Package ‘scoringRules’

September 18, 2024
Type Package

Title Scoring Rules for Parametric and Simulated Distribution
Forecasts

Version 1.1.3
Date 2024-09-12

Description Dictionary-like reference for computing scoring rules in a wide
range of situations. Covers both parametric forecast distributions (such as
mixtures of Gaussians) and distributions generated via simulation. Further
details can be found in the package vignettes <doi:10.18637/jss.v090.112>,
<doi:10.18637/jss.v110.108>.

URL https://github.com/FK83/scoringRules

License GPL (>=2)

Imports Rcpp (>=0.12.0), methods, MASS, knitr

Depends R (>= 3.00)

Suggests gsl (>= 1.8-3), hypergeo(>= 1.0), rmarkdown, testthat, crch,
ggplot2

LinkingTo Rcpp, ReppArmadillo

RoxygenNote 7.3.2

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation yes

Author Alexander I. Jordan [aut] (<https://orcid.org/0000-0001-7423-1352>),
Fabian Krueger [aut, cre] (<https://orcid.org/0000-0002-5112-9037>),
Sebastian Lerch [aut] (<https://orcid.org/0000-0002-3467-4375>),

Sam Allen [aut] (<https://orcid.org/0000-0003-1971-8277>),
Maximiliane Graeter [ctb]

Maintainer Fabian Krueger <Fabian.Krueger83@gmail.com>
Repository CRAN
Date/Publication 2024-09-18 14:20:02 UTC

https://doi.org/10.18637/jss.v090.i12
https://doi.org/10.18637/jss.v110.i08
https://github.com/FK83/scoringRules
https://orcid.org/0000-0001-7423-1352
https://orcid.org/0000-0002-5112-9037
https://orcid.org/0000-0002-3467-4375
https://orcid.org/0000-0003-1971-8277

2

Contents

Index

Contents

AF NS . o v v v e e e e e e e 3
CIPSMUMETIC .« & o v v v v et e it e e e e e e e e e e e 5
GDPdata e e e e 8
get_weight_func 10
logs.nuUmEriC e e e e e e e e 12
plot.casestudy e e 15
plotmestudy L. e e e e e e 16
print.casestudy L e e e e e e 17
printmestudy L. e e e e e e 17
IPS_ProbS 18
run_casestudy L. L e e e e e e 19
run_mestudy ... L e e e e e 20
SCOTES & v v vt e e e e e e e e e e 21
SCOTES_2PEXP - « « v v e 22
SCOTES_2PNOIM « « . v v v v e ettt e e e e e e e e e 23
scores_beta L e e e 23
SCOres_binom e e 24
SCOTES_EXP « « + v v v v e 24
SCOTES_ZAMMA . « « . . v v v e e et i e e e e e e e e e e e e 25
SCOTES_ZEV . o v v v v e 26
scores_gpd .. . 26
SCOTES_hYPETr o e e e e e 27
scores_lapl . ..o 28
scores_llapl Lo 28
scores_llogis L. 29
SCOTES_INOIm e e e e e e 29
scores_logis 30
SCOTES_MIXNOIM . & v v v v v v v v e 31
SCOreS_MOMENTS+t v v v e e e e e e e e e e e e e e 32
scores_nbinom L e e e e e 33
SCOTES_NOIMIL & . & v v v v v e e e e e e e e e e e e e e e e 34
SCOTES_POIS + v v v v v e 35
scores_quantileso 36
scores_sample_multiv L L e 37
scores_sample_multiv_weighted Lo oL 40
scores_sample_univo L. L e e e e e 45
scores_sample_univ_weighted L oo 47
SCOTES_t v v vt e e e e e e e e e e e e e e e e e e 52
scores_Uunif e 53
summary.casestudyo .. e e e e e e e e e e 54
summary.mestudy e 54
Supplementary distributions: Positiverealline 55
Supplementary distributions: Realline 56
Supplementary distributions: Variable support 57
60

ar_ms

ar_ms Bayesian analysis of a Markov Switching autoregressive model

Description

Bayesian analysis of a Markov Switching autoregressive model

Usage

ar_ms(
"
nlag = 1,
beta_switch = FALSE,
variance_switch = TRUE,
identification_constraint = "variance”,
n_burn = 5000,
n_rep = 20000,
forecast_periods = 5,
printout = FALSE,
Hm1_delta = 25,

mu_delta = 0,
s_=20.3,
nu_ = 3,
R = matrix(c(8, 2, 2, 8), nrow = 2)

)

Arguments
y numeric vector (time series to be analyzed).
nlag integer, number of autoregressive lags (defaults to one).

beta_switch, variance_switch

logicals, indicating whether there should be Markovian state dependence in re-
gression parameters and residual variance, respectively. Defaults to beta_switch

= FALSE, variance_switch = TRUE.
identification_constraint

character, indicating how to identify latent states. Possible values: "variance”,

"mean” and "persistence”. Defaults to "variance”.

n_burn, n_rep integers, number of MCMC iterations for burn-in and main analysis.
forecast_periods

number of future periods for which forecasts are computed.
printout logical, whether to print progress report during MCMC (defaults to FALSE).
Hm1_delta, mu_delta, s_, nu_, R

prior parameters as described in KLTG (2021, Appendix E and Table 4).

Details

The default parameters are as set by KLTG (2021, Section 5). The output matrices fcMeans and
fcSds can be used to construct the mixture-of-parameters estimator analyzed by KLTG. While
many of the model features can be changed as described above, the number of Markov regimes is
always fixed at two.

ar_ms is an R/C++ implementation of Matlab code kindly shared by Gianni Amisano via his
website (https://sites.google.com/site/gianniamisanowebsite/). See Amisano and Gi-
acomini (2007) who analyze a similar model.

Value
List containing parameter estimates and forecasts, with the following elements:
* pars, matrix of posterior draws for parameters (rows are MCMC iterations, columns are pa-
rameters)

e fcMeans and fcSds, matrices of forecast means and standard deviations (rows are MCMC
iterations, columns are forecast horizons)

* probs, matrix of filtered probabilities for first latent state (rows are MCMC iterations, columns
are time periods, excluding the first nlag values for initialization).

* count, integer, counter for the number of states that were relabeled based on identification_constraint.

Author(s)

Fabian Krueger, based on Matlab code by Gianni Amisano (see details section)

References

Amisano, G. and R. Giacomini (2007), ‘Comparing density forecasts via weighted likelihood ratio
tests’, Journal of Business and Economic Statistics 25, 177-190. doi:10.1198/073500106000000332

Krueger, F., Lerch, S., Thorarinsdottir, T.L. and T. Gneiting (2021): ‘Predictive inference based
on Markov chain Monte Carlo output’, International Statistical Review 89, 274-301. doi:10.1111/
insr.12405

See Also

run_casestudy uses ar_ms to replicate the results of KLTG (2021, Section 5).

Examples
Not run:
Use GDP data from 2014Q4 edition
data(gdp)
dat <- subset(gdp, vint == "2014Q4")

y <- dat$vallorder(dat$dt)]

Fit model, using the default settings
set.seed(816)
fit <- ar_ms(y)

https://sites.google.com/site/gianniamisanowebsite/
https://doi.org/10.1198/073500106000000332
https://doi.org/10.1111/insr.12405
https://doi.org/10.1111/insr.12405

crps.numeric 5

Histograms of parameter draws
par(mfrow = c(2, 2))

hist(fit$pars[,1], main = "Intercept (state-invariant)", xlab = "")
hist(fit$pars[,2], main = "AR(1) term (state-invariant)”, xlab = "")
hist(1/fit$pars[,3], main = "Residual variance in 1st state”, xlab = "")
hist(1/fit$pars[,4], main = "Residual variance in 2nd state”, xlab = "")

By construction, the residual variance is smaller in the 1st than in the 2nd state:
print(mean(1/fit$pars[,3] < 1/fit$pars[,4]1))

End(Not run)

crps.numeric Continuous Ranked Probability Score for Parametric Forecast Distri-
butions

Description

Calculate the Continuous Ranked Probability Score (CRPS) given observations and parameters of
a family of distributions.

Usage
S3 method for class 'numeric'
crps(y, family, ...)
Arguments
y vector of realized values.
family string which specifies the parametric family; current options: "2pexp"”, "2pnorm”,

"beta”, "binom”, "clogis"”, "cnorm”, "ct”, "exp", "expM","exponential”,
1Igammall, "geV", "gpd"’ “gtClOgiS“, Hgtcnormll’ ”gtctll7 Ilhyper.ll, Hlaplllylllaplace”’
"1lapl”, "llogis"”, "lnorm”, "log-laplace”, "log-logistic”,"log-normal”,

n o n

"logis”, "logistic”, "mixnorm”, "mixture-normal”, "nbinom”, "negative-binomial"”,
"norm”, "normal”, "pois”, "poisson”, "t", "tlogis”,"tnorm”, "tt", "two-piece-exponentia
"two-piece-normal”, "unif”, "uniform”.

vectors of parameter values; expected input depends on the chosen family. See
details below.

Details
Mathematical details are available in Appendix A of the vignette Evaluating probabilistic forecasts
with scoringRules that accompanies the package.

The parameters supplied to each of the functions are numeric vectors:

1. Distributions defined on the real line:

e "laplace” or "lapl”: location (real-valued location parameter), scale (positive scale
parameter); see crps_lapl

crps.numeric

"logistic” or "logis": location (real-valued location parameter), scale (positive
scale parameter); see crps_logis

"normal” or "norm”: mean, sd (mean and standard deviation); see crps_norm
"normal-mixture” or "mixture-normal” or "mixnorm”: m (mean parameters), s (stan-
dard deviations), w (weights); see crps_mixnorm; note: matrix-input for parameters

"t": df (degrees of freedom), location (real-valued location parameter), scale (posi-
tive scale parameter); see crps_t

"two-piece-exponential” or "2pexp”: location (real-valued location parameter),
scalel, scale2 (positive scale parameters); see crps_2pexp

"two-piece-normal” or "2pnorm”: location (real-valued location parameter), scalel,
scale?2 (positive scale parameters); see crps_2pnorm

2. Distributions for non-negative random variables:

"exponential” or "exp”: rate (positive rate parameter); see crps_exp

"gamma": shape (positive shape parameter), rate (positive rate parameter), scale (alter-
native to rate); see crps_gamma

"log-laplace” or "1lapl”: locationlog (real-valued location parameter), scalelog
(positive scale parameter); see crps_llapl

"log-logistic” or "1logis": locationlog (real-valued location parameter), scalelog
(positive scale parameter); see crps_llogis

"log-normal” or "lnorm”: locationlog (real-valued location parameter), scalelog
(positive scale parameter); see crps_lnorm

3. Distributions with flexible support and/or point masses:

"beta": shapel, shape2 (positive shape parameters), lower, upper (lower and upper
limits); see crps_beta

"uniform” or "unif"”: min, max (lower and upper limits), Imass, umass (point mass in
lower or upper limit); see crps_unif

"expM": location (real-valued location parameter), scale (positive scale parameter),
mass (point mass in location); see crps_expM

"gev": location (real-valued location parameter), scale (positive scale parameter),
shape (real-valued shape parameter); see crps_gev

"gpd"”: location (real-valued location parameter), scale (positive scale parameter),
shape (real-valued shape parameter), mass (point mass in location); see crps_gpd
"tlogis": location (location parameter), scale (scale parameter), lower, upper (lower
and upper limits); see crps_tlogis

"clogis": location (location parameter), scale (scale parameter), lower, upper (lower
and upper limits); see crps_clogis

"gtclogis"”: location (location parameter), scale (scale parameter), lower, upper
(lower and upper limits); 1Imass, umass (point mass in lower or upper limit); see crps_gtclogis
"tnorm": location (location parameter), scale (scale parameter), lower, upper (lower
and upper limits); see crps_tnorm

"cnorm”: location (location parameter), scale (scale parameter), lower, upper (lower
and upper limits); see crps_cnorm

"gtcnorm”: location (location parameter), scale (scale parameter), lower, upper
(lower and upper limits); 1mass, umass (point mass in lower or upper limit); see crps_gtcnorm

crps.numeric 7

e "tt": df (degrees of freedom), location (location parameter), scale (scale parameter),
lower, upper (lower and upper limits); see crps_tt

e "ct": df (degrees of freedom), location (location parameter), scale (scale parameter),
lower, upper (lower and upper limits); see crps_ct

e "gtct”: df (degrees of freedom), location (location parameter), scale (scale parame-
ter), Lower, upper (lower and upper limits); 1mass, umass (point mass in lower or upper
limit); see crps_gtct

4. Distributions of discrete variables:

e "pbinom": size (number of trials (zero or more)), prob (probability of success on each
trial); see crps_binom

e "hyper": m (the number of white balls in the urn), n (the number of black balls in the
urn), k (the number of balls drawn from the urn); see crps_hyper

* "negative-binomial” or "nbinom": size (positive dispersion parameter), prob (suc-
cess probability), mu (mean, alternative to prob); see crps_nbinom

* "poisson” or "pois”: lambda (positive mean); see crps_pois

All numerical arguments should be of the same length. An exception are scalars of length 1, which
will be recycled.

Value

Vector of score values. A lower score indicates a better forecast.

Author(s)

Alexander Jordan, Fabian Krueger, Sebastian Lerch

References

Closed form expressions of the CRPS for specific distributions:

Baran, S. and S. Lerch (2015): ‘Log-normal distribution based Ensemble Model Output Statistics
models for probabilistic wind-speed forecasting’, Quarterly Journal of the Royal Meteorological
Society 141, 2289-2299. doi:10.1002/qj.2521 (Log-normal)

Friederichs, P. and T.L. Thorarinsdottir (2012): ‘Forecast verification for extreme value distri-
butions with an application to probabilistic peak wind prediction’, Environmetrics 23, 579-594.
doi:10.1002/env.2176 (Generalized Extreme Value, Generalized Pareto)

Gneiting, T., Larson, K., Westvelt III, A.H. and T. Goldman (2005): ‘Calibrated probabilistic fore-
casting using ensemble model output statistics and minimum CRPS estimation’, Monthly Weather
Review 133, 1098-1118. doi:10.1175/mwr2904.1 (Normal)

Gneiting, T., Larson, K., Westrick, K., Genton, M.G. and E. Aldrich (2006): ‘Calibrated proba-
bilistic forecasting at the stateline wind energy center: The regime-switching space-time method’,
Journal of the American Statistical Association 101, 968-979. doi:10.1198/016214506000000456
(Censored normal)

Gneiting, T. and T.L. Thorarinsdottir (2010): ‘Predicting inflation: Professional experts versus no-
change forecasts’, arXiv preprint arXiv:1010.2318. (Two-piece normal)

Grimit, E.P., Gneiting, T., Berrocal, V.J. and N.A. Johnson (2006): ‘The continuous ranked prob-
ability score for circular variables and its application to mesoscale forecast ensemble verification’,

https://doi.org/10.1002/qj.2521
https://doi.org/10.1002/env.2176
https://doi.org/10.1175/mwr2904.1
https://doi.org/10.1198/016214506000000456

8 GDP data

Quarterly Journal of the Royal Meteorological Society 132, 2925-2942. doi:10.1256/qj.05.235
(Mixture of normals)

Scheuerer, M. and D. Moeller (2015): ‘Probabilistic wind speed forecasting on a grid based on
ensemble model output statistics’, Annals of Applied Statistics 9, 1328-1349. doi:10.1214/15-
aoas843 (Gamma)

Thorarinsdottir, T.L. and T. Gneiting (2010): ‘Probabilistic forecasts of wind speed: ensemble
model output statistics by using heteroscedastic censored regression’, Journal of the Royal Statisti-
cal Society (Series A) 173, 371-388. doi:10.1111/j.1467985x.2009.00616.x (Truncated normal)

Wei, W. and L. Held (2014): ‘Calibration tests for count data’, TEST 23, 787-205. doi:10.1007/
s1174901403808 (Poisson, Negative Binomial)

Independent listing of closed-form solutions for the CRPS:

Taillardat, M., Mestre, O., Zamo, M. and P. Naveau (2016): ‘Calibrated ensemble forecasts using
quantile regression forests and ensemble model output statistics’, Monthly Weather Review 144,
2375-2393. doi:10.1175/mwrd150260.1

See Also

logs.numeric

Examples

crps(y = 1, family = "normal”, mean = @, sd = 2)
crps(y = rnorm(20), family = "normal”, mean = 1:20, sd = sqrt(1:20))

Arguments can have different lengths:
crps(y = rnorm(20), family = "normal”, mean = @, sd = 2)
crps(y = 1, family = "normal”, mean = 1:20, sd = sqrt(1:20))

Mixture of normal distributions requires matrix input for parameters:
mval <- matrix(rnorm(20x50), nrow = 20)

sdval <- matrix(runif(20%*50, min = @, max = 2), nrow = 20)

weights <- matrix(rep(1/50, 20*50), nrow = 20)

crps(y = rnorm(20), family = "mixnorm”, m = mval, s = sdval, w = weights)
GDP data Data and forecasts for US GDP growth
Description

Historical data and forecast distributions for the growth rate of US gross domestic product (GDP).
The forecasts are generated from a Bayesian Markov Switching model as described in Section 5 of
KLTG (2021).

https://doi.org/10.1256/qj.05.235
https://doi.org/10.1214/15-aoas843
https://doi.org/10.1214/15-aoas843
https://doi.org/10.1111/j.1467-985x.2009.00616.x
https://doi.org/10.1007/s11749-014-0380-8
https://doi.org/10.1007/s11749-014-0380-8
https://doi.org/10.1175/mwr-d-15-0260.1

GDP data 9

Format

gdp is a data frame which contains the real-time data set used in Section 5 of KLTG (2021), with
the following columns:

* dt - date in question (e.g., "2013Q2" for the second quarter of 2013)
e vint - data vintage (i.e., the date at which the realization was recorded); same format as dt
* val - value of the GDP growth rate

gdp_mcmc is a list, whereby each element is a data frame. gdp_mcmc$forecasts contains the simu-
lated forecast distributions. There are 20 columns (corresponding to quarters 2008:Q1 to 2012:Q4)
and 5.000 rows (corresponding to simulation draws). gdp_mcmc$actuals contains the actual ob-
servations. There are 20 columns (again corresponding to quarterly dates) and a single row.

Details

The realizations in gdp_mcmc$actuals are also contained in gdp, based on the second available
vintage for each date. For example, gdp_mcmc$actuals$X2008Q1 is the entry in gdp for which dt
== "2008Q1" and vint == "2008Q3".

Source

The GDP growth rate is computed from real-time data provided by the Federal Reserve Bank of
Philadelphia, https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/
real-time-data-set-for-macroeconomists (series code “ROUTPUT”, second-vintage data).

The same data also enters the model which is used to generate the forecast distribution. Disclaimer:

The provider of the raw data takes no responsibility for the accuracy of the data posted here. Fur-
thermore, the raw data may be revised over time, and the website linked above should be consulted

for the official, most recent version.

The model from which the forecast draws are generated is described in Section 5 of KLTG (2021).
Forecasts are one quarter ahead (that is, they are based on data until the previous quarter).

References

Krueger, F., Lerch, S., Thorarinsdottir, T.L. and T. Gneiting (2021): ‘Predictive inference based
on Markov chain Monte Carlo output’, International Statistical Review 89, 274-301. doi:10.1111/
insr.12405

Examples

Not run:

Load data
data(gdp_mcmc)

Histogram of forecast draws for 2012Q4
fc_draws <- gdp_mcmc$forecasts[, "X2012Q4"]
hist(fc_draws, main = "Forecast draws for 2012:Q4", xlab = "Value")

Add vertical line at realizing value
rlz <- gdp_mcmc$actuals[, "X2012Q4"]

https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-for-macroeconomists
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-for-macroeconomists
https://doi.org/10.1111/insr.12405
https://doi.org/10.1111/insr.12405

10 get_weight_func

abline(v = rlz, 1lwd = 3)

Compute CRPS for this forecast case
crps_sample(y = rlz, dat = fc_draws)

End(Not run)

get_weight_func Default Weight and Chaining Functions

Description

Get commonly used weight or chaining functions to use within weighted scoring rules. The normal
and logistic distribution, density, and survival functions are available. Multivariate normal distribu-
tion functions are also available for multivariate scoring rules.

Usage

get_weight_func(name = "norm_cdf", mu = @, sigma = 1, weight = TRUE)

Arguments
name name of the weight function to extract.
mu location parameter(s) of the normal or logistic distribution.
sigma scale parameter(s) of the normal or logistic distribution.
weight logical specifying whether to return a weight function (weight = TRUE) or chain-
ing function (weight = FALSE).
Details

The weighted scoring rules in scores_sample_univ_weighted and scores_sample_multiv_weighted
require a weight or chaining function argument (weight_func or chain_func) to target particular
outcomes. get_weight_func() can be used to obtain the relevant R function corresponding to
commonly-used weight and chaining functions.

These commonly-used weight and chaining functions correspond to cumulative distribution func-
tions (cdf’s), probability density function (pdf’s) and survival functions of the normal and logistic
distributions. The name argument specifies the desired weight or chaining function. This must be
one of 'norm_cdf', "norm_pdf', 'norm_surv', 'logis_cdf', 'logis_pdf' and 'logis_surv',
corresponding to the cdf, pdf and survival functions of the normal and logistic distribution, respec-
tively.

mu and sigma represent the location and scale parameters of the normal or logistic distribution.

weight is a logical that specifies whether a weight or chaining function should be returned: if
weight = TRUE (the default) the weight function is returned, and if weight = FALSE the chaining
function is returned.

get_weight_func 11

The normal weight and chaining functions are applicable in both the univariate and multivariate
setting. In the univariate case, mu and sigma should be single numeric values. In the multivariate
case, 'norm_cdf' and 'norm_pdf' represent the cdf and pdf of the multivariate normal distribution,
with mean vector mu and covariance matrix diag(sigma). Here, mu and sigma are vectors with
length equal to the dimension of the multivariate outcomes.

Note that get_weight_func() can currently only return multivariate weight and chaining functions
corresponding to the multivariate normal distribution with a diagonal covariance matrix.

Value

A weight or chaining function.

Author(s)
Sam Allen

References

Gneiting, T. and R. Ranjan (2011): ‘Comparing density forecasts using threshold-and quantile-
weighted scoring rules’, Journal of Business & Economic Statistics 29, 411-422. doi:10.1198/
jbes.2010.08110

Allen, S., Ginsbourger, D. and J. Ziegel (2023): ‘Evaluating forecasts for high-impact events us-
ing transformed kernel scores’, SIAM/ASA Journal on Uncertainty Quantification 11, 906-940.
doi:10.1137/22M 1532184

See Also

scores_sample_univ_weighted and scores_sample_multiv_weighted for weighted scoring rules.

Examples

Not run:

univariate

generate data

y <= rnorm(10)

sample_fc <- matrix(rnorm(100), nrow = 10)

normal cdf
mu <- 1
sigma <- 1

weight_func <- get_weight_func("norm_cdf”, mu = mu, sigma = sigma)

chain_func <- get_weight_func(”"norm_cdf”, mu = mu, sigma = sigma, weight = FALSE)
owcrps_sample(y =y, dat = sample_fc, weight_func = weight_func)

twcrps_sample(y =y, dat = sample_fc, chain_func = chain_func)

results are the same if the weight function is input manually

weight_func <- function(x) pnorm(x, mu, sigma)

chain_func <- function(x) (x - mu)*pnorm(x, mu, sigma) + (sigma*2)*dnorm(x, mu, sigma)
owcrps_sample(y =y, dat = sample_fc, weight_func = weight_func)

https://doi.org/10.1198/jbes.2010.08110
https://doi.org/10.1198/jbes.2010.08110
https://doi.org/10.1137/22M1532184

12

logs.numeric

twcrps_sample(y =y, dat = sample_fc, chain_func = chain_func)

logistic pdf
mu <- @
sigma <- 1

weight_func <- get_weight_func("”logis_pdf"”, mu = mu, sigma = sigma)

chain_func <- get_weight_func(”logis_pdf"”, mu = mu, sigma = sigma, weight = FALSE)
owcrps_sample(y =y, dat = sample_fc, weight_func = weight_func)

twcrps_sample(y =y, dat = sample_fc, chain_func = chain_func)

normal survival function
mu <- -1
sigma <- 1

weight_func <- get_weight_func("norm_surv”, mu = mu, sigma = sigma)

chain_func <- get_weight_func("norm_surv”, mu = mu, sigma = sigma, weight = FALSE)
owcrps_sample(y =y, dat = sample_fc, weight_func = weight_func)

twcrps_sample(y = y, dat = sample_fc, chain_func = chain_func)

multivariate
d <- 3 # number of dimensions
m <- 10 # number of samples from multivariate forecast distribution

generate samples from multivariate normal distributions
mud <- rep(@, d)

mu <- rep(1, d)

SO <- S <- diag(d)

SO[S0==0] <- 0.2

S[S==0] <- 0.1

y <= drop(mu@ + rnorm(d) %x% chol(SQ))
sample_fc <- replicate(m, drop(mu + rnorm(d) %x% chol(S)))

component-wise normal cdf
mu <- rep(1, d)
sigma <- rep(1, d)

weight_func <- get_weight_func("norm_cdf”, mu = mu, sigma = sigma)

chain_func <- get_weight_func("norm_cdf”, mu = mu, sigma = sigma, weight = FALSE)
owes_sample(y = y, dat = sample_fc, weight_func = weight_func)

twes_sample(y = y, dat = sample_fc, chain_func = chain_func)

End(Not run)

logs.numeric Logarithmic Score for Parametric Forecast Distributions

logs.numeric 13

Description

Calculate the logarithmic score (LogS) given observations and parameters of a family of distribu-

tions.
Usage
S3 method for class 'numeric'
logs(y, family, ...)
Arguments
y Vector of realized values.
family String which specifies the parametric family; current options: "2pexp"”, "2pnorm”,

”beta”, ”binom”’ ”eXp”, Hexpzﬂ,”exponential"’ ”gammaﬂ, "gevll, ngdll’
"hyper", "lapl”,"laplace”, "1lapl”, "llogis"”, "lnorm”, "log-laplace”,
"log-logistic"”,"log-normal”, "logis"”, "logistic”, "mixnorm", "mixture-normal”,

non

"nbinom”, "negative-binomial”, "norm”, "normal”, "pois”, "poisson”,

"t", "tlogis”,"tnorm", "tt", "two-piece-exponential”, "two-piece-normal”,
"unif"”, "uniform”.

Vectors of parameter values; expected input depends on the chosen family. See

details below.

Details
The parameters supplied to each of the functions are numeric vectors:

1. Distributions defined on the real line:
* "laplace” or "lapl”: location (real-valued location parameter), scale (positive scale
parameter); see logs_lapl

e "logistic” or "logis": location (real-valued location parameter), scale (positive
scale parameter); see logs_logis

e "normal” or "norm”: mean, sd (mean and standard deviation); see logs_norm

* "normal-mixture” or "mixture-normal” or "mixnorm”: m (mean parameters), s (stan-
dard deviations), w (weights); see logs_mixnorm; note: matrix-input for parameters

o "t": df (degrees of freedom), location (real-valued location parameter), scale (posi-
tive scale parameter); see logs_t

e "two-piece-exponential” or "2pexp”: location (real-valued location parameter),
scalel, scale2 (positive scale parameters); see logs_2pexp

e "two-piece-normal” or "2pnorm”: location (real-valued location parameter), scalel,
scale?2 (positive scale parameters); see logs_2pnorm
2. Distributions for non-negative random variables:

e "exponential” or "exp": rate (positive rate parameter); see logs_exp

* "gamma": shape (positive shape parameter), rate (positive rate parameter), scale (alter-
native to rate); see logs_gamma

* "log-laplace” or "llapl”: locationlog (real-valued location parameter), scalelog
(positive scale parameter); see logs_llapl

14 logs.numeric

e "log-logistic” or "llogis"”: locationlog (real-valued location parameter), scalelog
(positive scale parameter); see logs_llogis

e "log-normal” or "lnorm": locationlog (real-valued location parameter), scalelog
(positive scale parameter); see logs_lnorm
3. Distributions with flexible support and/or point masses:
e "beta”: shapel, shape2 (positive shape parameters), lower, upper (lower and upper
limits); see logs_beta
e "uniform” or "unif”: min, max (lower and upper limits); see logs_unif

e "exp2": location (real-valued location parameter), scale (positive scale parameter);
see logs_exp2

e "gev": location (real-valued location parameter), scale (positive scale parameter),
shape (real-valued shape parameter); see logs_gev

e "gpd"”: location (real-valued location parameter), scale (positive scale parameter),
shape (real-valued shape parameter); see logs_gpd

e "tlogis": location (location parameter), scale (scale parameter), lower, upper (lower
and upper limits); see logs_tlogis

e "tnorm": location (location parameter), scale (scale parameter), lower, upper (lower
and upper limits); see logs_tnorm

e "tt": df (degrees of freedom), location (location parameter), scale (scale parameter),
lower, upper (lower and upper limits); see logs_tt

4. Distributions of discrete variables:

* "pbinom": size (number of trials (zero or more)), prob (probability of success on each
trial); see crps_binom

e "hyper"”: m (the number of white balls in the urn), n (the number of black balls in the
urn), k (the number of balls drawn from the urn); see crps_hyper

* "negative-binomial” or "nbinom": size (positive dispersion parameter), prob (suc-
cess probability), mu (mean, alternative to prob); see logs_nbinom

* "poisson” or "pois”: lambda (positive mean); see logs_pois

All numerical arguments should be of the same length. An exception are scalars of length 1, which
will be recycled.

Value

Vector of score values. A lower score indicates a better forecast.

Author(s)

Alexander Jordan, Fabian Krueger, Sebastian Lerch

See Also

crps.numeric

plot.casestudy 15

Examples

logs(y = 1, family = "normal”, mean = @, sd = 2)
logs(y = rnorm(20), family = "normal”, mean = 1:20, sd = sqrt(1:20))

Arguments can have different lengths:
logs(y = rnorm(20), family = "normal”, mean = @, sd = 2)
logs(y = 1, family = "normal”, mean = 1:20, sd = sqrt(1:20))

Mixture of normal distributions requires matrix input for parameters:
mval <- matrix(rnorm(20%50), nrow = 20)

sdval <- matrix(runif(20%50, min = @, max = 2), nrow = 20)

weights <- matrix(rep(1/50, 20*50), nrow = 20)

logs(y = rnorm(20), family = "mixnorm”, m = mval, s = sdval, w = weights)
plot.casestudy Plot the output of run_casestudy
Description

Plot the output of run_casestudy

Usage
S3 method for class 'casestudy'
plot(x, ...)
Arguments
X object of class casestudy, generated by run_casestudy
additional parameters, see details below.
Details

The plot is in the same format as Figure 3 in KLTG (2021). Its content (nr of MCMC chains,
maximal sample size, etc) depends on the parameters used to generate run_casestudy. In terms of
additional inputs (. . .), the following are currently implemented:

* scoring_rule, the scoring rule for which results are to be plotted, either "crps” or "logs".
Defaults to "crps”.

* add_main_title, logical, whether to add main title to plot. Defaults to TRUE.

Value

none, used for the effect of drawing a plot.

Author(s)
Fabian Krueger

16 plot.mcstudy

References

Krueger, F., Lerch, S., Thorarinsdottir, T.L. and T. Gneiting (2021): ‘Predictive inference based
on Markov chain Monte Carlo output’, International Statistical Review 89, 274-301. doi:10.1111/
insr.12405

See Also

run_casestudy produces the forecast results summarized by plot.casestudy

plot.mcstudy Plot the output of run_mcstudy

Description

Plot the output of run_mcstudy

Usage
S3 method for class 'mcstudy’
plot(x, ...)
Arguments
X object of class mcstudy, generated by run_mcstudy
additional parameters, see details below.
Details

The plot is in the same format as Figure 1 or 2 in KLTG (2021), depending on the parameters
set when running run_mcstudy. These parameters also determine the plot content (nr of MCMC
chains, maximal sample size, etc). In terms of additional inputs (. . .), the following are currently
implemented:

* scoring_rule, the scoring rule for which results are to be plotted, either "crps” or "logs".
Defaults to "crps”.

* add_main_title, logical, whether to add main title to plot. Defaults to TRUE.

Value

none, used for the effect of drawing a plot.

Author(s)
Fabian Krueger

https://doi.org/10.1111/insr.12405
https://doi.org/10.1111/insr.12405

print.casestudy 17

References

Krueger, F., Lerch, S., Thorarinsdottir, T.L. and T. Gneiting (2021): ‘Predictive inference based
on Markov chain Monte Carlo output’, International Statistical Review 89, 274-301. doi:10.1111/
insr.12405

See Also

run_mcstudy produces the simulation results summarized by plot.mcstudy

print.casestudy Simple print method for object of class casestudy

Description

Simple print method for object of class casestudy

Usage

S3 method for class 'casestudy'

print(x, ...)
Arguments

X Object of class casestudy, generated via run_casestudy

Additional specifications (presently not in use)
print.mcstudy Simple print function for object of class mcstudy

Description

Simple print function for object of class mcstudy

Usage
S3 method for class 'mcstudy'
print(x, ...)
Arguments
X Object of class mestudy, generated via run_mcstudy

Additional specifications (presently not in use)

https://doi.org/10.1111/insr.12405
https://doi.org/10.1111/insr.12405

18 1ps_probs

rps_probs Ranked Probability Score

Description

Computes the Ranked Probability Score (RPS) for a given vector or matrix of probabilities.

Usage
rps_probs(y, x)

Arguments
y vector of realizations, taking integer values between 1 and K. For the RPS, out-
comes have an ordinal interpretation only (see details).
X vector or matrix (depending on y; see details) of probabilities
Details

The RPS interprets the outcome variable as ordinal. That is, different outcome values can be ranked
(e.g., y=1 is smaller than y=2), but their numerical difference has no meaningful interpretation. For
simplicity, the outcome y is coded as an integer here, with y = 1 indicating the smallest possible
realization and y = K indicating the largest possible realization. If y is a vector of length n >= 2, x
should be given as a matrix with n rows and K columns. If y has length 1, then x may be a vector
of length K.

References

Original proposal of the RPS

Epstein, E.S. (1969): ‘A Scoring System for Probability Forecasts of Ranked Categories’, Journal
of Applied Meteorology and Climatology 8, 985-987.

Application example (see esp. Section 4 for comments on the RPS’ ordinal interpretation)

Krueger, F. and L. Pavlova (2024): ‘Quantifying Subjective Uncertainty in Survey Expectations’,
International Journal of Forecasting 40, 796-810, doi:10.1016/j.ijforecast.2023.06.001.

Examples

Example with three outcome categories (a single observation)
p <-c(.3, .2, .5

y <=2

rps_probs(y, p)

Example with three outcome categories (n = 2 observations)
p <- matrix(c(.2, .4, .4, .3, .6, .1), nrow = 2, byrow = TRUE)
y <- ¢c(2, 3)

rps_probs(y, p)

https://doi.org/10.1016/j.ijforecast.2023.06.001

run_casestudy 19

run_casestudy Run the case study in KLTG (2021), or a smaller version thereof

Description

Run the case study in KLTG (2021), or a smaller version thereof

Usage

run_casestudy (
data_df,
burnin_size = 5000,
max_mcmc_sample_size = 5000,
nr_of_chains = 3,
first_vint = "1996Q2",
last_vint = "2014Q3",
forecast_horizon = 1,
random_seed = 816

)

Arguments
data_df data frame in the same format as the gdp data set in this package.
burnin_size length of the burn-in period used for each forecast.

max_mcmc_sample_size
maximal number of MCMC draws to consider (integer, must equal either 1000,
5000, 10000, 20000 or 40000). Defaults to 5000.
nr_of_chains number of parallel MCMC for each forecast date (integer, defaults to 3).
first_vint, last_vint
first and last data vintage (= time point at which forecasts are made). Default to
"19962Q2" and "2014Q3", respectively.
forecast_horizon
forecast horizon to be analyzed (integer, defaults to 1).

random_seed seed for random numbers used during the MCMC sampling process. Defaults
to 816.

Details

The full results in Section 5 of KLTG (2021) are based on the following setup: burnin_size =
10000, max_mcmc_sample_size = 50000, nr_of_chains = 16, data_df = gdp, first_vint = "1996Q2",
last_vint = "2014Q3", and forecast_horizon = 1. Since running this full configuration is very

time consuming, the default setup offers the possibility to run a small-scale study which reproduces

the qualitative outcomes of the analysis. Running the small-scale study implied by the defaults of
run_study as well as the GDP data (data_df = gdp) takes about 40 minutes on an Intel i7 proces-

sor.

20 run_mcstudy

Value
Object of class "casestudy", containing the results of the analysis. This object can be passed to plot
for plotting, see the documentation for plot.casestudy.

Author(s)

Fabian Krueger

References

Krueger, F., Lerch, S., Thorarinsdottir, T.L. and T. Gneiting (2021): ‘Predictive inference based
on Markov chain Monte Carlo output’, International Statistical Review 89, 274-301. doi:10.1111/
insr.12405

See Also

plot.casestudy produces a summary plot of the results generated by run_casestudy run_casestudy
uses ar_ms to fit a Bayesian Markov Switching model, recursively for several time periods.

Examples

Not run:

data(gdp)

cs <- run_casestudy(data_df = gdp, last_vint = "1999Q4")
plot(cs)

End(Not run)

run_mcstudy Run the Monte Carlo study by KLTG (2021), or a smaller version
thereof

Description

Run the Monte Carlo study by KLTG (2021), or a smaller version thereof

Usage
run_mcstudy (
s = 2,
a=2a.5,
n=12,
nr_iterations = 50,
zoom = FALSE,

random_seed = 816

https://doi.org/10.1111/insr.12405
https://doi.org/10.1111/insr.12405

scores 21

Arguments

s,a, n parameters characterizing the process from which data are simulated (see Sec-
tion 4 and Table 4 of KLTG, 2021). Defaults to the values reported in the main
text of the paper.

nr_iterations number of Monte Carlo iterations (defaults to 50).

zoom set to TRUE to produce results for a fine grid of small (MCMC) sample sizes, as
in Figure 2 of KLTG (2021).
random_seed seed used for running the simulation experiment. Defaults to 816.
Details

The full results in Section 4 of KLTG (2021) are basedons =2,a=0.5,n=12and nr_iterations
= 1000. Producing these results takes about 140 minutes on an Intel i7 processor.

Value
Object of class "mcstudy", containing the results of the analysis. This object can be passed to plot
for plotting, see the documentation for plot.mcstudy.

Author(s)

Fabian Krueger

References

Krueger, F., Lerch, S., Thorarinsdottir, T.L. and T. Gneiting (2021): ‘Predictive inference based
on Markov chain Monte Carlo output’, International Statistical Review 89, 274-301. doi:10.1111/
insr.12405

See Also

plot.mcstudy produces a summary plot of the results generated by run_mcstudy

scores Generic Scoring Rule Calculation

Description

Generic functions for calculating the Continuous Ranked Probability Score and the Logarithmic
Score of R objects.

scoringRules provides default methods (crps.numeric, logs.numeric) to calculate scores of
forecasts that are members of families of parametric distributions.

https://doi.org/10.1111/insr.12405
https://doi.org/10.1111/insr.12405

22 scores_2pexp

Usage

crps(y, ...)
logs(y, ...)

Arguments

y an object for which the score is to be calculated

further arguments passed to or from other methods

Details

The mean logarithmic score corresponds to the negative of the log-likelihood logLik.

Value

Returns a vector of scores. One for each forecast-observation pair.

References

General background and further references on scoring rules:

Gneiting, T. and A.E. Raftery (2007): ‘Strictly proper scoring rules, prediction and estimation’,
Journal of the American Statistical Association 102, 359-378. doi:10.1198/016214506000001437

Gneiting, T. and M. Katzfuss (2014): ‘Probabilistic forecasting’, Annual Review of Statistics and
Its Application 1, 125-151. doi:10.1146/annurevstatistics06271308583 1

See Also

crps.numeric, logs.numeric

scores_2pexp Calculating scores for the two-piece-exponential distribution

Description

Calculating scores for the two-piece-exponential distribution

Usage
crps_2pexp(y, scalel, scale2, location = 0)
logs_2pexp(y, scalel, scale2, location = @)
Arguments
y vector of observations.

scalel, scale2 vectors of positive scale parameters.

location vector of location parameters.

https://doi.org/10.1198/016214506000001437
https://doi.org/10.1146/annurev-statistics-062713-085831

scores_2pnorm

Value

A vector of score values.

scores_2pnorm Calculating scores for the two-piece-normal distribution

Description

Calculating scores for the two-piece-normal distribution

Usage

crps_2pnorm(y, scalel, scale2, location = @)

logs_2pnorm(y, scalel, scale2, location = @)

Arguments

y vector of observations.
scalel, scale2 vectors of positive scale parameters.

location vector of location parameters.

Value

A vector of score values.

scores_beta Calculating scores for the beta distribution

Description

Calculating scores for the beta distribution

Usage
crps_beta(y, shapel, shape2, lower = @, upper = 1)
logs_beta(y, shapel, shape2, lower = @, upper = 1)

dss_beta(y, shapel, shape2, lower = @, upper = 1)

Arguments

y vector of observations.
shape1, shape2 vectors of positive shape parameters.

lower, upper vectors of lower and upper limits of the distribution. Must be finite.

24 scores_exp

Value

A vector of score values.

scores_binom Calculating scores for the binomial distribution

Description

Calculating scores for the binomial distribution

Usage

crps_binom(y, size, prob)

logs_binom(y, size, prob)

Arguments
y vector of observations.
size number of trials (zero or more).
prob probability of success on each trial.
Value

A vector of score values.

scores_exp Calculating scores for the exponential distribution

Description
Calculating scores (CRPS, LogS, DSS) for the exponential distribution, and the exponential distri-
bution with location-scale transformation and point mass in location.

Usage

crps_exp(y, rate = 1)

crps_expM(y, location = @, scale = 1, mass = 0)

logs_exp(y, rate = 1)

»

logs_exp2(y, location = @, scale

dss_exp(y, rate = 1)

scores_gamma 25

Arguments
y vector of observations.
rate vector of rates.
location vector of location parameters.
scale vector of positive scale parameters.
mass vector of point masses in location.
Value

A vector of score values.

scores_gamma Calculating scores for the gamma distribution

Description

Calculating scores for the gamma distribution

Usage

crps_gamma(y, shape, rate = 1, scale = 1/rate)

logs_gamma(y, shape, rate = 1, scale = 1/rate)

dss_gamma(y, shape, rate = 1, scale = 1/rate)

Arguments
y vector of observations.
shape vector of positive shape parameters.
rate an alternative way to specify the scale.
scale vector of positive scale parameters.
Value

A vector of score values.

26 scores_gpd

scores_gev Calculating scores for the generalized extreme value distribution

Description

Calculating scores for the generalized extreme value distribution

Usage

D

crps_gev(y, shape, location = @, scale

logs_gev(y, shape, location = 0@, scale = 1)

dss_gev(y, shape, location = @, scale = 1)

Arguments
y vector of observations.
shape vector of positive shape parameters.
location vector of location parameters.
scale vector of positive scale parameters.
Value

A vector of score values.

scores_gpd Calculating scores for the generalized Pareto distribution

Description

Calculating scores for the generalized Pareto distribution

Usage

crps_gpd(y, shape, location = @, scale = 1, mass = Q)

D

logs_gpd(y, shape, location = @, scale

dss_gpd(y, shape, location = @, scale = 1)

scores_hyper 27

Arguments
y vector of observations.
shape vector of positive shape parameters.
location vector of location parameters.
scale vector of positive scale parameters.
mass vector of point masses in location.
Value

A vector of score values.

scores_hyper Calculating scores for the hypergeometric distribution

Description

Calculating scores for the hypergeometric distribution

Usage
crps_hyper(y, m, n, k)

logs_hyper(y, m, n, k)

Arguments
y vector of observations / numbers of white balls drawn without replacement from
an urn which contains both black and white balls.
m the number of white balls in the urn.
n the number of black balls in the urn.
k the number of balls drawn from the urn, hence mustbe in 0,1,...,m + n.
Value

A vector of score values.

28

scores_llapl

scores_lapl Calculating scores for the Laplace distribution

Description

Calculating scores for the Laplace distribution

Usage
crps_lapl(y, location = @, scale = 1)
logs_lapl(y, location = @, scale = 1)

dss_lapl(y, location = @, scale = 1)

Arguments
y vector of observations.
location vector of location parameters.
scale vector of positive scale parameters.
Value

A vector of score values.

scores_llapl Calculating scores for the log-Laplace distribution

Description

Calculating scores for the log-Laplace distribution

Usage

crps_llapl(y, locationlog, scalelog)
logs_1llapl(y, locationlog, scalelog)

dss_llapl(y, locationlog, scalelog)

Arguments
y vector of observations.
locationlog vector of location parameters on the log scale.

scalelog vector of positive scale parameters on the log scale.

scores_llogis

Value

A vector of score values.

29

scores_llogis Calculating scores for the log-logistic distribution

Description

Calculating scores for the log-logistic distribution
Usage

crps_llogis(y, locationlog, scalelog)

logs_llogis(y, locationlog, scalelog)

dss_llogis(y, locationlog, scalelog)

Arguments
y vector of observations.
locationlog vector of location parameters on the log scale.
scalelog vector of positive scale parameters on the log scale.
Value

A vector of score values.

scores_lnorm Calculating scores for the log-normal distribution

Description

Calculating scores for the log-normal distribution

Usage

crps_lnorm(y, meanlog = @, sdlog

1, locationlog = meanlog, scalelog

logs_lnorm(y, meanlog = @, sdlog = 1, locationlog = meanlog, scalelog

sdlog)

sdlog)

dss_lnorm(y, meanlog = @, sdlog = 1, locationlog = meanlog, scalelog = sdlog)

30 scores_logis

Arguments
y vector of observations.
meanlog an alternative way to specify locationlog.
sdlog an alternative way to specify scalelog.
locationlog vector of location parameters on the log scale.
scalelog vector of positive scale parameters on the log scale.
Value

A vector of score values.

scores_logis Calculating scores for the logistic distribution

Description

These functions calculate scores (CRPS, logarithmic score) and its gradient and Hessian with re-
spect to the parameters of a location-scale transformed logistic distribution. Furthermore, the cen-
soring transformation and the truncation transformation may be introduced on top of the location-
scale transformed logistic distribution.

Usage

score functions

crps_logis(y, location = @, scale = 1)

crps_clogis(y, location = @, scale = 1, lower = -Inf, upper = Inf)

crps_tlogis(y, location = @, scale = 1, lower = -Inf, upper = Inf)

crps_gtclogis(y, location = @, scale =1, lower = -Inf, upper = Inf, lmass = @, umass = 0)
logs_logis(y, location = @, scale = 1)

logs_tlogis(y, location = @, scale = 1, lower = -Inf, upper = Inf)

dss_logis(y, location = @, scale = 1)

gradient (location, scale) functions
gradcrps_logis(y, location = @, scale = 1)

gradcrps_clogis(y, location = @, scale = 1, lower = -Inf, upper = Inf)
gradcrps_tlogis(y, location = @, scale = 1, lower = -Inf, upper = Inf)
Hessian (location, scale) functions

hesscrps_logis(y, location = 0@, scale = 1)

hesscrps_clogis(y, location = @, scale = 1, lower = -Inf, upper = Inf)
hesscrps_tlogis(y, location = @, scale = 1, lower = -Inf, upper = Inf)

scores_mixnorm 31

Arguments

y vector of observations.

location vector of location parameters.

scale vector of scale paramters.

lower, upper lower and upper truncation/censoring bounds.

1mass, umass vectors of point masses in lower and upper respectively.
Value

For the score functions: a vector of score values.

For the gradient and Hessian functions: a matrix with column names corresponding to the respective
partial derivatives.

scores_mixnorm Calculating scores for a mixture of normal distributions.

Description

Calculating scores for a mixture of normal distributions.

Usage

crps_mixnorm(y, m, s, w = NULL)
crps_mixnorm_int(y, m, s, w = NULL, rel_tol = 1e-06)
logs_mixnorm(y, m, s, w = NULL)

dss_mixnorm(y, m, s, w = NULL)

Arguments
y vector of observations.
m matrix of mean parameters; rows represent observations, columns represent
mixture components.
S matrix of scale parameters; same structure as m.
w optional; matrix of non-negative weights; same structure as m.
rel_tol relative accuracy for numerical integration.
Details

logs_mixnorm and crps_mixnorm calculate scores via analytical formulas. crps_mixnorm_int
uses numerical integration for the CRPS; this can be faster if there are many mixture components
(i.e., if m, s and w have many columns). See examples below.

32 scores_moments

Value

A vector of score values.

Examples

Example 1: 100 observations, 15 mixture components

mval <- matrix(rnorm(100*15), nrow = 100)

sdval <- matrix(rgamma(100x15, shape = 2), nrow = 100)

weights <- matrix(rep(1/15, 100%15), nrow = 100)

y <= rnorm(100)

crps1l <- crps_mixnorm(y =y, m = mval, s = sdval, w = weights)
crps2 <- crps_mixnorm_int(y =y, m = mval, s = sdval, w = weights)

Not run:

Example 2: 2 observations, 10000 mixture components

mval <- matrix(rnorm(2x*10000), nrow = 2)

sdval <- matrix(rgamma(2*x10000, shape = 2), nrow = 2)

weights <- matrix(rep(1/10000, 2x10000), nrow = 2)

y <= rnorm(2)

With many mixture components, numerical integration is much faster
system.time(crpsl <- crps_mixnorm(y =y, m = mval, s = sdval, w = weights))
system.time(crps2 <- crps_mixnorm_int(y =y, m = mval, s = sdval, w = weights))

End(Not run)

scores_moments Scoring Rules for a Vector of Moments

Description

Calculate scores (DSS, ESS) given observations and moments of the predictive distributions.

Usage

dss_moments(y, mean = @, var

D

ess_moments(y, mean = @, var = 1, skew = @)

Arguments
y vector of realized values.
mean vector of mean values.
var vector of variance values.

skew vector of skewness values.

scores_nbinom 33

Details

The skewness of a random variable X is the third standardized moment
X — mean

Bl(E ety

var

Value

Value of the score. A lower score indicates a better forecast.

Author(s)

Alexander Jordan, Sebastian Lerch

References

Dawid-Sebastiani score:

Dawid, A.P. and P. Sebastiani (1999): ’Coherent dispersion criteria for optimal experimental design’
The Annals of Statistics, 27, 65-81. doi:10.1214/a0s/1018031101

Error-spread score:

Christensen, H.M., LM. Moroz, and T.N. Palmer (2015): ‘Evaluation of ensemble forecast uncer-
tainty using a new proper score: Application to medium-range and seasonal forecasts’, Quarterly
Journal of the Royal Meteorological Society, 141, 538-549. doi:10.1002/qj.2375

scores_nbinom Calculating scores for the negative binomial distribution

Description

Calculating scores for the negative binomial distribution

Usage

crps_nbinom(y, size, prob, mu)
logs_nbinom(y, size, prob, mu)

dss_nbinom(y, size, prob, mu)

Arguments
y vector of observations.
size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.
prob probability of success in each trial. @ < prob <= 1.

mu alternative parametrization via mean: see ‘Details’.

https://doi.org/10.1214/aos/1018031101
https://doi.org/10.1002/qj.2375

34 scores_norm

Details

The mean of the negative binomial distribution is given by mu = size*(1-prob)/prob.

Value

A vector of score values.

scores_norm Calculating scores for the normal distribution

Description

These functions calculate scores (CRPS, LogS, DSS) and their gradient and Hessian with respect
to the parameters of a location-scale transformed normal distribution. Furthermore, the censoring
transformation and the truncation transformation may be introduced on top of the location-scale
transformed normal distribution.

Usage

score functions

crps_norm(y, mean = @, sd = 1, location = mean, scale = sd)

crps_cnorm(y, location = @, scale = 1, lower = -Inf, upper = Inf)

crps_tnorm(y, location = @, scale = 1, lower = -Inf, upper = Inf)

crps_gtcnorm(y, location = @, scale =1, lower = -Inf, upper = Inf, 1lmass = @, umass = 0)
logs_norm(y, mean = @, sd = 1, location = mean, scale = sd)

logs_tnorm(y, location = @, scale = 1, lower = -Inf, upper = Inf)

dss_norm(y, mean = @, sd = 1, location = mean, scale = sd)

gradient (location, scale) functions

gradcrps_norm(y, location = @, scale = 1)
1,
1,

gradcrps_cnorm(y, location = @, scale =
gradcrps_tnorm(y, location = @, scale =

lower = -Inf, upper = Inf)
lower = -Inf, upper = Inf)

Hessian (location, scale) functions

hesscrps_norm(y, location = @, scale = 1)
1,
1,

hesscrps_cnorm(y, location = @, scale =
hesscrps_tnorm(y, location = @, scale =

lower = -Inf, upper = Inf)
lower = -Inf, upper = Inf)

Arguments
y vector of observations.
mean an alternative way to specify location.
sd an alternative way to specify scale.
location vector of location parameters.
scale vector of scale parameters.
lower, upper lower and upper truncation/censoring bounds.

1mass, umass vectors of point masses in lower and upper respectively.

scores_pois 35

Value

For the score functions: a vector of score values.

For the gradient and Hessian functions: a matrix with column names corresponding to the respective
partial derivatives.

Examples

Not run:

Illustrations: Compare CRPS of analytical distribution to
CRPS of a large sample drawn from this distribution

(expect scores to be similar)

First illustration: Standard normal

Consider CRPS at arbitrary evaluation point (value of outcome)
y <- 0.3

crps_norm(y = y) # score of analytical dist.

draw standard normal sample of size 10000

dat <- rnorm(le4)

crps_sample(y =y, dat = dat) # score of sample

Second illustration: Truncated standard normal

truncation point

upper <- 1

crps_tnorm(y =y, upper = upper) # score of analytical dist.
sample from truncated normal

dat_trunc <- dat[dat <= upper]

crps_sample(y = y, dat = dat_trunc) # score of sample

Third illustration: Censored standard normal (censoring at \code{upper})
crps_cnorm(y =y, upper = upper) # score of analytical dist.

sample from censored normal

dat_cens <- ifelse(dat <= upper, dat, upper)

crps_sample(y = y, dat = dat_cens) # score of sample

End(Not run)

scores_pois Calculating scores for the Poisson distribution

Description

Calculating scores for the Poisson distribution

Usage

crps_pois(y, lambda)
logs_pois(y, lambda)

dss_pois(y, lambda)

36 scores_quantiles

Arguments

y vector of observations.

lambda vector of (non-negative) means.
Value

A vector of score values.

scores_quantiles Quantile and interval scores

Description

Compute quantile and interval scores, for given quantile predictions

Usage
gs_quantiles(y, x, alpha)

ints_quantiles(y, x_lower, x_upper, target_coverage)
gs_sample(y, dat, alpha, w = NULL, type = 7, show_messages = TRUE)

ints_sample(y, dat, target_coverage, w = NULL, type = 7, show_messages = TRUE)

Arguments
y vector of observations
vector of quantile predictions
alpha quantile level of interest

x_lower, x_upper

vector of quantile predictions (lower and upper endpoints of prediction intervals)
target_coverage

target (i.e., nominal) coverage level of prediction interval

dat vector or matrix (depending on y; see details) of simulation draws from forecast
distribution.

w vector of observation weights (currently ignored)

type integer between 1 and 9 that is passed on to stats function quantile (specifies

algorithm for empirical quantile estimation; defaults to 7)

show_messages logical; display of messages (does not affect warnings and errors).

Details

For a vector y of length n, dat should be given as a matrix with n rows. If y has length 1, then dat
may be a vector.

scores_sample_multiv 37

Value

A vector of score values. Smaller values indicate better forecasts. Note that the interval score refers
to the central prediction interval at level target_coverage.

References

Quantile score

Koenker, R. and G. Bassett (1978): ‘Regression quantiles’, Econometrica 46, 33-50. doi:10.2307/
1913643

Interval score

Gneiting, T. and A.E. Raftery (2007): ‘Strictly proper scoring rules, prediction and estimation’,
Journal of the American Statistical Association 102, 359-378. doi:10.1198/016214506000001437

See Also

The syntax of qs_sample and ints_sample is analogous to the functions documented on scores_sample_univ.

Examples

Example 1: Illustrate that interval score is proportional to sum of two quantile scores
target_coverage <- .8

corresponding quantile levels

alpha_1 <- .5%(1-target_coverage)

alpha_2 <- 1-.5%(1-target_coverage)

compute interval score

ints_quantiles(y = 1, x_lower = gnorm(alpha_1),

x_upper = gnorm(alpha_2), target_coverage = target_coverage)

compute sum of quantile scores (scaled by 2/(1-target_coverage))
(2/(1-target_coverage))*(gs_quantiles(y = 1, x = gnorm(alpha_1), alpha = alpha_1) +
gs_quantiles(y = 1, x = gnorm(alpha_2), alpha = alpha_2))

Example 2: Compare exact to simulated quantile forecast from standard normal distribution
gs_quantiles(y = 1, x = gnorm(.1), alpha = .1)
gs_sample(y = 1, dat = rnorm(500), alpha = .1)

scores_sample_multiv Multivariate Scoring Rules for Simulated Forecast Distributions

Description

Compute multivariate scores of the form S(y, dat), where S is a proper scoring rule, y is a d-
dimensional realization vector and dat is a simulated sample of multivariate forecasts. Three scores
are available: The energy score, a score based on a Gaussian kernel (mmds_sample, see details
below) and the variogram score of order p.

https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1198/016214506000001437

38 scores_sample_multiv

Usage

es_sample(y, dat, w = NULL)
mmds_sample(y, dat, w = NULL)

NULL, w_vs = NULL, p = 0.5)

vs_sample(y, dat, w

Arguments

y realized values (numeric vector of length d).

dat numeric matrix of data (columns are simulation draws from multivariate forecast
distribution).

w numeric vector of weights for forecast draws (length equal to number of columns
of dat)

W_VS numeric matrix of weights for dat used in the variogram score. This matrix must
be square and symmetric, with all elements being non-negative. If no weights
are specified, constant weights (with all elements of w_vs equal to one) are used.

p order of variogram score. Standard choices include p = 1 and p = 0.5.

Details

In the input matrix dat each column is expected to represent a sample from the multivariate forecast
distribution, the number of rows of dat thus has to match the length of the observation vector y, and
the number of columns of dat is the number of simulated samples.

In es_sample and mmds_sample it is possible to specify a vector w of weights attached to each
forecast draw (i.e. each column of matrix dat). These weights are analogous to the input w in
crps_sample.

In vs_sample it is possible to specify a matrix w_vs of non-negative weights that allow to emphasize
or downweight pairs of component combinations based on subjective expert decisions. w_vs is a
square, symmetric matrix with dimensions equal to the length of the input vector y, and the entry in
the i-th row and j-th column of w_vs corresponds to the weight assigned to the combination of the
corresponding ¢-th and j-th component. A small example is provided below. For details and further
examples, see Scheuerer and Hamill (2015).

The ‘MMD score’ in mmds_sample is a kernel scoring rule as described in Gneiting and Raftery
(2007, Section 5). As for all other scores, we use a negative orientation, such that a smaller score
corresponds to a better forecast. We use a Gaussian kernel with standard deviation 1. This kernel is
the same as the one obtained by setting rbfdot (sigma = .5) in the R package kernlab (Karatzoglou
et al., 2004). The naming prefix ‘MMD’ is motivated by the machine learning literature on two
sample testing (e.g. Gretton et al., 2012), where this type of kernel function is popular.

Value

Value of the score. A lower score indicates a better forecast.

Author(s)

Maximiliane Graeter, Sebastian Lerch, Fabian Krueger

scores_sample_multiv 39

References

Energy score

Gneiting, T., Stanberry, L.I., Grimit, E.P., Held, L. and N.A. Johnson (2008): °‘Assessing proba-
bilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface
winds’, TEST, 17, 211-235. doi:10.1007/s1174900801 14x

MMD score

Gneiting, T. and A.E. Raftery (2007): ‘Strictly proper scoring rules, prediction and estimation’,
Journal of the American Statistical Association 102, 359-378. doi:10.1198/016214506000001437

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B. and A. Smola (2012): ‘A kernel two-
sample test’, Journal of* Machine Learning Research, 13, 723-773.

Karatzoglou, A., Smola, A., Hornik, K. and A. Zeileis (2004). kernlab - An S4 Package for Kernel
Methods in R. Journal of Statistical Software 11, 1-20. doi:10.18637/jss.v011.109

Variogram-based proper scoring rules

Scheuerer, M. and T.M. Hamill (2015): ‘Variogram-based proper scoring rules for probabilistic
forecasts of multivariate quantities’, Monthly Weather Review, 143, 1321-1334. doi:10.1175/mwr-
d1400269.1

See Also

scores_sample_multiv_weighted for weighted versions of the scoring rules documented here.

Examples

d <- 10 # number of dimensions
m <- 50 # number of samples from multivariate forecast distribution

parameters for multivariate normal example
mud <- rep(@, d)

mu <- rep(1, d)

SO <- S <- diag(d)

SO[S0==0] <- 0.2

S[S==0] <- 0.1

generate samples from multivariate normal distributions
obs <- drop(mu@ + rnorm(d) %*% chol(S@))
fc_sample <- replicate(m, drop(mu + rnorm(d) %x% chol(S)))

compute Energy Score
es_sample(y = obs, dat = fc_sample)

in the univariate case, Energy Score and CRPS are the same

illustration: Evaluate forecast sample for the first variable
es_sample(y = obs[1], dat = fc_sample[1, , drop = FALSE])
crps_sample(y = obs[1], dat = fc_sample[1, 1)

illustration of observation weights for Energy Score
example: equal weights for first half of draws; zero weights for other draws
w <- rep(c(1, @), each = .5xm)/(.5%m)

https://doi.org/10.1007/s11749-008-0114-x
https://doi.org/10.1198/016214506000001437
https://doi.org/10.18637/jss.v011.i09
https://doi.org/10.1175/mwr-d-14-00269.1
https://doi.org/10.1175/mwr-d-14-00269.1

40 scores_sample_multiv_weighted

es_sample(y = obs, dat = fc_sample, w = w)

weighting matrix for variogram score

note that, unlike for w, weights in w_vs refer to dimensions
(rows of dat) rather than draws (cols of dat)

w_vs <- outer(1:d, 1:d, function(x, y) .5%abs(x-y))

vs_sample(y = obs, dat = fc_sample)
vs_sample(y = obs, dat = fc_sample, w_vs = w_vs)
vs_sample(y = obs, dat = fc_sample, w_vs = w_vs, p = 1)

scores_sample_multiv_weighted

Weighted Multivariate Scoring Rules for Simulated Forecast Distribu-
tions

Description

Compute weighted versions of multivariate scores S(y, dat), where .S is a proper scoring rule, y
is a d-dimensional realization vector and dat is a simulated sample of multivariate forecasts. The
weighted scores allow particular outcomes of interest to be emphasised during forecast evaluation.
Threshold-weighted and outcome-weighted versions of three multivariate scores are available: the
energy score, a score based on a Gaussian kernel (mmds_sample, see details below) and the vari-
ogram score of order p.

Usage
twes_sample(y, dat, a = -Inf, b = Inf, chain_func = NULL, w = NULL)

-Inf, b = Inf, weight_func = NULL, w = NULL)

owes_sample(y, dat, a

twmmds_sample(y, dat, -Inf, b

Q
1

Inf, chain_func = NULL, w = NULL)

-Inf, b

owmmds_sample(y, dat,

Q
1

Inf, weight_func = NULL, w = NULL)

twvs_sample(

Y,

dat,

a = -Inf,

b = Inf,
chain_func = NULL,
w = NULL,

w_vs = NULL,
p=20.5

scores_sample_multiv_weighted 41

owvs_sample(

y’

dat,

a = -Inf,
b = Inf,

weight_func

w = NULL,

w_vs = NULL,

p=20.5

Arguments

y
dat

chain_func

weight_func

Details

NULL,

realized values (numeric vector of length d).

numeric matrix of data (columns are simulation draws from multivariate forecast
distribution).

numeric vector of of length d containing lower bounds for the indicator weight
function w(z) = 1{al[1]1<z[1]1<b[1], ..., a[dl <z[d]<b[d]}.

numeric vector of of length d containing upper bounds for the indicator weight
function w(z) = 1{al[1]1<z[1]1<b[1], ..., a[dl <z[d]<b[d]}.

function used to target particular outcomes in the threshold-weighted scores; the
default corresponds to the weight function above.

numeric vector of weights for forecast draws (length equal to number of columns
of dat)

function used to target particular outcomes in the outcome-weighted scores; the
default corresponds to the weight function above.

numeric matrix of weights for dat used in the variogram score. This matrix must
be square and symmetric, with all elements being non-negative. If no weights
are specified, constant weights (with all elements of w_vs equal to one) are used.

order of variogram score. Standard choices include p = 1 and p = 0.5.

In the input matrix dat each column is expected to represent a sample from the multivariate forecast
distribution, the number of rows of dat thus has to match the length of the observation vector y, and
the number of columns of dat is the number of simulated samples.

The threshold-weighted scores (twes_sample, twmmds_sample, twvs_sample) transform y and
dat using the chaining function chain_func and then call the relevant unweighted score function

(es_sample, mmds_sample, vs_sample). The outcome-weighted scores (owes_sample, owmmds_sample,

owvs_sample) weight y and dat using the weight function weight_func and then call the relevant
unweighted score function (es_sample, mmds_sample, vs_sample). See the documentation for e.g.
es_sample for further details.

The default weight function used in the weighted scores is w(z) = 1{a[1] <z[1]1<b[1], ...,
ald] < z[d] <b[d]}, which is equal to one if z is in the ’box’ defined by the vectors a and b, and
is equal to zero otherwise. This weight function emphasises outcomes between the vectors a and b,

42

scores_sample_multiv_weighted

and is commonly used in practical applications when interest is on values above a threshold along
multiple dimensions.

Alternative weight functions can also be employed using the chain_func and weight_func argu-
ments. Computation of the threshold-weighted scores for samples from a predictive distribution
requires a chaining function rather than a weight function. This is why a chaining function is an
input for twes_sample, twmmds_sample, and twvs_sample, whereas a weight function is an input
for owes_sample, owmmds_sample, and owvs_sample.

The chain_func and weight_func arguments are functions that will be applied to the elements
in y and dat. weight_func must input a numeric vector of length d, and output a single numeric
value. An error will be returned if weight_func returns negative values. chain_func must input a
numeric vector of length d, and return a numeric vector of length d.

If no custom argument is given for a, b, chain_func or weight_func, then all weighted scores are
equivalent to the standard unweighted scores es_sample, mmds_sample, and vs_sample.

The w argument is also present in the unweighted scores. w is used to weight the draws from the
predictive distribution, and does not weight particular outcomes within the weighted scoring rules.
This should not be confused with the weight_func argument.

Value

Value of the score. A lower score indicates a better forecast.

Author(s)

Sam Allen

References

Allen, S. (2024): ‘Weighted scoringRules: Emphasising Particular Outcomes when Evaluating
Probabilistic Forecasts’, Journal of Statistical Software. doi:10.18637/jss.v110.i108

Threshold-weighted scores

Allen, S., Ginsbourger, D. and J. Ziegel (2023): ‘Evaluating forecasts for high-impact events us-
ing transformed kernel scores’, SIAM/ASA Journal on Uncertainty Quantification 11, 906-940.
doi:10.1137/22M 1532184

Outcome-weighted scores:

Holzmann, H. and B. Klar (2017): ‘Focusing on regions of interest in forecast evaluation’, Annals
of Applied Statistics 11, 2404-2431. doi:10.1214/17AOAS1088

See Also

scores_sample_multiv for standard (unweighted) scores based on simulated multivariate forecast
distributions. scores_sample_univ_weighted for weighted scores based on simulated univariate
forecast distributions

https://doi.org/10.18637/jss.v110.i08
https://doi.org/10.1137/22M1532184
https://doi.org/10.1214/17-AOAS1088

scores_sample_multiv_weighted 43

Examples

Not run:
d <- 3 # number of dimensions
m <- 10 # number of samples from multivariate forecast distribution

parameters for multivariate normal example
mud <- rep(0, d)

mu <- rep(1, d)

SO <- S <- diag(d)

SO[Se==0] <- 0.2

S[S==0] <- 0.1

generate samples from multivariate normal distributions
obs <- drop(mu@ + rnorm(d) %*% chol(S@))
sample_fc <- replicate(m, drop(mu + rnorm(d) %*% chol(S)))

if no additional parameters are provided, the weighted scores are the same as
the unweighted scores:

es_sample(y = obs, dat = sample_fc) # energy score

twes_sample(y = obs, dat = sample_fc) # threshold-weighted energy score
owes_sample(y = obs, dat = sample_fc) # outcome-weighted energy score

mmds_sample(y = obs, dat = sample_fc) # Gaussian kernel score
twmmds_sample(y = obs, dat = sample_fc) # threshold-weighted Gaussian kernel score
owmmds_sample(y = obs, dat = sample_fc) # outcome-weighted Gaussian kernel score

vs_sample(y = obs, dat = sample_fc) # variogram score
twvs_sample(y = obs, dat = sample_fc) # threshold-weighted variogram score
owvs_sample(y = obs, dat = sample_fc) # outcome-weighted variogram score

the outcome-weighted scores are undefined if none of dat are between a and b
this can lead to NaNs in some of the scores calculated below, particularly
if the thresholds are extreme, or if the dimension is large

emphasise outcomes greater than @ in all dimensions
twes_sample(y = obs, dat = sample_fc, a = @)

owes_sample(y = obs, dat = sample_fc, a = 0)
twmmds_sample(y = obs, dat = sample_fc, a = 0)
owmmds_sample(y = obs, dat = sample_fc, a = @)
twvs_sample(y = obs, dat = sample_fc, a = @)
owvs_sample(y = obs, dat = sample_fc, a = 0)

this can also be done more explicitly by setting a = rep(@, d)
twes_sample(y = obs, dat = sample_fc, a = rep(@, d))
owes_sample(y = obs, dat = sample_fc, a = rep(@, d))

a should also be specified fully if the threshold changes in each dimension
a <- rnorm(d)

twes_sample(y = obs, dat = sample_fc, a = a)

owes_sample(y = obs, dat = sample_fc, a = a)

44

twmmds_sample(y
owmmds_sample(y
twvs_sample(y =
owvs_sample(y =

= obs, dat
= obs, dat

obs, dat
obs, dat

= sample_fc,
= sample_fc,
sample_fc, a
sample_fc, a

scores_sample_multiv_weighted

emphasise outcomes smaller than @ in all dimensions

twes_sample(y =
owes_sample(y =
twmmds_sample(y
owmmds_sample(y
twvs_sample(y =
owvs_sample(y =

emphasise outcomes between (-1, -1,

twes_sample(y =
owes_sample(y =
twmmds_sample(y
owmmds_sample(y
twvs_sample(y =
owvs_sample(y =

obs, dat =
obs, dat =
= obs, dat
= obs, dat
obs, dat =
obs, dat =

obs, dat =
obs, dat =
= obs, dat
= obs, dat
obs, dat =
obs, dat =

sample_fc, b
sample_fc, b
= sample_fc,
= sample_fc,
sample_fc, b
sample_fc, b

sample_fc, a
sample_fc, a
= sample_fc,
= sample_fc,
sample_fc, a
sample_fc, a

a = a)
a=a)
:a)
:a)
= 0)
= 0)
b = 0)
b = 0)
= 0)
= 0)

and (1, 1, 1)
=-1, b=1)
=-1,b=1)
a=-1,b=1)
a=-1,b=1)
=-1,b=1)
=-1, b=1)

emphasise outcomes between (-2, @, -1) and (0, 2, 1)
a <-c(-2, 0, -1)

b <- c(o, 2, 1)
twes_sample(y =
owes_sample(y =
twmmds_sample(y
owmmds_sample(y
twvs_sample(y =
owvs_sample(y =

obs, dat =
obs, dat =
= obs, dat
= obs, dat
obs, dat =
obs, dat =

sample_fc, a =

sample_fc, a
= sample_fc,
= sample_fc,
sample_fc, a
sample_fc, a

values of a cannot be larger than the

twes_sample(y =
twes_sample(y
twes_sample(y =

obs, dat
obs, dat
obs, dat

a and b must be of the

owmmds_sample(y = obs, dat = sample_fc, a =

sample_fc, a
sample_fc, a
sample_fc, a

nm o o 1

a, b =b)
a, b =b)
=a, b=0b)
=a, b=0>0
a, b =b)
a, b =hb)

corresponding values of b

c(e, 0, 0), b =c(o, 0, 1))
c(0, 9, @), b = c(0, 9, 0)) # error
c(0, 9, @), b =c(1, 1, -1)) # error

same length (and of the same length as y)

c(@, @), b = 1) # error

owmmds_sample(y = obs, dat = sample_fc, a = c(@, @), b = c(1, 1)) # error

alternative custom weight and chaining functions can also be used

<- -2
<=2

T oo % o o

Example 1: the default weight function with an alternative chaining function
the default weight function is
w(z) = 1{al1] < z[1] < b[11],

the default chaining function is

v(z) = (min(max(z[1], a[11), b[1D),

., ald] < z[d] < b[d1}

., min(max(z[d], aldl), b[d1))

weight_func <- function(x) as.numeric(all(x > a & x < b))
chain_func <- function(x) pmin(pmax(x, a), b)

scores_sample_univ 45

owes_sample(y = obs, dat = sample_fc, a = a, b = b)
owes_sample(y = obs, dat = sample_fc, weight_func = weight_func)
twes_sample(y = obs, dat = sample_fc, a = a, b = b)
twes_sample(y = obs, dat = sample_fc, chain_func = chain_func)

consider an alternative chaining function: v(z) = z if w(z) = 1, else v(z) = 0@
chain_func <- function(x) x*weight_func(x)
twes_sample(y = obs, dat = sample_fc, chain_func = chain_func)

Example 2: a mulivariate Gaussian weight function with mean vector mu and
diagonal covariance matrix sigma
mu <- rep(@, d)
sigma <- diag(d)
weight_func <- function(x) prod(pnorm(x, mu, diag(sigma)))
the corresponding chaining function is
chain_func <- function(x){
(x = mu)*pnorm(x, mu, diag(sigma)) + (diag(sigma)”2)*dnorm(x, mu, diag(sigma))

}

owvs_sample(y = obs, dat = sample_fc, a = mu)

owvs_sample(y = obs, dat = sample_fc, weight_func = weight_func)
twvs_sample(y = obs, dat = sample_fc, a = mu)

twvs_sample(y = obs, dat = sample_fc, chain_func = chain_func)

End(Not run)

scores_sample_univ Scoring Rules for Simulated Forecast Distributions

Description

Calculate scores (CRPS, LogS, DSS) given observations and draws from the predictive distribu-

tions.
Usage

crps_sample(
Y,
dat,
method = "edf"”,
w = NULL,
bw = NULL,

num_int = FALSE,
show_messages = TRUE

logs_sample(y, dat, bw = NULL, show_messages = FALSE)

46 scores_sample_univ

dss_sample(y, dat, w = NULL)

Arguments

y vector of realized values.

dat vector or matrix (depending on y; see details) of simulation draws from forecast
distribution.

method string; approximation method. Options: "edf" (empirical distribution function)
and "kde" (kernel density estimation).

w optional; vector or matrix (matching dat) of weights for method "edf".

bw optional; vector (matching y) of bandwidths for kernel density estimation; see
details.

num_int logical; if TRUE numerical integration is used for method "kde".

show_messages logical; display of messages (does not affect warnings and errors).

Details

For a vector y of length n >= 2, dat should be given as a matrix with n rows. If y has length 1, then
dat may be a vector.

crps_sample employs an empirical version of the quantile decomposition of the CRPS (Laio and
Tamea, 2007) when using method = "edf"”. For method = "kde", it uses kernel density estimation
using a Gaussian kernel. The logarithmic score always uses kernel density estimation.

The bandwidth (bw) for kernel density estimation can be specified manually, in which case it must
be a vector (matching y) of positive numbers. If bw == NULL, the bandwidth is selected using the
core function bw.nrd. Numerical integration may speed up computation for crps_sample in case
of large samples dat.

Value

Value of the score. A lower score indicates a better forecast.

Author(s)

Alexander Jordan, Fabian Krueger, Sebastian Lerch

References

Evaluating simulation based forecast distributions:

Krueger, F., Lerch, S., Thorarinsdottir, T.L. and T. Gneiting (2021): ‘Predictive inference based
on Markov chain Monte Carlo output’, International Statistical Review 89, 274-301. doi:10.1111/
insr.12405

Empirical quantile decomposition of the CRPS:

Laio, F. and S. Tamea (2007): ‘Verification tools for probabilistic forecasts of continuous hydrologi-
cal variables’, Hydrology and Earth System Sciences, 11, 1267-1277. doi:10.5194/hess1112672007

https://doi.org/10.1111/insr.12405
https://doi.org/10.1111/insr.12405
https://doi.org/10.5194/hess-11-1267-2007

scores_sample_univ_weighted

See Also

scores_sample_univ_weighted for weighted versions of the scoring rules documented here.

Examples

Not run:

y has length greater than 1

y <-1:2

sample <- matrix(rnorm(20), nrow
crps_sample(y = y, dat = sample)
logs_sample(y = y, dat = sample)

y <= 1:2
sample <- rnorm(10)
crps_sample(y = y, dat = sample)

y has length 1

y <=1

sample <- rnorm(10)
crps_sample(y = y, dat = sample)

sample <- matrix(rnorm(10), nrow
crps_sample(y = y, dat = sample)

sample <- matrix(rnorm(20), nrow
crps_sample(y = y, dat = sample)

End(Not run)

#

2)

error

»

2)

error

47

scores_sample_univ_weighted

Weighted Scoring Rules for Simulated Forecast Distributions

Description

Calculate weighted scores given observations and draws from univariate predictive distributions.
The weighted scoring rules that are available are the threshold-weighted CRPS, outcome-weighted

CRPS, and conditional and censored likelihood scores.

Usage
twcrps_sample(
Y,
dat,
a = -Inf,
b = Inf,

chain_func = NULL,

48

w = NULL,
show_messages

)

owcrps_sample(

Y,

dat,

a = -Inf,

b = Inf,
weight_func =
w = NULL,

show_messages

)

clogs_sample(
Y,
dat,
a = -Inf,
b = Inf,
bw = NULL,
show_messages
cens = TRUE

Arguments

y
dat

a
b

chain_func

show_messages
weight_func

bw

cens

Details

scores_sample_univ_weighted

= TRUE

NULL,

TRUE

FALSE,

vector of realized values.

vector or matrix (depending on y; see details) of simulation draws from forecast
distribution.

numeric lower bound for the indicator weight function w(z) = 1{a <z <b}.
numeric upper bound for the indicator weight function w(z) = 1{a <z <b}.

function used to target particular outcomes in the threshold-weighted CRPS; the
default corresponds to the weight function w(z) = 1{a <z <b3.

optional; vector or matrix (matching dat) of ensemble weights. Note that these
weights are not used in the weighted scoring rules; see details.

logical; display of messages (does not affect warnings and errors).

function used to target particular outcomes in the outcome-weighted CRPS; the
default corresponds to the weight function w(z) = 1{a <z <b}.

optional; vector (matching y) of bandwidths for kernel density estimation for
clogs_sample; see details.

logical; if TRUE, clogs_sample returns the censored likelihood score; if FALSE,
clogs_sample returns the conditional likelihood score.

For a vector y of length n, dat should be given as a matrix with n rows. If y has length 1, then dat

may be a vector.

scores_sample_univ_weighted 49

twerps_sample transforms y and dat using the chaining function chain_func and then calls
crps_sample. owcrps_sample weights y and dat using the weight function weight_func and
then calls crps_sample. See the documentation for crps_sample for further details.

The default weight function used in the weighted scores is w(z) = 1{a < z < b3}, which is equal
to one if z is between a and b, and zero otherwise. This weight function emphasises outcomes
between a and b, and is commonly used in practical applications when interest is on values above a
threshold (set b = Inf and a equal to the threshold) or below a threshold (set a = -Inf and b equal
to the threshold).

Alternative weight functions can also be employed using the chain_func and weight_func ar-
guments to twcrps_sample and owcrps_sample, respectively. Computation of the threshold-
weighted CRPS for samples from a predictive distribution requires a chaining function rather than a
weight function. This is why a chaining function is an input for twcrps_sample whereas a weight
function is an input for owcrps_sample. Since clogs_sample requires kernel density estimation to
approximate the forecast density, it cannot readily be calculated for arbitrary weight functions, and
is thus only available for the canonical weight function w(z) = 1{a<z <bJ.

The chain_func and weight_func arguments are functions that will be applied to the vector y and
the columns of dat. It is assumed that these functions are vectorised. Both functions must take a
vector as an input and output a vector of the same length, containing the weight (for weight_func)
or transformed value (for chain_func) corresponding to each element in the input vector. An error
will be returned if weight_func returns negative values, and a warning message will appear if
chain_func is not increasing.

If no custom argument is given for a, b, chain_func or weight_func, then both twcrps_sample
and owcrps_sample are equivalent to the standard unweighted crps_sample, and clogs_sample
is equivalent to logs_sample.

The w argument is also present in the unweighted scores (e.g. crps_sample). wis used to weight the
draws from the predictive distribution, and does not weight particular outcomes within the weighted
scoring rules. This should not be confused with the weight_func argument, which is used within
the weighted scores.

Value

Value of the score. A lower score indicates a better forecast.

Author(s)
Sam Allen

References

Allen, S. (2024): “Weighted scoringRules: Emphasising Particular Outcomes when Evaluating
Probabilistic Forecasts’, Journal of Statistical Software. doi:10.18637/jss.v110.108

Threshold-weighted CRPS:

Gneiting, T. and R. Ranjan (2011): ‘Comparing density forecasts using threshold-and quantile-
weighted scoring rules’, Journal of Business & Economic Statistics 29, 411-422. doi:10.1198/
jbes.2010.08110

https://doi.org/10.18637/jss.v110.i08
https://doi.org/10.1198/jbes.2010.08110
https://doi.org/10.1198/jbes.2010.08110

50 scores_sample_univ_weighted

Allen, S., Ginsbourger, D. and J. Ziegel (2023): ‘Evaluating forecasts for high-impact events us-
ing transformed kernel scores’, SIAM/ASA Journal on Uncertainty Quantification 11, 906-940.
doi:10.1137/22M1532184

Outcome-weighted CRPS:

Holzmann, H. and B. Klar (2017): ‘Focusing on regions of interest in forecast evaluation’, Annals
of Applied Statistics 11, 2404-2431. doi:10.1214/17AOAS1088

Conditional and censored likelihood scores:

Diks, C., Panchenko, V. and D. Van Dijk (2011): ‘Likelihood-based scoring rules for comparing
density forecasts in tails’, Journal of Econometrics 163, 215-230. doi:10.1016/j.jeconom.2011.04.001

See Also

scores_sample_univ for standard (unweighted) scores based on simulated forecast distributions.
scores_sample_multiv_weighted for weighted scores based on simulated multivariate forecast dis-
tributions.

Examples

Not run:

y <= rnorm(10)
sample_fc <- matrix(rnorm(100), nrow = 10)

crps_sample(y = y, dat = sample_fc)
twcrps_sample(y = y, dat = sample_fc)
owcrps_sample(y =y, dat = sample_fc)

logs_sample(y =y, dat = sample_fc)
clogs_sample(y = y, dat = sample_fc)
clogs_sample(y = y, dat = sample_fc, cens = FALSE)

emphasise outcomes above 0

twcrps_sample(y = y, dat = sample_fc, a = @)
owcrps_sample(y =y, dat = sample_fc, a = 0)
clogs_sample(y = y, dat = sample_fc, a = 0)
clogs_sample(y = y, dat = sample_fc, a = @, cens = FALSE)

emphasise outcomes below @

twcrps_sample(y = y, dat = sample_fc, b = @)
owcrps_sample(y =y, dat = sample_fc, b = 9)
clogs_sample(y = y, dat = sample_fc, b = 0)

emphasise outcomes between -1 and 1

twcrps_sample(y = y, dat = sample_fc, a = -1, b = 1)
owcrps_sample(y = y, dat = sample_fc, a = -1, b = 1)
clogs_sample(y =y, dat = sample_fc, a = -1, b = 1)

a must be smaller than b
twcrps_sample(y = y, dat = sample_fc, a =1, b = -1) # error

https://doi.org/10.1137/22M1532184
https://doi.org/10.1214/17-AOAS1088
https://doi.org/10.1016/j.jeconom.2011.04.001

scores_sample_univ_weighted

owcrps_sample(y = y, dat = sample_fc, a =9, b
clogs_sample(y =y, dat = sample_fc, a = 10, b

Q) # error
9) # error

a and b must be single numeric values (not vectors)
twcrps_sample(y = y, dat = sample_fc, a = rnorm(10)) # error

the owCRPS is not well-defined if none of dat are between a and b
y <= rnorm(10)

sample_fc <- matrix(runif(10@, -5, 1), nrow = 10)

owcrps_sample(y =y, dat = sample_fc, a = 1)

the twCRPS is zero if none of y and dat are between a and b
twcrps_sample(y = y, dat = sample_fc, a = 1)

alternative custom weight and chaining functions can also be used

Example 1: a Gaussian weight function with location mu and scale sigma

mu <- @

sigma <- 0.5

weight_func <- function(x) pnorm(x, mu, sigma)

or weight_func <- get_weight_func("norm_cdf”, mu, sigma)
a corresponding chaining function is

chain_func <- function(x) (x - mu)*pnorm(x, mu, sigma) + (sigma*2)*dnorm(x, mu,
or chain_func <- get_weight_func("norm_cdf”, mu, sigma, weight = FALSE)

x <- seq(-2, 2, 0.01)

plot(x, weight_func(x), type = "1") # positive outcomes are given higher weight

plot(x, chain_func(x), type = "1")

owcrps_sample(y = dat = sample_fc, a = mu)

owcrps_sample(y =y, dat = sample_fc, weight_func = weight_func)
twcrps_sample(y = y, dat = sample_fc, a = mu)

twcrps_sample(y =y, dat = sample_fc, chain_func = chain_func)

|
<
1

Example 2: a sigmoid (or logistic) weight function with location mu and scale sigma

weight_func <- function(x) plogis(x, mu, sigma)

or weight_func <- get_weight_func("logis_cdf”, mu, sigma)
chain_func <- function(x) sigmaxlog(exp((x - mu)/sigma) + 1)

or chain_func <- get_weight_func("logis_cdf"”, mu, sigma, weight =

x <- seq(-2, 2, 0.01)

plot(x, weight_func(x), type = "1") # positive outcomes are given higher weight

plot(x, chain_func(x), type = "1")

owcrps_sample(y =y, dat = sample_fc, a = mu)

owcrps_sample(y = y, dat = sample_fc, weight_func = weight_func)
twcrps_sample(y = y, dat = sample_fc, a = mu)

twcrps_sample(y = y, dat = sample_fc, chain_func = chain_func)

Example 3: the weight function w(z) = 1{z < a or z > b}

51

sigma)

52 scores_t

a <- -1

b <-1

weight_func <- function(x) as.numeric(x < a | x > b)

chain_func <- function(x) (x < a)*(x - a) + (x > b)x(x - b) + a

x <- seq(-2, 2, 0.01)
plot(x, weight_func(x), type = "1")
plot(x, chain_func(x), type = "1")

owcrps_sample(y =y, dat = sample_fc, weight_func = weight_func)

twcrps_sample(y =y, dat = sample_fc, chain_func = chain_func)

twcrps_sample(y =y, dat = sample_fc, b = -1) + twcrps_sample(y =y, dat = sample_fc, a =
crps_sample(y =y, dat = sample_fc) - twcrps_sample(y =y, dat = sample_fc, a =-1, b =1)

End(Not run)

scores_t Calculating scores for Student’s t-distribution

Description

These functions calculate scores (CRPS, logarithmic score) and their gradient and Hessian with
respect to the parameters of a location-scale transformed Student’s ¢-distribution. Furthermore,
the censoring transformation and the truncation transformation may be introduced on top of the
location-scale transformed ¢-distribution.

Usage

score functions

crps_t(y, df, location = @, scale = 1)

crps_ct(y, df, location = @, scale = 1, lower = -Inf, upper = Inf)

crps_tt(y, df, location = @, scale = 1, lower = -Inf, upper = Inf)

crps_gtct(y, df, location = @, scale =1, lower = -Inf, upper = Inf, lmass = @, umass = 0)
logs_t(y, df, location = @, scale = 1)

logs_tt(y, df, location = @, scale = 1, lower = -Inf, upper = Inf)

dss_t(y, df, location = @, scale = 1)

gradient (location, scale) functions

gradcrps_t(y, df, location = @, scale = 1)

gradcrps_ct(y, df, location = @, scale = 1, lower = -Inf, upper = Inf)
gradcrps_tt(y, df, location = @, scale = 1, lower = -Inf, upper = Inf)
Hessian (location, scale) functions

hesscrps_t(y, df, location = 0@, scale = 1)

hesscrps_ct(y, df, location = @, scale = 1, lower = -Inf, upper = Inf)
hesscrps_tt(y, df, location = @, scale = 1, lower = -Inf, upper = Inf)

scores_unif 53

Arguments

y vector of observations.

df vector of degrees of freedom.

location vector of location parameters.

scale vector of scale paramters.

lower, upper lower and upper truncation/censoring bounds.

1mass, umass vectors of point masses in lower and upper respectively.
Value

For the CRPS functions: a vector of score values.

For the gradient and Hessian functions: a matrix with column names corresponding to the respective
partial derivatives.

scores_unif Calculating scores for the uniform distribution

Description

Calculating scores for the uniform distribution

Usage

crps_unif(y, min = @, max = 1, lmass = @, umass = 0)

logs_unif(y, min = @, max = 1)

dss_unif(y, min = @, max = 1)

Arguments
y vector of observations.
min, max lower and upper limits of the distribution. Must be finite.
1mass, umass vectors of point masses in min and max respectively.
Value

A vector of score values.

54 summary.mcstudy

summary . casestudy Summary method for class casestudy

Description

Summary method for class casestudy

Usage
S3 method for class 'casestudy'
summary (object, ...)
Arguments
object Object of class casestudy, generated via run_casestudy

Additional specifications (presently not in use)

summary .mcstudy Simple summary method for class mcstudy

Description

Simple summary method for class mcstudy

Usage
S3 method for class 'mcstudy'
summary (object, ...)
Arguments
object Object of class mcstudy, generated via run_mcstudy

Additional specifications (presently not in use)

Supplementary distributions: Positive real line 55

Supplementary distributions: Positive real line

Supplementary distributions (not in base R) supported on the positive
real line.

Description

We include the probability density functions of some distributions which are part of scoringRules,
but are not part of base R. The parametrizations used here are identical to the ones used when calling
crps and logs.

Here we document distributions on the positive real line: f1lapl - log-Laplace distribution; fllogis
- log-logistic distribution.
Usage

fllapl(x, locationlog, scalelog)
fllogis(x, locationlog, scalelog)

Arguments

X vector of quantiles
locationlog vector of location parameters on the log scale

scalelog vector of scale parameters on the log scale

Details

To be added.

Value

Probability density function of the relevant distribution, evaluated at x.

Author(s)

Alexander Jordan

See Also

The documentation for crps.numeric contains the full list of distributions supported by scoringRules
(includes the ones documented here, as well as many others).

56 Supplementary distributions: Real line

Supplementary distributions: Real line
Supplementary distributions (not in base R) supported on the real line.

Description

We include the probability density functions of some distributions which are part of scoringRules,
but are not part of base R. The parametrizations used here are identical to the ones used when calling
crps and logs.

Here we document distributions with support on the real line: flapl - Laplace distribution; f2pexp
- two-piece exponential distribution; fmixnorm - mixture of normal distributions; f2pnorm - two-
piece normal distribution.

Usage

flapl(x, location, scale)

f2pexp(x, location, scalel, scale2)
f2pnorm(x, location, scalel, scale2)

fmixnorm(x, m, s, w)

Arguments
X vector of quantiles
location vector of location parameters

scale, scalel, scale2
vector of scale parameters

m matrix of means (rows correspond to observations, columns correspond to mix-
ture components)

matrix of standard deviations (same structure as m)

w matrix of weights (same structure as m)

Details

The Laplace distribution (flapl) is described on https://en.wikipedia.org/wiki/Laplace_
distribution. Itis a special case of the two-piece exponential distribution (f2pexp), which allows
for different scale parameters to the left and right of location.

The density function of a mixture of normal distributions (fmixnorm) is given by the weighted sum
over the mixture components,

flo) =) wi/sid((x —mi)/si),
where ¢ is the pdf of the standard normal distribution.

For details on the two-piece normal distribution (f2pnorm), see Box A of Wallis (2004, "An Assess-
ment of Bank of England and National Institute Inflation Forecast Uncertainties", National Institute
Economic Review).

https://en.wikipedia.org/wiki/Laplace_distribution
https://en.wikipedia.org/wiki/Laplace_distribution

Supplementary distributions: Variable support 57

Value

Probability density function of the relevant distribution, evaluated at x.

Author(s)

Alexander Jordan

See Also

The documentation for crps.numeric contains the full list of distributions supported by scoringRules
(includes the ones documented here, as well as many others).

fnorm, flogis, ft

Examples

Plot PDF of Laplace distribution
ff <- function(x) flapl(x, location = @, scale = 2)
curve(ff, from = -8, to = 8, bty = "n", xlab = "Value”,
ylab = "PDF",
main = "Laplace distribution with location @ and scale 2")

Supplementary distributions: Variable support
Supplementary distributions (not in base R) with variable support.

Description

We include the probability density functions of some distributions which are part of scoringRules,
but are not part of base R. The parametrizations used here are identical to the ones used when calling
crps and logs.

Here we document distributions with variable support: fexp - location-scale exponential distribu-
tion with a point mass on the lower boundary; fgdp - generalized Pareto distribution with a point
mass on the lower boundary; fgev - generalized extreme value distribution; fnorm, flogis, ft -
(normal/logistic/Student’s t)-distribution with flexible domain and point masses on the boundaries.

Usage
fexp(x, location, scale, mass = @, log = FALSE)
fgpd(x, location, scale, shape, mass = @, log = FALSE)

fgev(x, location, scale, shape)

fnorm(x, location, scale, lower = -Inf, upper = Inf, 1lmass = @, umass = @, log = FALSE)
ft(x, df, location, scale, lower = -Inf, upper = Inf, 1lmass = @, umass = @, log = FALSE)
flogis(x, location, scale, lower = -Inf, upper = Inf, lmass = @, umass = @, log = FALSE)

58 Supplementary distributions: Variable support

Arguments
X vector of quantiles
df vector of degrees of freedom parameters
location vector of location parameters
scale vector of scale parameters (positive)
shape vector of shape parameters
mass vector of point masses in location
lower vector of lower bounds
upper vector of upper bounds
1mass vector of point masses in lower, or strings "trunc" / "cens"
umass vector of point masses in upper, or strings "trunc" / "cens"
log logical; if TRUE, the log of the density is returned
Details

For details on generalized extreme value and generalized Pareto distributions, see Friederichs, F.

and T.L. Thorarinsdottir (2012, "Forecast verification for extreme value distributions with an appli-
cation to probabilistic peak wind prediction”, Environmetrics 23, 579-594). Note that the support

of both distributions depends on the input parameters; see https://en.wikipedia.org/wiki/
Generalized_extreme_value_distributionandhttps://en.wikipedia.org/wiki/Generalized_
Pareto_distribution.

Sometimes truncated or censored versions of the normal distribution are used to model variables
with a restricted domain (e.g. precipitation). We allow the flexible specification of lower and upper
boundaries and point masses in those boundaries. The truncated normal distribution assumes no
point masses (i.e. redistributes the cut-off) and can be specified using the string "trunc" instead of
a numerical probability. In contrast, the censored distribution introduces a point mass at the bound
in the amount of the cut-off. Here, the string "cens" may be used for 1lmass or umass. The most
common use in practice lies in the context of non-negative quantities. For example, a truncated
standard normal distribution (left truncation at zero) has pdf f(x) = ¢(x)/(1 — ®(0)), forxz > 0
and 0 otherwise. A censored standard normal distribution (left censoring at zero) has point mass
®(0) at zero, and density ¢(z) for x > 0.

The location-scale family based on Student’s t-distribution (f't) has mean location for df > 1 and
variance df /(df — 2) x scale? for df > 2. Note that the crps exists only for df > 1. For details, see
https://en.wikipedia.org/wiki/Student’s_t-distribution#Non-standardized_Student.
27s_t-distribution.

Value
Density function of the relevant distribution, evaluated at x. NOTE: For distributions involving a
point mass (e.g., when 1Imass = "cens” in fnorm), the density functions do not integrate to one.

Author(s)

Alexander Jordan

https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://en.wikipedia.org/wiki/Student's_t-distribution#Non-standardized_Student.27s_t-distribution
https://en.wikipedia.org/wiki/Student's_t-distribution#Non-standardized_Student.27s_t-distribution

Supplementary distributions: Variable support 59

See Also

The documentation for crps.numeric contains the full list of distributions supported by scoringRules
(includes the ones documented here, as well as many others).

Index

+ datasets
GDP data, 8
x distributions
Supplementary distributions:
Positive real line, 55
Supplementary distributions: Real
line, 56
Supplementary distributions:
Variable support, 57
* replication
plot.casestudy, 15
plot.mcstudy, 16
run_casestudy, 19
run_mcstudy, 20

ar_ms, 3,4, 20
bw.nrd, 46

clogs_sample, 48, 49

clogs_sample
(scores_sample_univ_weighted),
47

crps, 58

crps (scores), 21

crps.numeric, 5, 14, 21, 22, 55, 57, 59

crps_2pexp, 6

crps_2pexp (scores_2pexp), 22

crps_2pnorm, 6

crps_2pnorm (scores_2pnorm), 23

crps_beta, 6

crps_beta (scores_beta), 23

crps_binom, 7, 14

crps_binom (scores_binom), 24

crps_clogis, 6

crps_clogis (scores_logis), 30

crps_cnorm, 6

crps_cnorm (scores_norm), 34

crps_ct, 7

crps_ct (scores_t), 52

60

crps_exp, 6

crps_exp (scores_exp), 24
crps_expM, 6

crps_expM (scores_exp), 24
crps_gamma, 6

crps_gamma (scores_gamma), 25
crps_gev, 6

crps_gev (scores_gev), 26
crps_gpd, 6

crps_gpd (scores_gpd), 26
crps_gtclogis, 6

crps_gtclogis (scores_logis), 30
crps_gtcnorm, 6

crps_gtcnorm (scores_norm), 34
crps_gtct, 7

crps_gtct (scores_t), 52
crps_hyper, 7, 14

crps_hyper (scores_hyper), 27
crps_lapl, 5

crps_lapl (scores_lapl), 28
crps_llapl, 6

crps_llapl (scores_llapl), 28
crps_llogis, 6

crps_llogis (scores_llogis), 29
crps_lnorm, 6

crps_lnorm (scores_lnorm), 29
crps_logis, 6

crps_logis (scores_logis), 30
crps_mixnorm, 6

crps_mixnorm (scores_mixnorm), 31
crps_mixnorm_int (scores_mixnorm), 31
crps_nbinom, 7

crps_nbinom (scores_nbinom), 33
crps_norm, 6

crps_norm (scores_norm), 34
crps_pois, 7

crps_pois (scores_pois), 35
crps_sample, 38, 46, 49
crps_sample (scores_sample_univ), 45

INDEX

crps_t, 6

crps_t (scores_t), 52
crps_tlogis, 6

crps_tlogis (scores_logis), 30
crps_tnorm, 6

crps_tnorm (scores_norm), 34
crps_tt, 7

crps_tt (scores_t), 52
crps_unif, 6

crps_unif (scores_unif), 53

dss_beta (scores_beta), 23
dss_exp (scores_exp), 24
dss_gamma (scores_gamma), 25
dss_gev (scores_gev), 26

dss_gpd (scores_gpd), 26
dss_lapl (scores_lapl), 28
dss_l1lapl (scores_1lapl), 28
dss_llogis (scores_llogis), 29
dss_lnorm (scores_lnorm), 29
dss_logis (scores_logis), 30
dss_mixnorm (scores_mixnorm), 31
dss_moments (scores_moments), 32
dss_nbinom (scores_nbinom), 33
dss_norm (scores_norm), 34
dss_pois (scores_pois), 35
dss_sample (scores_sample_univ), 45
dss_t (scores_t), 52

dss_unif (scores_unif), 53

es_sample, 38, 41, 42
es_sample (scores_sample_multiv), 37
ess_moments (scores_moments), 32

f2pexp (Supplementary distributions:
Real line), 56

f2pnorm (Supplementary distributions:

Real line), 56

fexp (Supplementary distributions:
Variable support), 57

fgev (Supplementary distributions:
Variable support), 57

fgpd (Supplementary distributions:
Variable support), 57

flapl (Supplementary distributions:
Real line), 56

fllapl (Supplementary distributions:
Positive real line), 55

61

fllogis (Supplementary distributions:
Positive real line), 55

flogis, 57

flogis (Supplementary distributions:
Variable support), 57

fmixnorm (Supplementary distributions:
Real line), 56

fnorm, 57

fnorm (Supplementary distributions:
Variable support), 57

ft, 57

ft (Supplementary distributions:
Variable support), 57

gdp, 19
gdp (GDP data), 8
GDP data, 8

gdp_mcmc (GDP data), 8
get_weight_func, 10
gradcrps_clogis (scores_logis), 30
gradcrps_cnorm (scores_norm), 34
gradcrps_ct (scores_t), 52
gradcrps_logis (scores_logis), 30
gradcrps_norm (scores_norm), 34
gradcrps_t (scores_t), 52
gradcrps_tlogis (scores_logis), 30
gradcrps_tnorm (scores_norm), 34
gradcrps_tt (scores_t), 52

hesscrps_clogis (scores_logis), 30
hesscrps_cnorm (scores_norm), 34
hesscrps_ct (scores_t), 52
hesscrps_logis (scores_logis), 30
hesscrps_norm (scores_norm), 34
hesscrps_t (scores_t), 52
hesscrps_tlogis (scores_logis), 30
hesscrps_tnorm (scores_norm), 34
hesscrps_tt (scores_t), 52

ints_quantiles (scores_quantiles), 36
ints_sample, 37
ints_sample (scores_quantiles), 36

loglik, 22

logs (scores), 21
logs.numeric, 8, 12, 21, 22
logs_2pexp, 13

logs_2pexp (scores_2pexp), 22
logs_2pnorm, 13

62

logs_2pnorm (scores_2pnorm), 23
logs_beta, 14

logs_beta (scores_beta), 23
logs_binom (scores_binom), 24
logs_exp, 13

logs_exp (scores_exp), 24
logs_exp2, 14

logs_exp2 (scores_exp), 24
logs_gamma, 13

logs_gamma (scores_gamma), 25
logs_gev, 14

logs_gev (scores_gev), 26
logs_gpd, 14

logs_gpd (scores_gpd), 26
logs_hyper (scores_hyper), 27
logs_lapl, 13

logs_lapl (scores_lapl), 28
logs_llapl, 13

logs_11lapl (scores_llapl), 28
logs_llogis, 14

logs_llogis (scores_llogis), 29
logs_lnorm, 14

logs_lnorm (scores_lnorm), 29
logs_logis, 13

logs_logis (scores_logis), 30
logs_mixnorm, 13

logs_mixnorm (scores_mixnorm), 31
logs_nbinom, /14

logs_nbinom (scores_nbinom), 33
logs_norm, 13

logs_norm (scores_norm), 34
logs_pois, 14

logs_pois (scores_pois), 35
logs_sample, 49

logs_sample (scores_sample_univ), 45
logs_t, 13

logs_t (scores_t), 52
logs_tlogis, 14

logs_tlogis (scores_logis), 30
logs_tnorm, 14
logs_tnorm(scores_norm), 34
logs_tt, 14

logs_tt (scores_t), 52
logs_unif, 14

logs_unif (scores_unif), 53

mmds_sample, 37, 38, 40—42
mmds_sample (scores_sample_multiv), 37

INDEX

owcrps_sample, 49

owcrps_sample
(scores_sample_univ_weighted),
47

owes_sample, 41, 42

owes_sample

(scores_sample_multiv_weighted),

40
owmmds_sample, 41, 42
owmmds_sample

(scores_sample_multiv_weighted),

40
owvs_sample, 41, 42
owvs_sample

(scores_sample_multiv_weighted),

40

plot.casestudy, 15, 16, 20
plot.mcstudy, 16, 17, 21
print.casestudy, 17
print.mcstudy, 17

gs_quantiles (scores_quantiles), 36
gs_sample, 37

gs_sample (scores_quantiles), 36
quantile, 36

rps_probs, 18
run_casestudy, 4, 15-17, 19, 20, 54
run_mcstudy, 16, 17,20, 21, 54

scores, 21
scores_2pexp, 22
scores_2pnorm, 23
scores_beta, 23
scores_binom, 24
scores_exp, 24
scores_gamma, 25
scores_gev, 26
scores_gpd, 26
scores_hyper, 27
scores_lapl, 28
scores_l1lapl, 28
scores_llogis, 29
scores_lnorm, 29
scores_logis, 30
scores_mixnorm, 31
scores_moments, 32
scores_nbinom, 33

INDEX

scores_norm, 34

scores_pois, 35

scores_quantiles, 36

scores_sample_multiv, 37, 42

scores_sample_multiv_weighted, 10, 11,
39, 40, 50

scores_sample_univ, 37, 45, 50

scores_sample_univ_weighted, 10, 11, 42,
47,47

scores_t, 52

scores_unif, 53

summary . casestudy, 54

summary .mcstudy, 54

Supplementary distributions: Positive
real line, 55

Supplementary distributions: Real
line, 56

Supplementary distributions: Variable
support, 57

twcrps_sample, 49

twcrps_sample
(scores_sample_univ_weighted),
47

twes_sample, 41, 42

twes_sample
(scores_sample_multiv_weighted),
40

twmmds_sample, 41, 42

twmmds_sample
(scores_sample_multiv_weighted),
40

twvs_sample, 41, 42

twvs_sample
(scores_sample_multiv_weighted),
40

vs_sample, 38, 41, 42
vs_sample (scores_sample_multiv), 37

63

	ar_ms
	crps.numeric
	GDP data
	get_weight_func
	logs.numeric
	plot.casestudy
	plot.mcstudy
	print.casestudy
	print.mcstudy
	rps_probs
	run_casestudy
	run_mcstudy
	scores
	scores_2pexp
	scores_2pnorm
	scores_beta
	scores_binom
	scores_exp
	scores_gamma
	scores_gev
	scores_gpd
	scores_hyper
	scores_lapl
	scores_llapl
	scores_llogis
	scores_lnorm
	scores_logis
	scores_mixnorm
	scores_moments
	scores_nbinom
	scores_norm
	scores_pois
	scores_quantiles
	scores_sample_multiv
	scores_sample_multiv_weighted
	scores_sample_univ
	scores_sample_univ_weighted
	scores_t
	scores_unif
	summary.casestudy
	summary.mcstudy
	Supplementary distributions: Positive real line
	Supplementary distributions: Real line
	Supplementary distributions: Variable support
	Index

