion check.

• Bfinal is the maximum number of random permutations.
• Bbatch is the number of permutations at each new iteration of the sequential

procedure.
• Bconv is the number of permutations that is used to determine whether con-

vergence has already occured or not. For criterion="screening", con-
vergence is assumed to be reached if the positions of the estimated p-values
with respect to alpha no longer evolve after the Bconv latest permutations.
For criterion="ranking", convergence is assumed to be reached if the
rankings of the estimated p-values no longer evolve after the Bconv latest
permutations.

• graph is a boolean indicating whether the estimated p-values have to be
plotted against the number of permutations.

x An object of class "testHSIC" storing the parameters and results of indepen-
dence testing.

ylim A vector of two values specifying the y-coordinate plotting limits.

err A scalar value (between 0 and 1) specifying the reference type I error. This value
is used to plot a vertical line.

... Additional options.

Details

Why and how to properly choose kernels?:
For a given input-output pair of variables, the Hilbert-Schmidt independence criterion (HSIC)
is a dissimilarity measure between the joint bivariate distribution and the product of marginal
distributions. Dissimilarity between those two distributions is measured through the squared norm

190 testHSIC

of the distance between their respective embeddings in a reproducing kernel Hilbert space (RKHS)
that directly depends on the selected input kernel Ki and the selected output kernel KY .
It must always be kept in mind that this criterion allows to detect independence within the pair
(Xi, Y) provided that the two kernels are characteristic.

• If both kernels are characteristic, H0: "Xi and Y are independent" is equivalent to H0:
"HSIC(Xi, Y) = 0" and any estimator of HSIC(Xi, Y) emerges as a relevant test statis-
tic.

• If they are not, testing H0: "HSIC(Xi, Y) = 0" is no longer sufficient for testing H0: "Xi
and Y are independent".

The reader is referred to Fukumizu et al. (2004) for the mathematical definition of a characteristic
kernel and to Sriperumbur et al. (2010) for an overview of the major related results.
Responsability for kernel selection is left to the user while calling the function sensiHSIC. Let us
simply recall that:

• The Gaussian kernel, the exponential kernel, the Matern 3/2 kernel and the Matern 5/2 kernel
(all defined on R2) are characteristic. They remain characteristic when they are restricted
to a compact domain D within R2.

• The transformed versions of the four abovementioned kernels (all defined on [0, 1]2) are
characteristic.

• All Sobolev kernels (defined on [0, 1]2) are characteristic.
• The categorical kernel (defined on any discrete probability space) is characteristic.

Which test method is most appropriate?:
The test statistic for the pair (Xi, Y) is either the U-statistic or the V-statistic associated to
HSIC(Xi, Y).
If a V-statistic was used in sensiHSIC, four different test methods can be considered.

• The asymptotic test can be used if the sample size n is large enough (at least a hundred
of samples). The asymptotic distribution of the test statistic is approximated by a Gamma
distribution whose parameters are estimated with the method of moments. See Gretton et
al. (2007) for more details about how to estimate the first two moments of the asymptotic
Gamma distribution.

• The permutation-based test is more expensive in terms of computational cost but it can
be used whatever the sample size n is. The initial output samples (stored in the object of
class sensiHSIC) are randomly permuted B times and the test statistic is recomputed as
many times. This allows to simulate B observations of the test statistic under H0 and to
estimate the p-value in a non-parametric way. See Meynaoui (2019) for more details on how
to correctly estimate the p-value in order to preserve the expected level of the test.

• The sequential permutation-based test is a goal-oriented variant of the previous test. The
main idea is to reduce the computational cost by stopping permutations as soon as the es-
timation of the p-value has sufficiently converged so that it can be compared to a reference
threshold or be given a final ranking. See El Amri and Marrel (2022) for more details on how
to implement this sequential approach for the three stopping criteria (namely "ranking",
"screening" or "both").

• The Gamma test is a parametric alternative to permutation-based tests when n is not large
enough to resort to the asymptotic test. The permutation-based test reveals the test statistic
under H0 follows a unimodal distribution having significant positive skewness. Thus, it
seems quite natural to estimate the p-value with a Gamma distribution, especially in view of

testHSIC 191

the fact that the asymptotic distribution is properly approximated by this parametric family.
See El Amri and Marrel (2021) for more details on how to estimate the parameters of the
Gamma distribution with the method of moments. In particular, the first two moments of the
test statistic under H0 are computed thanks to the formulas that were initially provided in
Kazi-Aoual et al. (1995).

If a U-statistic was used in sensiHSIC, the estimated value of HSIC(Xi, Y) may be negative.

• The asymptotic test can no longer be conducted with a Gamma distribution (whose support
is limited to [0,+∞[). It is replaced by a Pearson III distribution (which is a left-shifted
Gamma distribution).

• The permutation-based test and the sequential permutation-based test can be applied
directly.

• The Gamma test has no longer any theoretical justification.

What about target and conditional HSIC indices?:
In Marrel and Chabridon (2021), HSIC indices were adapted to target sensitivity analysis (thus
becoming T-HSIC indices) and to conditional sensitivity analysis (thus becoming C-HSIC in-
dices). Tests of independence can still be useful after estimating T-HSIC indices or C-HSIC in-
dices.

• For T-HSIC indices, the null hypothesis is H0: "Xi and w(Y) are independent" where w
is the weight function selected in target and passed to the function sensiHSIC. Ev-
erything works just as for basic HSIC indices (apart from the fact that w is applied on the
original output variable Y). Available test methods include "Asymptotic", "Permutation",
"Seq_Permutation" and "Gamma" (for V-statistics only).

• For C-HSIC indices, the null hypothesis is H0: "Xi and Y are independent if the event de-
scribed in cond occurs". In this specific context, testing conditional independence is only
relevant if the weight function is an indicator function. For this reason, if conditional in-
dependence has to be tested, the user must select type="indicTh" in cond while calling
the function sensiHSIC. Let us recall that only V-statistic estimators can be used for C-
HSIC indices. As a result, available test methods include "Asymptotic", "Permutation",
"Seq_Permutation" and "Gamma".

Value

testHSIC returns a list of class "testHSIC". It contains test.method, B (for the permutation-based
test), seq.options (for the sequential permutation-based test) and the following objects:

call The matched call.

pval The estimated p-values after testing independence for all input-output pairs.

prop A vector of two strings.

• The first string indicates if the chosen test method is asymptotic or non-
asymptotic.

• The second string indicates if the chosen test method is parametric or non-
parametric.

family Only if test.method is "Asymptotic" or "Gamma".
A string indicating the parametric family used to estimate p-values.

192 testHSIC

param Only if test.method is "Asymptotic" or "Gamma".
A 2-column (resp. 3-column) matrix containing the parameters of the Gamma
(resp. Pearson III) distributions used to estimate p-values.

Hperm Only if test.method="Permutation".
A B-column matrix containing simulated values of the test statistics after ran-
domly permuting the output samples. Each column in Hperm corresponds to one
random permutation.

paths Only if test.method="Seq_Permutation".
A matrix containing all estimated p-values over the sequential test procedure.
The i-th row provides all estimates of the i-th p-value as the number of permu-
tations increases. If one row ends with a sequence of missing values NA, it means
permutations were stopped earlier for this input variable. This can only happen
if test.method=screening.

Author(s)

Sebastien Da Veiga, Amandine Marrel, Anouar Meynaoui, Reda El Amri and Gabriel Sarazin.

References

El Amri, M. R. and Marrel, A. (2022), Optimized HSIC-based tests for sensitivity analysis: ap-
plication to thermalhydraulic simulation of accidental scenario on nuclear reactor, Quality and
Reliability Engineering International, 38(3), 1386-1403.

El Amri, M. R. and Marrel, A. (2021), More powerful HSIC-based independence tests, extension to
space-filling designs and functional data. https://cea.hal.science/cea-03406956/

Fukumizu, K., Bach, F. R. and Jordan, M. I. (2004), Dimensionality reduction for supervised learn-
ing with reproducing kernel Hilbert spaces, Journal of Machine Learning Research, 5(Jan), 73-99.

Gretton, A., Fukumizu, K., Teo, C., Song, L., Scholkopf, B. and Smola, A. (2007), A kernel statis-
tical test of independence, Advances in Neural Information Processing Systems, 20.

Kazi-Aoual, F., Hitier, S., Sabatier, R. and Lebreton, J. D. (1995), Refined approximations to permu-
tation tests for multivariate inference, Computational Statistics & Data Analysis, 20(6), 643-656.

Marrel, A. and Chabridon, V. (2021), Statistical developments for target and conditional sensitiv-
ity analysis: application on safety studies for nuclear reactor, Reliability Engineering & System
Safety, 214, 107711.

Meynaoui, A. (2019), New developments around dependence measures for sensitivity analysis:
application to severe accident studies for generation IV reactors (Doctoral dissertation, INSA de
Toulouse).

Sriperumbudur, B., Fukumizu, K. and Lanckriet, G. (2010), On the relation between universality,
characteristic kernels and RKHS embedding of measures, Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (pp. 773-780). JMLR Workshop and Conference
Proceedings.

See Also

sensiHSIC, weightTSA

https://cea.hal.science/cea-03406956/

testHSIC 193

Examples

Test case: the Ishigami function.

n <- 20 # very few input-output samples
p <- 3 # nb of input variables

##
PRELIMINARY SENSITIVITY ANALYSIS
##

X <- matrix(runif(n*p), n, p)
sensi <- sensiHSIC(model=ishigami.fun, X)
print(sensi)
plot(sensi)
title("GSA for the Ishigami function")

#############################
TESTS OF INDEPENDENCE
#############################

test.asymp <- testHSIC(sensi)

test.perm <- testHSIC(sensi, test.method="Permutation")

test.seq.screening <- testHSIC(sensi, test.method="Seq_Permutation")

test.seq.ranking <- testHSIC(sensi, test.method="Seq_Permutation",
seq.options=list(criterion="ranking"))

test.seq.both <- testHSIC(sensi, test.method="Seq_Permutation",
seq.options=list(criterion="both"))

test.gamma <- testHSIC(sensi, test.method="Gamma")

comparison of p-values

res <- rbind(t(as.matrix(test.asymp$pval)), t(as.matrix(test.perm$pval)),
t(as.matrix(test.seq.screening$pval)), t(as.matrix(test.seq.ranking$pval)),
t(as.matrix(test.seq.both$pval)), t(as.matrix(test.gamma$pval)))

rownames(res) <- c("asymp", "perm", "seq_perm_screening",
"seq_perm_ranking", "seq_perm_both", "gamma")

res

Conclusion: n is too small for the asymptotic test.
Take n=200 and all four test methods will provide very close p-values.

#####################
VISUALIZATION
#####################

194 testmodels

simulated values of HSIC indices under H0 (random permutations)
Hperm <- t(unname(test.perm$Hperm))

for(i in 1:p){

histogram of the test statistic under H0 (random permutations)

title <- paste0("Histogram of S", i, " = HSIC(X", i, ",Y)")

hist(Hperm[,i], probability=TRUE,
nclass=70, main=title, xlab="", ylab="", col="cyan")

asymptotic Gamma distribution

shape.asymp <- test.asymp$param[i, "shape"]
scale.asymp <- test.asymp$param[i, "scale"]

xx <- seq(0, max(Hperm[,i]), length.out=200)
dens.asymp <- dgamma(xx, shape=shape.asymp, scale=scale.asymp)

lines(xx, dens.asymp, lwd=2, col="darkorchid")

finite-sample Gamma distribution

shape.perm <- test.gamma$param[i, "shape"]
scale.perm <- test.gamma$param[i, "scale"]

dens.perm <- dgamma(xx, shape=shape.perm, scale=scale.perm)

lines(xx, dens.perm, lwd=2, col="blue")

all.cap <- c("Asymptotic Gamma distribution", "Finite-sample Gamma distribution")
all.col <- c("darkorchid", "blue")

legend("topright", legend=all.cap, col=all.col, lwd=2, y.intersp=1.3)

}

testmodels Test Models for Sensitivity Analysis

Description

These functions are standard testcases for sensitivity analysis benchmarks. For a scalar output (see
Saltelli et al. 2000 and https://www.sfu.ca/~ssurjano/):

• the g-function of Sobol’ with 8 inputs, X ~ U[0,1];

• the function of Ishigami with 3 inputs, X ~ U[-pi,pi];

• the function of Morris with 20 inputs, X ~ U[0,1];

testmodels 195

• the Linkletter decreasing coefficients function, X ~ U[0,1] (Linkletter et al. (2006));

• the heterdisc function with 4 inputs, X ~ U[0,20];

• the Friedman function with 5 inputs, X ~ U[0,1] (Friedman, 1991);

• the Matyas function with 2 inputs, X ~ U[0,1].

For functional output cases:

• the Arctangent temporal function with 2 inputs, X ~ U[-7,7] (Auder, 2011). The functional
support is on [0,2pi];

• the Cambell1D function with 4 inputs, X ~U[-1,5] (Campbell et al. 2006). The functional
support is on [-90,90].

Usage

sobol.fun(X)
ishigami.fun(X)
morris.fun(X)
atantemp.fun(X, q = 100)
campbell1D.fun(X, theta = -90:90)
linkletter.fun(X)
heterdisc.fun(X)
friedman.fun(X)
matyas.fun(X)

Arguments

X a matrix (or data.frame) containing the input sample.

q for the atantemp() function: the number of discretization steps of the functional
output

theta for the campbell1D() function: the discretization steps (angles in degrees)

Value

A vector of function responses.

Author(s)

Gilles Pujol and Bertrand Iooss

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

196 truncateddistrib

Examples

Examples for the functional toy fonctions

atantemp function

y0 <- atantemp.fun(matrix(c(-7,0,7,-7,0,7),ncol=2))
plot(y0[1,],type="l")
apply(y0,1,lines)

n <- 100
X <- matrix(c(runif(2*n,-7,7)),ncol=2)
y <- atantemp.fun(X)
plot(y0[2,],ylim=c(-2,2),type="l")
apply(y,1,lines)

campbell1D function

N1=100 # nombre de simulations pour courbes 1D
min=-1 ; max=5
nominal=(max+min)/2

X1 = NULL ; y1 = NULL
Xnom=matrix(nominal,nr=1,nc=4)
ynom=campbell1D.fun(Xnom,theta=-90:90)
plot(ynom,ylim=c(8,30),type="l",col="red")
for (i in 1:N1){

X=matrix(runif(4,min=min,max=max),nr=1,nc=4)
rbind(X1,X)
y=campbell1D.fun(X,theta=-90:90)
rbind(y1,y)
lines(y)

}

truncateddistrib Truncated distributions

Description

dnorm.trunc, pnorm.trunc, qnorm.trunc and rnorm.trunc are functions for the Truncated Nor-
mal Distribution. dgumbel.trunc, pgumbel.trunc, qgumbel.trunc and rgumbel.trunc are func-
tions for the Truncated Gumbel Distribution.

Usage

dnorm.trunc(x, mean = 0, sd = 1, min = -1e6, max = 1e6)
pnorm.trunc(q, mean = 0, sd = 1, min = -1e6, max = 1e6)

weightTSA 197

qnorm.trunc(p, mean = 0, sd = 1, min = -1e6, max = 1e6)
rnorm.trunc(n, mean = 0, sd = 1, min = -1e6, max = 1e6)
dgumbel.trunc(x, loc = 0, scale = 1, min = -1e6, max = 1e6)
pgumbel.trunc(q, loc = 0, scale = 1, min = -1e6, max = 1e6)
qgumbel.trunc(p, loc = 0, scale = 1, min = -1e6, max = 1e6)
rgumbel.trunc(n, loc = 0, scale = 1, min = -1e6, max = 1e6)

Arguments

x, q vector of quantiles

p vector of probabilities

n number of observations

mean, sd means and standard deviation parameters

loc, scale location and scale parameters

min vector of minimal bound values

max vector of maximal bound values

Details

See dnorm for details on the Normal distribution. The Gumbel distribution comes from the evd
package. See dgumbel for details on the Gumbel distribution.

Value

dnorm.trunc and dgumbel.trunc give the density, pnorm and pgumbel.trunc give the distribu-
tion function, qnorm and qgumbel.trunc give the quantile function, rnorm and rgumbel.trunc
generate random deviates.

Author(s)

Gilles Pujol and Bertrand Iooss

weightTSA Weight-function to transform an output variable in order to perform
Target Sensitivity Analysis (TSA)

Description

Transformation function of one variable (vector sample)

Usage

weightTSA(Y, c, upper = TRUE, type="indicTh", param=1)

198 weightTSA

Arguments

Y The output vector

c The threshold

upper TRUE for upper threshold and FALSE for lower threshold

type The weight function type ("indicTh", "zeroTh", logistic", "exp1side"):

• indicTh : indicator-thresholding
• zeroTh : zero-thresholding (keeps the variable value above (upper=TRUE

case) or below the threshold)
• logistic : logistic transformation at the threshold
• exp1side : exponential transformation above (upper=TRUE case) or below

the threshold (see Raguet and Marrel)

param The parameter value for "logistic" and "exp1side" types

Details

The weight functions depend on a threshold c and/or a smooth relaxation. These functions are
defined as follows

• if type = "indicTh": w = 1Y >c (upper threshold) and w = 1Y <c (lower threshold),

• if type = "zeroTh": w = Y 1Y >c (upper threshold) and w = Y 1Y <c (lower threshold),

• if type = "logistic":

w =

[
1 + exp

(
−param

Y − c

|c|

)]−1

(upper threshold) and

w =

[
1 + exp

(
−param

c− Y

|c|

)]−1

(lower threshold),

• if type = "exp1side":

w =

[
1 + exp

(
−max(c− Y, 0)

param
5 σ(Y)

)]
(upper threshold) and

w =

[
1 + exp

(
−max(Y − c, 0)

param
5 σ(Y)

)]
(lower threshold), where σ(Y) is an estimation of the standard deviation of Y and param = 1
is a parameter tuning the smoothness.

Value

The vector sample of the transformed variable

Author(s)

B. Iooss

weightTSA 199

References

H. Raguet and A. Marrel, Target and conditional sensitivity analysis with emphasis on dependence
measures, Preprint, https://hal.archives-ouvertes.fr/hal-01694129

A. Marrel and V. Chabridon, 2021, Statistical developments for target and conditional sensitiv-
ity analysis: Application on safety studies for nuclear reactor, Reliability Engineering & System
Safety, 214:107711.

A. Spagnol, Kernel-based sensitivity indices for high-dimensional optimization problems, PhD The-
sis, Universite de Lyon, 2020

Spagnol A., Le Riche R., Da Veiga S. (2019), Global sensitivity analysis for optimization with
variable selection, SIAM/ASA J. Uncertainty Quantification, 7(2), 417–443.

Examples

n <- 100 # sample size
c <- 1.5
Y <- rnorm(n)
Yt <- weightTSA(Y, c)

Index

∗ IO
template.replace, 186

∗ design
delsa, 10
discrepancyCriteria_cplus, 12
fast99, 15
morris, 28
sb, 82
shapleyPermEx, 111
shapleyPermRand, 114
sobol, 127
sobol2002, 129
sobol2007, 131
sobolEff, 134
soboljansen, 140
sobolmara, 143
sobolmartinez, 145
sobolMultOut, 148
sobolowen, 151
sobolroalhs, 161
sobolroauc, 164
sobolSalt, 167
sobolTIIlo, 174
sobolTIIpf, 176
soboltouati, 179

∗ methods
decoupling, 9

∗ misc
testmodels, 194
truncateddistrib, 196

∗ package
sensitivity-package, 3

∗ proportional values
pme_knn, 60

∗ regression
johnson, 17
johnsonshap, 20
pcc, 36
src, 182

∗ shapley
lmg, 24
pmvd, 65
shapleysobol_knn, 118

∗ utilities
parameterSets, 35

addelman_const, 5, 6, 7
ask (decoupling), 9
ask.sb (sb), 82
ask.sobolGP (sobolGP), 136
ask.sobolrec (sobolrec), 155
atantemp.fun (testmodels), 194

campbell1D.fun (testmodels), 194
correlRatio, 3, 8

decoupling, 6, 9
delsa, 3, 6, 10, 36
dgumbel.trunc (truncateddistrib), 196
discrepancyCriteria_cplus, 5, 6, 12, 28
dnorm.trunc (truncateddistrib), 196

EPtest, 5, 6, 14
extract (decoupling), 9
extract.shapleysobol_knn

(shapleysobol_knn), 118
extract.sobolshap_knn (sobolshap_knn),

169

fast99, 4, 15, 129
friedman.fun (testmodels), 194

gamma.test.testHSIC (testHSIC), 188
ggplot.johnson (johnson), 17
ggplot.johnsonshap (johnsonshap), 20
ggplot.pcc (pcc), 36
ggplot.pme_knn (pme_knn), 60
ggplot.qosa (qosa), 79
ggplot.sensiFdiv (sensiFdiv), 84

200

INDEX 201

ggplot.shapleyPermEx (shapleyPermEx),
111

ggplot.shapleyPermRand
(shapleyPermRand), 114

ggplot.shapleysobol_knn
(shapleysobol_knn), 118

ggplot.sobol (sobol), 127
ggplot.sobol2002 (sobol2002), 129
ggplot.sobol2007 (sobol2007), 131
ggplot.sobolEff (sobolEff), 134
ggplot.soboljansen (soboljansen), 140
ggplot.sobolmara (sobolmara), 143
ggplot.sobolmartinez (sobolmartinez),

145
ggplot.sobolMultOut (sobolMultOut), 148
ggplot.sobolowen (sobolowen), 151
ggplot.sobolrank (sobolrank), 153
ggplot.sobolroalhs (sobolroalhs), 161
ggplot.sobolroauc (sobolroauc), 164
ggplot.sobolSalt (sobolSalt), 167
ggplot.sobolshap_knn (sobolshap_knn),

169
ggplot.sobolTIIlo (sobolTIIlo), 174
ggplot.sobolTIIpf (sobolTIIpf), 176
ggplot.soboltouati (soboltouati), 179
ggplot.src (src), 182

heterdisc.fun (testmodels), 194

identify, 30
ishigami.fun (testmodels), 194

johnson, 3, 6, 17, 22, 26
johnsonshap, 5, 18, 20, 110, 122

kde, 86
km, 137, 139

linkletter.fun (testmodels), 194
lmg, 3, 6, 18, 24, 38, 63, 67, 113, 122, 184

matyas.fun (testmodels), 194
maximin_cplus, 5, 6, 13, 27
mean.nondiag.testHSIC (testHSIC), 188
morris, 3, 9, 28, 34
morris.fun (testmodels), 194
morrisMultOut, 5, 6, 32, 33

par, 11
parameterSets, 6, 10, 11, 35

pcc, 3, 26, 36, 67, 184
pgumbel.trunc (truncateddistrib), 196
PLI, 5, 6, 38, 45, 49, 52, 56
PLIquantile, 5, 6, 40, 43, 49, 52, 56
PLIquantile_multivar, 5, 6, 40, 45, 47, 56
PLIsuperquantile, 5, 6, 40, 45, 49, 50, 56
PLIsuperquantile_multivar, 5, 6, 40, 45,

49, 52, 54
plot (plot.support), 58
plot.delsa (delsa), 10
plot.fast99 (fast99), 15
plot.johnson (johnson), 17
plot.johnsonshap (johnsonshap), 20
plot.lmg (lmg), 24
plot.morris (morris), 28
plot.pcc (pcc), 36
plot.pme_knn (pme_knn), 60
plot.pmvd (pmvd), 65
plot.qosa (qosa), 79
plot.sb (sb), 82
plot.sensiFdiv (sensiFdiv), 84
plot.sensiHSIC (sensiHSIC), 86
plot.shapleyPermEx (shapleyPermEx), 111
plot.shapleyPermRand (shapleyPermRand),

114
plot.shapleysobol_knn

(shapleysobol_knn), 118
plot.shapleySubsetMc (shapleySubsetMc),

125
plot.sobol (sobol), 127
plot.sobol2002 (sobol2002), 129
plot.sobol2007 (sobol2007), 131
plot.sobol_knn (shapleysobol_knn), 118
plot.sobolEff (sobolEff), 134
plot.sobolGP (sobolGP), 136
plot.soboljansen (soboljansen), 140
plot.sobolmara (sobolmara), 143
plot.sobolmartinez (sobolmartinez), 145
plot.sobolMultOut (sobolMultOut), 148
plot.sobolowen (sobolowen), 151
plot.sobolrank (sobolrank), 153
plot.sobolrec (sobolrec), 155
plot.sobolrep (sobolrep), 158
plot.sobolroalhs (sobolroalhs), 161
plot.sobolroauc (sobolroauc), 164
plot.sobolSalt (sobolSalt), 167
plot.sobolshap_knn (sobolshap_knn), 169
plot.sobolTIIlo (sobolTIIlo), 174

202 INDEX

plot.sobolTIIpf (sobolTIIpf), 176
plot.soboltouati (soboltouati), 179
plot.src (src), 182
plot.support, 58, 185
plot.testHSIC (testHSIC), 188
plot3d.morris (morris), 28
plotFG (sobolTIIpf), 176
plotFG.sobolTIIlo (sobolTIIlo), 174
plotMultOut (sobolMultOut), 148
plotMultOut.sobol (sobol), 127
plotMultOut.sobol2002 (sobol2002), 129
plotMultOut.sobol2007 (sobol2007), 131
plotMultOut.soboljansen (soboljansen),

140
plotMultOut.sobolmara (sobolmara), 143
pme_knn, 5, 6, 26, 60, 67, 122
pmvd, 3, 6, 18, 26, 38, 63, 65, 184
pnorm.trunc (truncateddistrib), 196
PoincareChaosSqCoef, 3, 6, 68, 77
PoincareConstant, 3, 6, 73, 77
PoincareOptimal, 3, 6, 69, 73, 74, 76
print.delsa (delsa), 10
print.fast99 (fast99), 15
print.johnson (johnson), 17
print.johnsonshap (johnsonshap), 20
print.lmg (lmg), 24
print.morris (morris), 28
print.pcc (pcc), 36
print.pme_knn (pme_knn), 60
print.pmvd (pmvd), 65
print.qosa (qosa), 79
print.sb (sb), 82
print.sensiFdiv (sensiFdiv), 84
print.sensiHSIC (sensiHSIC), 86
print.shapleyPermEx (shapleyPermEx), 111
print.shapleyPermRand

(shapleyPermRand), 114
print.shapleysobol_knn

(shapleysobol_knn), 118
print.sobol (sobol), 127
print.sobol2002 (sobol2002), 129
print.sobol2007 (sobol2007), 131
print.sobol_knn (shapleysobol_knn), 118
print.sobolEff (sobolEff), 134
print.sobolGP (sobolGP), 136
print.soboljansen (soboljansen), 140
print.sobolmara (sobolmara), 143
print.sobolmartinez (sobolmartinez), 145

print.sobolMultOut (sobolMultOut), 148
print.sobolowen (sobolowen), 151
print.sobolrank (sobolrank), 153
print.sobolrec (sobolrec), 155
print.sobolrep (sobolrep), 158
print.sobolroalhs (sobolroalhs), 161
print.sobolroauc (sobolroauc), 164
print.sobolSalt (sobolSalt), 167
print.sobolshap_knn (sobolshap_knn), 169
print.sobolTIIlo (sobolTIIlo), 174
print.sobolTIIpf (sobolTIIpf), 176
print.soboltouati (soboltouati), 179
print.src (src), 182
print.testHSIC (testHSIC), 188

qgumbel.trunc (truncateddistrib), 196
qnorm.trunc (truncateddistrib), 196
qosa, 5, 79

regexpr, 187
rgumbel.trunc (truncateddistrib), 196
rnorm.trunc (truncateddistrib), 196

sb, 3, 9, 82
scatterplot (plot.support), 58
sensiFdiv, 5, 84
sensiHSIC, 5, 6, 86, 86, 192
sensitivity, 11
sensitivity (sensitivity-package), 3
sensitivity-package, 3
seq.permutation.test.testHSIC

(testHSIC), 188
shapleyBlockEstimation, 5, 6, 105, 110
shapleyBlockEstimationS

(shapleyBlockEstimation), 105
shapleyBlockEstimationX

(shapleyBlockEstimation), 105
shapleyLinearGaussian, 4, 6, 107, 109, 113,

116, 126
shapleyPermEx, 5, 6, 26, 63, 107, 110, 111,

116, 122, 126
shapleyPermRand, 5, 6, 107, 110, 113, 114,

126
shapleysobol_knn, 5, 6, 22, 26, 63, 110, 113,

116, 117, 126, 172
shapleySubsetMc, 5, 6, 63, 107, 110, 113,

116, 122, 125, 172
sobol, 4, 15, 127, 131, 133, 135, 139, 142,

145, 147, 150, 152, 154, 168, 174,
180

INDEX 203

sobol.fun (testmodels), 194
sobol2002, 4, 129, 129, 133, 135, 139, 142,

147, 150, 152, 154, 180
sobol2007, 4, 129, 131, 131, 135, 139, 142,

147, 150, 152, 154, 168, 180
sobolEff, 4, 129, 131, 133, 134, 139, 142,

152, 154, 168, 174
sobolGP, 4, 6, 129, 131, 136, 150, 174
soboljansen, 4, 129, 131, 133, 135, 139, 140,

147, 150, 152, 154, 168, 180
sobolmara, 4, 129, 131, 133, 142, 143, 150,

163, 166
sobolmartinez, 4, 129, 131, 133, 135, 142,

145, 152, 154, 168, 180
sobolMultOut, 5, 129, 131, 133, 139, 142,

145, 147, 148, 163
sobolowen, 4, 6, 151
sobolrank, 4, 63, 122, 126, 153, 172
sobolrec, 4, 6, 155
sobolrep, 4, 6, 158
sobolroalhs, 4, 6, 129, 145, 161, 166
sobolroauc, 4, 6, 163, 164
sobolSalt, 4, 6, 129, 131, 133, 135, 142, 147,

152, 154, 167, 180
sobolshap_knn, 5, 122, 154, 169
sobolSmthSpl, 4, 6, 129, 135, 154, 173
sobolTIIlo, 4, 6, 174, 178
sobolTIIpf, 4, 6, 176, 176
soboltouati, 4, 6, 147, 179
squaredIntEstim, 5, 6, 69, 181
src, 3, 9, 18, 26, 38, 67, 182
support, 5, 6, 59, 184

tell (decoupling), 9
tell.delsa (delsa), 10
tell.fast99 (fast99), 15
tell.morris (morris), 28
tell.morrisMultOut (morrisMultOut), 33
tell.pme_knn (pme_knn), 60
tell.qosa (qosa), 79
tell.sb (sb), 82
tell.sensiFdiv (sensiFdiv), 84
tell.sensiHSIC (sensiHSIC), 86
tell.shapleyPermEx (shapleyPermEx), 111
tell.shapleyPermRand (shapleyPermRand),

114
tell.shapleysobol_knn

(shapleysobol_knn), 118
tell.sobol (sobol), 127

tell.sobol2002 (sobol2002), 129
tell.sobol2007 (sobol2007), 131
tell.sobolEff (sobolEff), 134
tell.sobolGP (sobolGP), 136
tell.soboljansen (soboljansen), 140
tell.sobolmara (sobolmara), 143
tell.sobolmartinez (sobolmartinez), 145
tell.sobolowen (sobolowen), 151
tell.sobolrank (sobolrank), 153
tell.sobolrec (sobolrec), 155
tell.sobolrep (sobolrep), 158
tell.sobolroalhs (sobolroalhs), 161
tell.sobolroauc (sobolroauc), 164
tell.sobolSalt (sobolSalt), 167
tell.sobolshap_knn (sobolshap_knn), 169
tell.sobolTIIlo (sobolTIIlo), 174
tell.sobolTIIpf (sobolTIIpf), 176
tell.soboltouati (soboltouati), 179
template.replace, 5, 186
testHSIC, 5, 6, 101, 188
testmodels, 5, 194
truncateddistrib, 5, 196

weightTSA, 5, 101, 192, 197

	sensitivity-package
	addelman_const
	correlRatio
	decoupling
	delsa
	discrepancyCriteria_cplus
	EPtest
	fast99
	johnson
	johnsonshap
	lmg
	maximin_cplus
	morris
	morrisMultOut
	parameterSets
	pcc
	PLI
	PLIquantile
	PLIquantile_multivar
	PLIsuperquantile
	PLIsuperquantile_multivar
	plot.support
	pme_knn
	pmvd
	PoincareChaosSqCoef
	PoincareConstant
	PoincareOptimal
	qosa
	sb
	sensiFdiv
	sensiHSIC
	shapleyBlockEstimation
	shapleyLinearGaussian
	shapleyPermEx
	shapleyPermRand
	shapleysobol_knn
	shapleySubsetMc
	sobol
	sobol2002
	sobol2007
	sobolEff
	sobolGP
	soboljansen
	sobolmara
	sobolmartinez
	sobolMultOut
	sobolowen
	sobolrank
	sobolrec
	sobolrep
	sobolroalhs
	sobolroauc
	sobolSalt
	sobolshap_knn
	sobolSmthSpl
	sobolTIIlo
	sobolTIIpf
	soboltouati
	squaredIntEstim
	src
	support
	template.replace
	testHSIC
	testmodels
	truncateddistrib
	weightTSA
	Index

