
runjags: An R Package Providing Interface Utilities,

Model Templates, Parallel Computing Methods and

Additional Distributions for MCMC Models

in JAGS

Matthew J. Denwood

University of Copenhagen

Abstract

The runjags package provides a set of interface functions to facilitate running Markov
chain Monte Carlo models in JAGS from within R. Automated calculation of appropri-
ate convergence and sample length diagnostics, user-friendly access to commonly used
graphical outputs and summary statistics, and parallelized methods of running JAGS are
provided. Template model specifications can be generated using a standard lme4-style
formula interface to assist users less familiar with the BUGS syntax. Automated simu-
lation study functions are implemented to facilitate model performance assessment, as
well as drop-k type cross-validation studies, using high performance computing clusters
such as those provided by parallel. A module extension for JAGS is also included within
runjags, providing the Pareto family of distributions and a series of minimally-informative
priors including the DuMouchel and half-Cauchy priors. This vignette is taken from the
publication for the runjags package (Denwood 2016). It outlines the primary functions of
this package, and gives an illustration of a simulation study to assess the performance of
equivalent model specifications.

Keywords: MCMC, Bayesian, graphical models, interface utilities, JAGS, BUGS, R.

1. Introduction

Over the last two decades, the increased availability of computing power has led to a sub-
stantial increase in the availability and use of Markov chain Monte Carlo (MCMC) methods
for Bayesian estimation (Gilks, Richardson, and Spiegelhalter 1998). However, such methods
have potential drawbacks if used inappropriately, including difficulties in identifying conver-
gence (Toft, Innocent, Gettinby, and Reid 2007; Brooks and Roberts 1998) and the potential
for auto-correlation to decrease the effective sample size of the numerical integration pro-
cess (Kass, Carlin, Gelman, and Neal 1998). Although writing MCMC sampling algorithms
such as the Metropolis-Hastings algorithm (Hastings 1970) is relatively straightforward, many
users employ software such as the Bayesian analysis Using Gibbs Sampling (BUGS) software
variants WinBUGS and OpenBUGS (Lunn, Thomas, Best, and Spiegelhalter 2000). Just
Another Gibbs Sampler (JAGS; Plummer 2003) is a cross-platform alternative with a direct
interface to R using rjags (Plummer 2016), which can be easily extended with user-specified
modules supporting additional distributions and random number generators (Wabersich and



2 runjags: JAGS Interface Utilities and Additional Distributions

Vandekerckhove 2014). Each of these uses the BUGS syntax to allow the user to define ar-
bitrary models more easily, which is attractive and attainable for researchers who are more
familiar with traditional modeling techniques. However, many of these less experienced users
may not be aware of the potential issues with MCMC analysis, hence the prominent warning
that “MCMC sampling can be dangerous” in the WinBUGS user manual (Lunn et al. 2000).
Some of this potential risk for inexperienced users can be reduced using a wrapper for the
model-fitting software that analyzes the model output for common problems, such as failure
to converge, parameter auto-correlation and effective sample size, which may otherwise be
overlooked by the end user.

Bayesian statistical methods, such as those used by BUGS and JAGS, also require prior belief
to be incorporated into the model. There are a number of different recommendations for an
appropriate choice of prior distribution under various different circumstances, for example the
half-Cauchy distribution has been recommended as a reasonable choice for standard deviation
parameters within hierarchical models (Gelman 2006; Polson and Scott 2011), and DuMouchel
(1994) gives an argument for the use of π(τ) = s0

(s0+τ)2 as a prior for a variance parameter τ

in meta-analysis models. However, these are not available as built-in distributions in BUGS

or JAGS.

This paper describes the runjags package (?) for R (R Core Team 2015) which can be used to
automate MCMC fitting and summarizing procedures for JAGS models and is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=

runjags. The functions are designed to be user-friendly (particularly for those less experi-
enced with MCMC analysis), and provide a number of features to make the recommended
convergence and sample size checks more obvious to the end user. The runjags package
also provides additional distributions to extend the core functionality of JAGS, including the
half-Cauchy and DuMouchel distributions, as well as functions implementing different types
of simulation studies to assess the performance of JAGS models. Section 3 gives a worked
example of usage to assess the sensitivity of an over-dispersed count observation model to
various minimally-informative prior distributions. Some prior familiarity with the BUGS pro-
gramming language and the underlying MCMC algorithms is assumed. All code shown below
is also included in an R file in the supplementary material.

2. Package functions

2.1. Preparation

The core functionality of the runjags package allows a model specified by the user to be run
in JAGS, using the run.jags function. The help file for this function gives an overview of
the core functionality of the runjags package and provides links to other relevant functions.
All functions require installation of JAGS, which is an open source software package available
from https://mcmc-jags.sourceforge.io/.

Before running a model for the first time, it is advisable to check the installation of JAGS and
set any desired global settings such as installation locations and warning message preferences
using the runjags.options function. For example, the following will first test the JAGS

installation, and then set function feedback from runjags and simulation updates from JAGS

to be suppressed for future model runs in this R session:

https://CRAN.R-project.org/package=runjags
https://CRAN.R-project.org/package=runjags
https://mcmc-jags.sourceforge.io/


Matthew J. Denwood 3

R> testjags()

You are using R version 3.3.0 (2016-05-03) on a unix machine, with the

X11 GUI

JAGS version 4.2.0 found successfully using the command

'/usr/local/bin/jags'

The rjags package is installed

R> runjags.options(silent.runjags = TRUE, silent.jags = TRUE)

The help file for the runjags.options function gives a list of other possible global options,
and instructions on how to set these in the R profile file for permanent use.

2.2. Basic usage

The run.jags function requires a valid model definition to the model argument and a char-
acter string of monitored variables to the monitor argument before a model can be run. The
model can be specified in an external text file, or as a character string within R. The former
is likely to be preferable for more complex model formulations, but the latter eliminates the
need for multiple text files. Data will be necessary for most models, and it is highly recom-
mended to provide over-dispersed starting values for multiple chains; the default settings give
a warning if no initial values are provided.

There are a number of ways to provide data and initial values, depending on the preferences
of the user. It is possible for the text file containing the model to also contain data and
initial value “blocks”, in which case these will be automatically imported with the model by
run.jags and the number of chains is inferred from the number of initial value lists found.
This is also compatible with standard WinBUGS or OpenBUGS text files, although the
addition of curly brackets is necessary to demarcate the data and initial value blocks in the
same way as for the model block. It is also necessary to convert any BUGS arrays from row-
major order to column-major order, which is done automatically if the variables are specified
inside a list (as is the case for BUGS, but not for R). To over-ride this setting within a specific
data or initial value block, the user can include #BUGSdata# to ensure all arrays are converted
from row- to column-major order, #Rdata# to ensure none of the arrays are converted, and
#modeldata# to pass the data block directly to JAGS for data transformation (see Section
7.0.4 of the JAGS user manual).

As a basic example, we can use the Salmonella example from Chapter 6.5.2 of the BUGS book
(http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-the-bugs-book/

bugs-book-examples/the-bugs-book-examples-chapter-6-6-5-2/, with thanks to Lunn,
Jackson, Best, Thomas, and Spiegelhalter 2012, for permission to reproduce their model).
Simulation-specific options can be provided to the run.jags function, which may include the
required burn-in period, sampling length and thinning interval. A basic model run with a
fixed burn-in period (default 4,000 iterations after 1,000 adaptive iterations) and sampling
period (default 10,000 iterations) can be obtained as follows:

R> filestring <- "

+ The BUGS Book example Chapter 6.5.2

+ The following example has been modified only to include

http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-the-bugs-book/bugs-book-examples/the-bugs-book-examples-chapter-6-6-5-2/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-the-bugs-book/bugs-book-examples/the-bugs-book-examples-chapter-6-6-5-2/


4 runjags: JAGS Interface Utilities and Additional Distributions

+ curly brackets around the Data and Inits specifications

+

+ Poisson model...

+

+ model {

+ for (i in 1:6) {

+ for (j in 1:3) {

+ y[i,j] ~ dpois(mu[i])

+ }

+ log(mu[i]) <- alpha + beta * log(x[i] + 10) + gamma * x[i]

+ }

+ for (i in 1:6) {

+ y.pred[i] ~ dpois(mu[i])

+ }

+ alpha ~ dnorm(0, 0.0001)

+ beta ~ dnorm(0, 0.0001)

+ gamma ~ dnorm(0, 0.0001)

+ }

+

+ Data {

+ list(y = structure(.Data = c(15, 21, 29, 16, 18, 21, 16, 26, 33,

+ 27, 41, 60, 33, 38, 41, 20, 27, 42), .Dim = c(6, 3)),

+ x = c(0, 10, 33, 100, 333, 1000))

+ }

+

+ Inits {

+ list(alpha = 0, beta = 0, gamma = 0)

+ }

+ "

R> results <- run.jags(filestring, monitor = c("alpha", "beta", "gamma"))

Warning message:

Convergence cannot be assessed with only 1 chain

A single chain was used for this model because only one set of initial values was found in the
example file, resulting in the warning message regarding convergence assessment. The results
of the simulation can be examined using the default print method as follows:

R> results

JAGS model summary statistics from 10000 samples (adapt+burnin = 5000):

Lower95 Median Upper95 Mean SD Mode

alpha 1.8018 2.1899 2.6135 2.1913 0.20439 2.1939

beta 0.20684 0.31538 0.41891 0.31414 0.053648 0.3157

gamma -0.0014678 -0.00099063 -0.00053861 -0.0009922 0.00023808 -0.001008



Matthew J. Denwood 5

MCerr MC%ofSD SSeff AC.10 psrf

alpha 0.019523 9.6 110 0.78631 --

beta 0.0052936 9.9 103 0.81478 --

gamma 0.000019396 8.1 151 0.58568 --

Total time taken: 0.5 seconds

The results show similar inference to that provided by Lunn et al. (2012), although with
additional information regarding the effective sample size (SSeff), auto-correlation at a lag
of 10 (AC.10), and the potential scale reduction factor (psrf) of the Gelman-Rubin statistic
(Gelman and Rubin 1992) for models with multiple chains (the latter is sometimes referred
to as ‘Rhat’). In this case, an insufficient number of samples has been taken for this highly
auto-correlated model (although it is important to note that the auto-correlation is markedly
reduced if the ‘glm’ module is loaded in JAGS). Displaying the effective sample size with the
summary information will alert the user to the fact that additional steps should be taken
before sensible inference can be made.

The data can also be specified to run.jags using the data argument, in which case it should
take the format of a named list, data frame, character string as produced by dump.format,
or a function (with no arguments) returning one of these. Similarly, the initial values can be
specified using the inits argument as a list with length equal to the number of chains, with
each element specifying a named list, data frame or character string for the initial values for
that chain. The initial values may also be specified as a function taking either no arguments
(as for the data argument) or one argument (specifying the chain number), in which case
an additional n.chains argument will be required by run.jags to determine the number of
chains required.

2.3. Alternative usage

To facilitate a more streamlined function call within R, an alternative method of specifying
data and initial values is provided. The model formulation may contain special inline com-
ments including: #data#, which indicates that the comma separated variable names to the
right of the statement are to be included in the simulation as data, and #inits#, which indi-
cates variables for which initial values are to be provided. Any variables specified by #data#

and #inits# will be automatically retrieved from a named list, data frame or environment
passed to the data and inits argument (or function returning one of these), or from the
global environment. Any variable names specified in this way may also match a function
returning an appropriate vector, and in the case of initial values, this function may accept a
single argument indicating the chain for which the initial values are to be used. Note that
any variables specified by #data# or #inits# will be ignored if a character string is provided
to the data or inits arguments, which may be useful for temporarily over-riding the values
specified in the model file. See the dump.format function for a way to generate these. In
addition to #data# and #inits#, a number of optional inline comments are supported as
follows:

• #monitors# – a comma-separated list of monitored variables to use, which may include
the special variables “DIC” (Spiegelhalter, Best, Carlin, and van der Linde 2002) and
“PED” (Plummer 2008), which can be used to assess model fit;



6 runjags: JAGS Interface Utilities and Additional Distributions

• #modules# – a comma-separated list of any JAGS extension modules required, option-
ally also specifying the status (e.g., #modules# glm on, dic on);

• #factories# – a comma-separated list of any JAGS factories and types required, option-
ally also specifying the status (e.g., #factories# mix::TemperedMix sampler on);

• #response# – a single variable name specifying the response variable;

• #residual# – a single variable name specifying a variable that represents the residuals;

• #fitted# – a single variable name specifying a variable that represents the fitted value.

Each of these options can also be supplied directly to the relevant function call in R. An
example of running a model using this style of model specification is as follows:

R> model <- "model {

+ for (i in 1:N) { #data# N

+ Y[i] ~ dnorm(true.y[i], precision) #data# Y

+ true.y[i] <- coef * X[i] + int #data# X

+ }

+ coef ~ dunif(-1000, 1000)

+ int ~ dunif(-1000, 1000)

+ precision ~ dexp(1)

+ #inits# coef, int, precision, .RNG.seed, .RNG.name

+ #monitor# coef, int, precision

+ }"

Simulate the data:

R> set.seed(1)

R> N <- 100

R> X <- seq(1, N, by = 1)

R> Y <- rnorm(N, 2 * X + 10, 1)

The following code specifies functions that return initial values (including RNG seeds) for
each chain. The use of switch within these functions allows different initial values to be
chosen for chains one and two, ensuring that initial values are over-dispersed.

R> coef <- function(chain)

+ return(switch(chain, "1" = -10, "2" = 10))

R> int <- function(chain)

+ return(switch(chain, "1" = -10, "2" = 10))

R> precision <- function(chain)

+ return(switch(chain, "1" = 0.01, "2" = 100))

R> .RNG.seed <- function(chain)

+ return(switch(chain, "1" = 1, "2" = 2))

R> .RNG.name <- function(chain)

+ return(switch(chain, "1" = "base::Super-Duper",

+ "2" = "base::Wichmann-Hill"))



Matthew J. Denwood 7

It is then possible to run the simulation specifying only the model and the number of chains
to use (the monitored variables, data and initial values are specified in the model file and will
be retrieved form our R working environment):

R> results <- run.jags(model, n.chains = 2)

2.4. Extending models

The autorun.jags function can be used in the same way as run.jags, but the burn-in period
and sample length are calculated automatically rather than being directly controlled by the
user. The autorun.jags function will continually extend a simulation until convergence –
as assessed by the Gelman-Rubin statistic (Gelman and Rubin 1992) – has been achieved
for all monitored variables, and will then extend the simulation further to compensate for
any observed auto-correlation. The automated assessment of convergence should be verified
graphically before making inference from models fit to real data, but a fully automated anal-
ysis is useful for simulated data and for reinforcing the importance of convergence assessment
for novice users. The following code will run the same model as above, extending the model
as necessary up to a maximum total elapsed time of one hour:

R> results <- autorun.jags(model, n.chains = 2, max.time = "1hr")

Alternatively, an existing model may be extended by the user in order to increase the sample
size of the MCMC chains using either the extend.jags or autoextend.jags function. For
these functions, the arguments add.monitor, drop.monitor and drop.chain are provided
in order to change the monitored variables and number of chains being run. The combine

argument controls whether the old MCMC chains should be discarded, or combined with the
new chains. For example, the following code will manually extend the existing simulation by
5000 iterations, and then extend the simulation again with automatic control of convergence
and sample size diagnostics:

R> results <- extend.jags(results, sample = 5000)

R> results <- autoextend.jags(results)

In the second function call, the automated diagnostics run by autoextend.jags determine
that the simulation has converged and already has an adequate sample size, so no addi-
tional samples are taken. For more details on these functions including detailed descriptions
of the other arguments and additional examples, consult the help pages for run.jags and
autorun.jags.

Once a valid ‘runjags’ class object has been obtained, the full representation of the model,
data and current status of the random number generators can be saved to a file using the
write.jagsfile function. This allows a model to be run from the last sampled values using
the run.jags function at a later time point, and it may also be instructive to use this function
to examine the format of a syntactically-valid and complete model file that can be read directly
using the run.jags function. It is also possible to specify a value of 0 for the sample argument
in the original run.jags function call, and then subsequently use write.jagsfile to produce
a model file with the initial values specified.



8 runjags: JAGS Interface Utilities and Additional Distributions

2.5. Visualization methods

The output of these functions is an object of class ‘runjags’. This class is associated with
a number of S3 methods, as well as utility functions for combining multiple ‘runjags’ ob-
jects (combine.jags), and for conversion to and from objects produced by the rjags package
(as.runjags and as.jags). Many of these allow a vars argument giving a subset of mon-
itored nodes (using partial matching), as well as a mutate argument. This should specify a
function (or a list with first element a function and remaining elements arguments to this
function), and can be used to add new variables to the posterior chains that are derived from
the directly monitored variables in JAGS. This allows the variables to be summarized or
extracted as part of the MCMC objects as if they had been calculated in JAGS, but without
the computational or storage overheads associated with calculating them directly in JAGS.
One possible application for this is for pair-wise comparisons of different levels within fixed
effects using the supplied contrasts.mcmc function.

The print method displays relevant overview information, including summary statistics for
monitored variables calculated and stored by the run.jags function. The summary method
returns a summary table for the monitored variables, which is taken from the stored values
created by run.jags if available; otherwise it will be recalculated during the function call.
Alternatively, summary statistics can be recalculated and stored in the ‘runjags’ object using
the add.summary function. There are a series of options available to these summary functions,
including vars and mutate as outlined above, confidence which specifies a numeric vector
of confidence intervals to calculate, and custom which allows one or more statistics calculated
by a user-supplied function to be appended to the summary statistics. Note that summary
options may also be passed to run.jags in order to control the summary statistics calculated
and appended to the ‘runjags’ object.

The plot method produces a series of relevant plots for the selected variables, including trace
plots, empirical cumulative distribution function plots, histograms, and a cross-correlation
plot, with additional options allowing auto-correlation plots and density plots if desired.
Further plot parameters can be specified using the col and separate.chains arguments, as
well as a named list for each plot type which will be passed to the underlying lattice functions
(?). The primary intention with these plots is to provide rapid access to commonly used
convergence diagnostics, and plot methods associated with ‘mcmc’ or ‘mcmc.list’ objects may
be more flexible and intuitive for producing more specific graphical output from converged
MCMC chains. The coda package (Plummer, Best, Cowles, and Vines 2006) provides such
plotting methods, as well as many of the underlying functions that calculate the summaries
given by runjags. A typical examination of a simulation output (the default print method,
and a plot output for variable names partially matching the letter “c”) could be obtained as
follows:

R> results

JAGS model summary statistics from 30000 samples (chains = 2;

adapt+burnin = 5000):

Lower95 Median Upper95 Mean SD Mode MCerr MC%ofSD

coef 1.9922 1.9995 2.007 1.9996 0.0038115 1.9994 0.000073962 1.9

int 9.4388 9.8711 10.307 9.8692 0.22139 9.8768 0.0042942 1.9



Matthew J. Denwood 9

Iteration

co
ef

1.
99

0
2.

00
0

2.
01

0

5000 10000 15000 20000

coef

E
C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

1.990 2.000 2.010

coef

%
 o

f t
ot

al

0
1
2
3
4
5

1.99 2.00 2.01

Lag

A
ut

oc
or

re
la

tio
n 

of
 c

oe
f

−1.0

−0.5

0.0

0.5

1.0

0 510152025303540

Iteration

pr
ec

is
io

n

0.
6

0.
8

1.
0

1.
2

5000 10000 15000 20000

precision

E
C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.8 1.0 1.2 1.4

precision

%
 o

f t
ot

al

0

1

2

3

0.4 0.6 0.8 1.0 1.2 1.4

Lag

A
ut

oc
or

re
la

tio
n 

of
 p

re
ci

si
on

−1.0

−0.5

0.0

0.5

1.0

0 510152025303540

coef

precisn
co

ef

pr
ec

is
n

1

−1
0

Figure 1: A series of plots displayed by the plot method for the ‘runjags’ class, showing
only parameters partially matched using the letter “c” with plots shown in a 3 × 3 layout.
Multiple chains are shown using different colors as indicated by the key plot.

precision 0.61225 0.82946 1.0685 0.83515 0.11731 0.826 0.0007013 0.6

SSeff AC.10 psrf

coef 2656 0.16954 1.002

int 2658 0.16942 1.0018

precision 27982 0.0020679 1

Total time taken: 4.3 seconds

R> plot(results, vars = "c", layout = c(3, 3))

The standard plot method presents the commonly required information in an easily read-
able format (including model fit statistics where available), but the same information can



10 runjags: JAGS Interface Utilities and Additional Distributions

be returned in the form of a numeric matrix using the summary method. To extract addi-
tional information from the ‘runjags’ object not covered by these summary statistics, see the
extract method.

2.6. GLMM templates

There are many available frameworks for fitting standard generalized linear mixed models
(GLMMs) in R, but new users to MCMC may find that running relatively simple models in
JAGS and comparing the results to those obtained through other software packages allows
them to better understand the flexibility and syntax of BUGS models. To this end, the runjags

package provides a template.jags function which generates model specification files based on
a formula syntax similar to that employed by the well-known lme4 package (Bates, Maechler,
Bolker, and Walker 2014; ?). After generating the template model, the user is encouraged to
examine the model file and make whatever changes are necessary before running the model
using run.jags. For example, a basic generalized linear model (from the help file for glm)
can be compared to the output of JAGS as follows:

R> counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

R> outcome <- gl(3, 1, 9)

R> treatment <- gl(3, 3)

R> d.AD <- data.frame(treatment, outcome, counts)

R> glm.D93 <- glm(counts ~ outcome + treatment, family = poisson())

R> template.jags(counts ~ outcome + treatment, data = d.AD,

+ family = "poisson")

Your model template was created at "JAGSmodel.txt" - it is highly

advisable to examine the model syntax to be sure it is as intended

You can then run the model using run.jags("JAGSmodel.txt")

R> jags.D93 <- run.jags("JAGSmodel.txt")

The results of these comparisons are not displayed here, but show how the same inference
is presented slightly differently in a Bayesian framework. The template.jags function sup-
ports Gaussian, (zero-inflated) binomial, (zero-inflated) Poisson and (zero-inflated) negative
binomial distributions, as well as linear and fixed effects, 2-way interactions and random in-
tercept terms specified using the same syntax as used in lme4. Additional distributions and
link functions can be introduced by manually editing the template model file. All necessary
data, initial values, monitored variables and modules are saved to the model file using the
previously described comment syntax, and the template function also saves information about
the response variable, fitted estimates and residuals to the model file, allowing residuals and
fitted methods to be used with the objects returned by run.jags.

2.7. JAGS module

In addition to the R code used to facilitate running JAGS models and summarizing results,
the runjags package also provides a modular extension to the JAGS language, providing
additional distributions. The module can be loaded using the following command:



Matthew J. Denwood 11

R> load.runjagsmodule()

module runjags loaded

This makes the module available to any JAGS model, including those run using the rjags

package. The available distributions extend the Pareto Type I distribution provided within
JAGS to Pareto Types II, III and IV, as well as providing the generalized Pareto distribution,
the Lomax distribution (a special case of the Pareto Type II distribution with µ = 0), and
two distributions advocated for use as “minimally-informative” priors for variance parameters:
the DuMouchel distribution (DuMouchel 1994), and the half-Cauchy distribution (Gelman
2006). The usage, probability density function (PDF) and lower bound for the support of
each of the distributions provided by the module are shown in Table 1, and an example of
how to use the distributions in this module is given in Section 3.

One limitation of the module provided within runjags is that it is only made available for
the ‘rjags’ and ‘rjparallel’ methods when loaded within R. However, a standalone JAGS

module containing the same functions for use with any JAGS installation (independently of R)
is available from http://runjags.sourceforge.net/. This module is named ‘paretoprior’
to avoid naming conflicts with the internal runjags module, and should install on a variety
of platforms using the standard ‘./configure’, ‘make’, ‘make install’ convention. Binary
installers are also provided for some platforms.

2.8. Method options

There are a number of different methods for calling JAGS from within R using runjags, which
can be controlled using the method argument or by changing the global option using the
runjags.options function. The main difference between these is that some allow multiple
chains to be run in parallel using separate JAGS models, with automatic pseudo-random
number generation handled by runjags where necessary. The "interruptible", "rjags",
"parallel" or "bgparallel" methods are recommended for most situations, but all possible
methods and their advantages and disadvantages are summarized in Table 2. Note that a pre-
existing cluster created using the parallel package can be used by specifying a cl argument,
and a maximum number of parallel simulations for these methods can optionally be specified
using a n.sims argument to the main function call (the default will use a separate simulation
per chain, but it is possible to specify fewer simulations than chains). The model fit statistics
are not available with parallel methods because multiple chains within the same model are
required for calculation of DIC and PED, but these can be obtained using the extract method
which will extend the simulation using a single simulation. The adaptation phase is always
explicitly controlled to allow MCMC simulations with the same pseudo-random number seed
to be reproducible regardless of the method used to call JAGS.

The two background methods do not return a completed simulation, but instead create a
folder in the working environment where the simulation results will be written once the
JAGS process has completed. For example, the following code will allow a JAGS simulation
to be run in the background using two processors in parallel, and saving the results in a folder
called ‘mysimulation’ in the current working directory:

R> info <- run.jags(model, n.chains = 2, method = "bgparallel",

+ keep.jags.files = "mysimulation", n.sims = 2)

http://runjags.sourceforge.net/


12 runjags: JAGS Interface Utilities and Additional Distributions

Name Usage in JAGS Density Lower

Pareto I1 dpar1(alpha, sigma)

α > 0, σ > 0
α σα x−(α+1) σ

Pareto II dpar2(alpha, sigma, mu)

α > 0, σ > 0

α

σ

(

σ + x − µ

σ

)

−(α+1)

µ

Pareto III dpar3(sigma, mu, gamma)

σ > 0, γ > 0

(

x−µ
σ

)
1
γ

−1
(

x−µ
σ

1
γ + 1

)

−2

γ σ

µ

Pareto IV dpar4(alpha, sigma, mu,

gamma)

α > 0, σ > 0, γ > 0

α
(

x−µ
σ

)
1
γ

−1
(

x−µ
σ

1
γ + 1

)

−(α+1)

γ σ

µ

Lomax2 dlomax(alpha, sigma)

α > 0, σ > 0

α

σ

(

1 +
x

σ

)

−(α+1)

0

Gen. Par. dgenpar(sigma, mu, xi)

σ > 0

1

σ

(

1 + ξ
x − µ

σ

)

−

(

1
ξ

+1
)

µ3

For ξ = 0: 1
σ

e
−(x−µ)

σ

DuMouchel dmouch(sigma)

σ > 0

σ

(x + σ)2 0

Half-Cauchy dhalfcauchy(sigma)

σ > 0

2σ

π (x2 + σ2) 0

Table 1: Distributions provided by the JAGS module included with the runjags package.
The name, JAGS code with parameterization, PDF and lower bound of the distributions are
shown. All distributions have an upper bound of ∞ unless otherwise stated.
1This is equivalent to the dpar(alpha, c) distribution and provided for naming consistency.
2This is referred to as the “2nd kind Pareto” distribution by Van Hauwermeiren and Vose
(2009); an alternative form for the PDF of this distribution is given by: α σα

(x+σ)α+1 .
3The Generalized Pareto distribution also has an upper bound of x ≤ µ −

σ
ξ

for ξ < 0.

Starting the simulations in the background...

The JAGS processes are now running in the background

This returns the control of the terminal to the user, who can then carry on working in R



Matthew J. Denwood 13

Method name Description Method options

"interruptible"1 JAGS called using a shell, with output
monitored and displayed within R.

–

"rjags"1,2 JAGS called using the rjags package. by and progress.bar: as for
the rjags package.

"background"1 ∗ JAGS called as a background process,
with the R prompt returned to the user.

–

"simple"1 JAGS called directly using a shell. –

"parallel"3 Multiple JAGS instances called using
separate shells to allow chain paral-
lelization.

n.sims: the number of paral-
lel simulations.

"bgparallel"3 ∗ Multiple JAGS instances called using
separate background processes to allow
chain parallelization.

n.sims: the number of paral-
lel simulations.

"rjparallel"3,4 Multiple rjags models run within R us-
ing a parallel cluster.

cl: a pre-created cluster to be
used, and n.sims: the num-
ber of parallel simulations.

"snow"1 Multiple JAGS instances called using
separate shells set up using a parallel

cluster.

cl and n.sims: as above, and
remote.jags: the JAGS path
on the cluster nodes.

Table 2: Methods provided by the runjags package to run simulations in JAGS. Availability
of JAGS modules is as follows:
1Installed in JAGS.
2Loadable in the R session.
3Installed in JAGS (except DIC).
4Loadable in R code run remotely on the cluster nodes (except DIC).
∗These methods are not compatible with autorun.jags and autoextend.jags.

while waiting for the simulation to complete. The default behavior on completion of the
simulations is to alert the user by emitting a beep from the speakers, but configuration using
runjags.options allows a shell script file to be executed instead. The info variable in this
code contains the name and directory of the simulation, which is given to the user if the
object is printed. The results can be retrieved using either the folder name or the variable
returned by the function that started the simulation:

R> background.results <- results.jags("mysimulation")

If the simulation has not yet completed, the results.jags function will display the JAGS

output so that the user can gauge how much longer the simulation will take. Further op-
tions for the results.jags function include recover.chains which allows the results of
successful simulations to be read even if other parallel simulations did not produce output,



14 runjags: JAGS Interface Utilities and Additional Distributions

and read.monitor which allows only a chosen subset of the monitored variables to be read
from the MCMC output. For all methods except "rjags" and "rjparallel", any calls to
run.jags where the keep.jags.files argument is specified will result in a folder being
created in the working directory that can be reimported using results.jags. Any failed
simulations created are also kept using the same mechanism, and a message is displayed de-
tailing how the user can attempt to recover these simulations. These failed simulation folders
are automatically cleaned up when the R session is terminated. The failed.jags function
returns any output captured from JAGS in such cases, and is helpful to debug model code.

2.9. Simulation studies

One of the principle motivations behind the development of the runjags package is to automate
the analysis of simulated data sets for the purposes of model validation. A common motivation
for this type of analysis is a drop-k validation study, also known as a leave-one-out cross-
validation where k = 1. This procedure re-fits the same model to a single data set multiple
times, with one or more of the observed data points removed from each re-fit of the model.
This can either be a randomly selected group of a fixed number “k” of data points, or each
individual data point in turn. The goal is to evaluate the ability of the model to predict each
observation from the explanatory variables, so that any unusual observations can be identified.
While it is possible to repeatedly use the autorun.jags function to analyze multiple data
sets, the higher level run.jags.study and drop.k functions are provided to automate much of
this process. Large simulation studies are likely to be computationally intensive, but are ideal
candidates for parallelization. For this reason, parallel computation is built directly into these
functions using the parallel package. This can be used to parallelize the simulation locally, or
to run the simulation on any cluster set up using the snow package (Tierney, Rossini, Li, and
Sevcikova 2013). This allows for the maximization of the available computing power without
requiring the end user to write any additional code, and includes an initial check to ensure
that the model compiles and runs locally before beginning the parallelized study.

A drop-k study is implemented in runjags using the drop.k function as follows. The ‘runjags’
class object on which the drop-k analysis will be performed must first be obtained using
the run.jags function. Here, we will use the simple linear regression model obtained in
Section 2.3, with the result of run.jags contained in the variable results. The drop.k

function takes arguments drop (indicating the data variables to remove between simulations),
and k (indicating the number of data points to drop for each simulation). In this case, a
drop-1 study is run with the number of simulations equal to the number of data points.
All individual simulations are run using the underlying autorun.jags function; additional
arguments for autorun.jags can be passed through drop.k as required. The initial values
for each simulation are taken from the parent simulation, including the observed values of the
removed data points to ensure that the model will compile. The drop-1 study is run and the
results displayed using the following syntax (limited to the first five data-points for brevity):

R> assessment <- drop.k(results, drop = "Y[1:5]", k = 1)

R> assessment

Values obtained from a drop-k study with a total of 5 simulations:

Target Median Mean Lower95%CI Upper95%CI Range95%CI Within95%CI



Matthew J. Denwood 15

Y[1] 11.544 11.885 11.879 9.6268 14.055 4.4282 1

Y[2] 13.051 13.914 13.906 11.549 15.994 4.4445 1

Y[3] 15.828 15.888 15.878 13.559 18.059 4.5009 1

Y[4] 18.784 17.832 17.83 15.663 20.12 4.4572 1

Y[5] 21.398 19.821 19.821 17.657 22.086 4.4285 1

AutoCorr(Lag10)

Y[1] 0.010115

Y[2] 0.014556

Y[3] 0.0015873

Y[4] 0.0047826

Y[5] 0.0064177

Average time taken: 2.6 seconds (range: 2.5 seconds - 2.7 seconds)

Average adapt+burnin required: 5000 (range: 5000 - 5000)

Average samples required: 10506 (range: 10000 - 11292)

The results show the 95% confidence interval (CI) for each data point obtained from the
corresponding simulation where this data point was removed, which in this case indicates
that the first five data-points were predicted reasonably well. For drop-k cross-validation
with “k” greater than 1, the indicated number of data points will be randomly removed from
each simulation and the average values for the corresponding summary statistics from each
data point will be shown. In this case, the argument simulations must also be provided.
Additional arguments to autorun.jags can also be provided to the drop.k function. For
example, the following syntax will run 100 simulations with a random selection of 2 of the 5
first five data-points removed from each:

R> assessment <- drop.k(results, drop = "Y[1:5]", k = 2, simulations = 100,

+ method = "simple", psrf.target = 1.1)

R> assessment

Average values obtained from a drop-k study with a total of 100 simulations:

Target Av.Median Av.Mean Av.Lower95%CI Av.Upper95%CI Av.Range95%CI

Y[1] 11.544 11.879 11.874 9.6118 14.079 4.4667

Y[2] 13.051 13.894 13.899 11.667 16.13 4.4629

Y[3] 15.828 15.868 15.871 13.636 18.088 4.4516

Y[4] 18.784 17.847 17.853 15.627 20.036 4.4082

Y[5] 21.398 19.822 19.827 17.656 22.071 4.4152

Prop.Within95%CI Av.AutoCorr(Lag10) Simulations

Y[1] 1 0.010223 41

Y[2] 1 0.0066466 39

Y[3] 1 0.0032953 42

Y[4] 1 0.012031 38

Y[5] 1 0.0076121 40



16 runjags: JAGS Interface Utilities and Additional Distributions

Average time taken: 6.2 seconds (range: 3.4 seconds - 7.4 seconds)

Average adapt+burnin required: 5000 (range: 5000 - 5000)

Average samples required: 10645 (range: 10000 - 12182)

In the latter case, inference was made on each data point in several different data sets, so
the results present the mean values of each summary statistic obtained from the multiple
simulations.

The drop.k function is a wrapper for the run.jags.study function, which can be used
to perform various different types of simulation studies. This function takes the following
arguments: the number of data sets to analyze, the model to use, a function to produce
data that will be provided to each simulation, and a named list of “target” variables with
true values representing parameters to be monitored and used to summarize the output of
the simulation. Inline #monitor# statements can be used as with run.jags, and any target
variables are also automatically monitored. Any variables specified using the inline #data#

statement will be retrieved from the working environment as usual and will be common to
all simulations – data which is intended to change between simulations must therefore be
provided using the datafunction argument instead. Initial variables can be specified using
#inits# in the model file, but it is also necessary to pass a character string of all variable
names required to the export.cluster argument to ensure these variables are visible on the
cluster nodes. It may be preferable to specify initial values as a function, to which the data
will be made available by run.jags at run time (this may be required in cases where the
choice of appropriate initial values depends on the values in the data). An illustration of the
run.jags.study function is provided in Section 3.

3. Illustration of usage with a simulation study

Here we will consider a worked example of a simulation study analysis using runjags, in order
to assess the performance of two equivalent model formulations with two different “minimally-
informative” priors. The application is an over-dispersed count model, the use of which is
widespread in many biological fields (Bolker, Brooks, Clark, Geange, Poulsen, Stevens, and
White 2009), including parasitology (Wilson, Grenfell, and Shaw 1996; Wilson and Grenfell
1997; Shaw, Grenfell, and Dobson 1998), where Bayesian methods of analysis have been shown
to provide more robust inference than traditional methods (Denwood, Stear, Matthews, Reid,
Toft, and Innocent 2008; Denwood, Reid, Love, Nielsen, Matthews, McKendrick, and Innocent
2010).

3.1. Model formulation and assessment

The gamma distribution is parameterized in JAGS and BUGS by the shape (α) and rate (β)
parameters, with the expectation given by α

β
and variance given by α

β2 . This distribution can
be used to describe underlying variability in a Poisson observation, representing an unknown
amount of over-dispersion between observations. In this situation the extra-Poisson coefficient
of variation cv is a useful measure of the variability of the underlying gamma distribution,

and is a simple function of the shape parameter: cv =
√

1
α

A candidate JAGS Model A (using inline data and monitor statements to be detected by
runjags) is as follows:



Matthew J. Denwood 17

R> ModelA <- "model {

+ for (i in 1:N) {

+ Count[i] ~ dpois(lambda[i])

+ lambda[i] ~ dgamma(shape, rate)

+ }

+ shape ~ dmouch(1)

+ mean ~ dmouch(1)

+ rate <- shape / mean

+

+ #data# N

+ #modules# runjags

+ #monitor# mean, shape

+ }"

This model allows each observed Count to follow a Poisson distribution with lambda drawn
from a gamma distribution with shape parameter to be estimated, and rate parameter
calculated from the shape parameter and the mean of the distribution, which is also to be
estimated. The prior distribution used for the mean and shape parameters is the DuMouchel
prior distribution as shown in Table 1 – this distribution is provided by the runjags extension
module which can be loaded using the #modules# tag. Here we use the same minimally-
informative prior distribution for both shape and mean parameters. The #data# statement
is used to include N as data that does not change between simulations. The Count variable is
also observed, but will vary between simulations so it is not retrieved from R memory using
#data#.

An alternative formulation of this same model could be provided using a negative binomial
distribution rather than a gamma mixture of Poisson distributions, as represented in Model
B:

R> ModelB <- "model {

+ for (i in 1:N) {

+ Count[i] ~ dnegbin(prob, shape)

+ }

+

+ shape ~ dmouch(1)

+ mean ~ dmouch(1)

+ prob <- shape / (shape + mean)

+

+ #data# N

+ #modules# runjags

+ #monitor# mean, shape

+ }"

In this model, the same priors are placed on the parameters shape and mean, but the neg-
ative binomial distribution is parameterized by a probability p in place of the parameter
mean. However, the gamma-Poisson and negative binomial distributions are equivalent (see
Appendix A), and these models share the same prior distributions for the two parameters of
interest. The two might therefore be expected to give equivalent inference.



18 runjags: JAGS Interface Utilities and Additional Distributions

The posterior coverage and auto-correlation of these models can be assessed using simulation
studies, with data generated from a distribution with a mean of 2, cv of 1.1, and sample size
of 20. These values are chosen to exaggerate any model performance issues by providing a
comparatively small data set with a large number of zero observations, and are similar to those
typically found in veterinary parasitological data sets (Denwood 2010). The two parameters
of interest are the mean parameter which is directly monitored in the model, and the cv

parameter which is a function of the monitored shape parameter. Rather than calculate the
cv parameter in JAGS, this can be calculated more efficiently in R using a mutate function:

R> getcv <- function(x)

+ return(list(cv = sqrt(1 / x[, "shape"])))

The model performance assessment can be automated using run.jags.study by creating a
function to return a pre-generated simulated data set for each simulation:

R> N <- 20

R> S <- 1000

R> truemean <- 2

R> truecv <- 1.1

R> trueshape <- 1 / truecv^2

R> truerate <- trueshape / truemean

R> set.seed(1)

R> alldata <- lapply(1:S, function(x) {

+ return(rpois(N, rgamma(N, trueshape, rate = truerate)))

+ })

R> datafunction <- function(i) return(list(Count = alldata[[i]]))

In this case we specify the initial values as a function, illustrating the potential to make use
of the stochastically-generated data while creating the initial values within the function:

R> initsfunction <- function(chain) {

+ stopifnot(data$N == 20)

+ stopifnot(chain %in% c(1, 2))

+ shape <- c(0.1, 10)[chain]

+ mean <- c(10, 0.1)[chain]

+ .RNG.seed <- c(1, 2)[chain]

+ .RNG.name <- c("base::Super-Duper", "base::Wichmann-Hill")[chain]

+ return(list(shape = shape, mean = mean, .RNG.seed = .RNG.seed,

+ .RNG.name = .RNG.name))

+ }

Finally, a parallel cluster with 10 nodes is set up on the local machine, before the two sim-
ulation studies are run on this cluster using the same data. The run.jags.study function
will check each of the models locally using a single randomly chosen data set to ensure that
the model is valid before it is passed to the cluster:

R> library("parallel")

R> cl <- makeCluster(10)



Matthew J. Denwood 19

R> resultsA <- run.jags.study(S, ModelA, datafunction,

+ targets = list(mean = truemean, cv = truecv), cl = cl,

+ inits = initsfunction, n.chains = 2, mutate = getcv)

R> resultsB <- run.jags.study(S, ModelB, datafunction,

+ targets = list(mean = truemean, cv = truecv), cl = cl,

+ inits = initsfunction, n.chains = 2, mutate = getcv)

Each function call returns an object of class ‘runjagsstudy’, with a default print method
that summarizes the results as for drop.k:

R> resultsA

Average values obtained from a JAGS study with a total of 1000 simulations:

Target Av.Median Av.Mean Av.Lower95%CI Av.Upper95%CI Av.Range95%CI

mean 2 1.9689 2.0756 0.99815 3.354 2.3559

cv 1.1 1.0627 1.0909 0.52457 1.6983 1.1737

Prop.Within95%CI Av.AutoCorr(Lag10) Simulations

mean 0.93 0.043658 1000

cv 0.926 0.19093 1000

Average time taken: 5.2 seconds (range: 2.3 seconds - 12.4 seconds)

Average adapt+burnin required: 5550 (range: 5000 - 27000)

Average samples required: 10059 (range: 10000 - 21465)

R> resultsB

Average values obtained from a JAGS study with a total of 1000 simulations:

Target Av.Median Av.Mean Av.Lower95%CI Av.Upper95%CI Av.Range95%CI

mean 2 1.9632 2.069 1.0007 3.3294 2.3287

cv 1.1 1.0625 1.0891 0.52306 1.6905 1.1675

Prop.Within95%CI Av.AutoCorr(Lag10) Simulations

mean 0.925 0.015783 1000

cv 0.931 0.040415 1000

Average time taken: 4.7 seconds (range: 1.9 seconds - 10.1 seconds)

Average adapt+burnin required: 5099 (range: 5000 - 16000)

Average samples required: 10000 (range: 10000 - 10000)

The inference made from the two models indicates that they are generally similar, except that
the auto-correlation for both parameters is reduced for Model B, meaning that on average
fewer samples were required for this model. As would be expected, the 95% confidence
intervals for both parameters identified the true value approximately 95% of the time.



20 runjags: JAGS Interface Utilities and Additional Distributions

Parameter Priors: mean | shape Mean CI Range Within CI AC10 Simulations

mean dmouch | dmouch 2.069 2.329 0.925 0.016 1000
mean dmouch | dgamma 2.072 2.340 0.916 0.021 1000
mean dgamma | dmouch 2.150 2.527 0.934 0.032 1000
mean dgamma | dgamma 2.156 2.556 0.922 0.041 1000

cv dmouch | dmouch 1.089 1.167 0.931 0.040 1000
cv dmouch | dgamma 1.068 1.270 0.882 0.089 1000
cv dgamma | dmouch 1.093 1.173 0.933 0.041 1000
cv dgamma | dgamma 1.073 1.277 0.881 0.090 1000

Table 3: Average values for the inference on the mean parameter (true value 2) and cv

parameter (true value 1.1) obtained from a negative binomial MCMC model formulation
using DuMouchel and gamma priors for the mean and shape parameters.

3.2. Sensitivity to prior distributions

The ability to incorporate prior information is an advantage of Bayesian methods, but there is
often a variety of potential distributions that could be equally justifiable in a given situation.
The choice between these possibilities is known to affect the shape of the posterior in some
situations (Lele and Dennis 2009), particularly when the information in the data is relatively
sparse. In particular, there are various different minimally-informative priors advocated for
use with variance parameters in hierarchical models, including the Gamma(0.001, 0.001)

distribution which is characterized by a mean of one and a very large variance. The sensitivity
of a model to the choice of priors between this gamma prior and the DuMouchel prior can
be evaluated using the run.jags.study function, with a total of four candidate sets of priors
(using each combination of DuMouchel and gamma distributions for the mean and shape

parameters). These were applied to the same 1,000 simulated data sets using Model B and
very similar R code to that given above. The results of these four simulation studies are
shown in Table 3. There are small but noticeable differences between the inference made
for both parameters using these prior distributions. The bias and auto-correlation are both
approximately doubled for the mean parameter between DuMouchel and gamma priors, and
more substantial changes in bias and auto-correlation are seen between priors for the cv

parameter. In addition, the 95% confidence intervals for the cv parameter have less than
90% coverage when using the gamma prior, despite a slightly larger average range of these
confidence intervals relative to the DuMouchel prior.

3.3. Discussion

The results presented here demonstrate the utility of simulation studies facilitated by the
runjags package to evaluate the relative performance of alternative model formulations and
the effect of prior distribution choices. In this case, the DuMouchel prior out-performed the
more standard gamma prior, and it also possesses properties that are theoretically desirable
for a minimally-informative distribution, such as invariance to inverse transformation, infinite
variance and a mode of zero. DuMouchel (1994) proposed this prior for use with variance
parameters in hierarchical models, but it has also been used in situations outside the meta-
analysis application for which it was originally devised (see for example Phillips, Tam, Conti,



Matthew J. Denwood 21

Rodrigues, Brown, Iturriza-Gomara, Gray, and Lopman 2010; Conti, Presanis, van Veen,
Xiridou, Donoghoe, Rinder Stengaard, and De Angelis 2011; Yin, Conti, Desai, Stafford,
Slater, Gill, and Simms 2013). Christiansen and Morris (1997) also used the same distribution
as a prior for a hierarchical regression model, and Daniels (1999) uses a uniform shrinkage
prior which is equivalent to the DuMouchel distribution. Although this connection is not
stated directly by DuMouchel (1994), the distribution is equivalent to a Lomax distribution
with τ = x, s0 = σ and α = 1, and therefore to a Pareto type II distribution with τ = x,
s0 = σ, α = 1 and µ = 0 (Table 1). The choice of σ dictates the median – a value of 1 is
advocated since this also ensures invariance to the inverse transformation of τ , so this prior is
equivalent in terms of variance and precision. The half-Cauchy distribution has a similar form
to the DuMouchel distribution, and has also been suggested for use as a prior for variance
parameters (Gelman 2006; Polson and Scott 2011).

Although it is also possible to extend other variants of BUGS, JAGS is fully open source and
written in C++, making extension modules such as the one provided by runjags much easier
to implement. A very useful tutorial on writing and installing a standalone JAGS module is
provided by Wabersich and Vandekerckhove (2014), but it is arguably more straightforward
to implement a shared JAGS library inside an R package. The configure script provided
inside the runjags package sets up the necessary environmental variables for compilation on
any platform, and can be used as a template for creating additional extension modules within
R packages.

4. Summary

There are several advantages to using MCMC, but also some potential disadvantages asso-
ciated with failure to identify poor convergence and high Monte Carlo error. The runjags

package attempts to partially safeguard against some of these difficulties by calculating and
automatically reporting convergence and sample length diagnostics every time a JAGS model
is run, and provides a more user-friendly way to access commonly used visual convergence
diagnostics and summary statistics. Implementations of common GLMMs are provided using
a standard formula-style interface, in order to encourage new users to explore the potential
of MCMC inference without having to generate the full code for the model themselves. A
further application of the runjags package is in implementing simulation studies so that model
formulations and prior specifications can be validated using techniques such as drop-k cross-
validation studies. Given that the inference made using JAGS and BUGS can be sensitive
to subtly different model specifications and prior distributions, a user-friendly mechanism to
perform these types of analyses is potentially very useful.

Acknowledgments

The author is grateful to the anonymous referees for their very useful comments and sugges-
tions, to Stefano Conti for useful discussions regarding the Pareto family of distributions, to
Vaetta Editing for proofreading this manuscript, and to the authors of “The BUGS Book”
(Lunn et al. 2012) for kind permission to use the Salmonella example.



22 runjags: JAGS Interface Utilities and Additional Distributions

References

Bates D, Maechler M, Bolker B, Walker S (2014). lme4: Linear mixed-effects models using
Eigen and S4. R package version 1.1-7, URL http://CRAN.R-project.org/package=lme4.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009).
“Generalized Linear Mixed Models: a Practical Guide for Ecology and Evolution.” Trends
in Ecology & Evolution, 24(3), 127–35. ISSN 0169-5347. URL http://dx.doi.org/10.

1016/j.tree.2008.10.008.

Brooks SP, Roberts GO (1998). “Assessing Convergence of Markov Chain Monte Carlo
Algorithms.” Statistics and Computing, 8, 319–333.

Christiansen CL, Morris CN (1997). “Hierarchical Poisson Regression Modeling.” Jour-
nal of the American Statistical Association, 92, 618–632. ISSN 0162-1459. doi:

10.1080/01621459.1997.10474013. URL http://www.tandfonline.com/doi/abs/10.

1080/01621459.1997.10474013.

Conti S, Presanis AM, van Veen MG, Xiridou M, Donoghoe MC, Rinder Stengaard A, De
Angelis D (2011). “Modeling of the HIV Infection Epidemic in the Netherlands: a Multi-
Parameter Evidence Synthesis Approach.” The Annals of Applied Statistics, 5(4), 2359–
2384. ISSN 1932-6157. URL http://dx.doi.org/10.1214/11-AOAS488.

Daniels M (1999). “A prior for the variance in hierarchical models.” The Canadian Journal
of Statistics, 27, 567–578. ISSN 03195724. doi:doi:10.2307/3316112. URL http://

onlinelibrary.wiley.com/doi/10.2307/3316112/abstract.

Denwood, MJ (2016). “runjags: An R Package Providing Interface Utilities, Model Templates,
Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.”
Journal of Statistical Software, 71(9), 1-25. doi:doi:10.18637/jss.v071.i09.

Denwood MJ (2010). A Quantitative Approach to Improving the Analysis of Faecal Worm
Egg Count Data. Doctoral thesis, University of Glasgow. URL http://theses.gla.ac.

uk/1837/.

Denwood MJ, Reid SWJ, Love S, Nielsen MK, Matthews L, McKendrick IJ, Innocent GT
(2010). “Comparison of Three Alternative Methods for Analysis of Equine Faecal egg Count
Reduction Test Data.” Preventive Veterinary Medicine, 93(4), 316–23. ISSN 1873-1716.
URL http://dx.doi.org/10.1016/j.prevetmed.2009.11.009.

Denwood MJ, Stear MJ, Matthews L, Reid SWJ, Toft N, Innocent GT (2008). “The Distri-
bution of the Pathogenic Nematode Nematodirus battus in Lambs is Zero-Inflated.” Para-
sitology, 135(10), 1225–1235. ISSN 1469-8161 (Electronic). URL http://dx.doi.org/10.

1017/S0031182008004708.

DuMouchel W (1994). “Hierarchical Bayes Linear Models for Meta-Analysis.” Technical
Report 27, National Institute of Statistical Sciences. URL http://www.niss.org/sites/

default/files/pdfs/technicalreports/tr27.pdf.

Gelman A (2006). “Prior Distributions for Variance Parameters in Hierarchical Models.”
Bayesian Analysis, 1(3), 515–533.

http://CRAN.R-project.org/package=lme4
http://dx.doi.org/10.1016/j.tree.2008.10.008
http://dx.doi.org/10.1016/j.tree.2008.10.008
https://doi.org/10.1080/01621459.1997.10474013
https://doi.org/10.1080/01621459.1997.10474013
http://www.tandfonline.com/doi/abs/10.1080/01621459.1997.10474013
http://www.tandfonline.com/doi/abs/10.1080/01621459.1997.10474013
http://dx.doi.org/10.1214/11-AOAS488
https://doi.org/doi: 10.2307/3316112
http://onlinelibrary.wiley.com/doi/10.2307/3316112/abstract
http://onlinelibrary.wiley.com/doi/10.2307/3316112/abstract
https://doi.org/doi:10.18637/jss.v071.i09
http://theses.gla.ac.uk/1837/
http://theses.gla.ac.uk/1837/
http://dx.doi.org/10.1016/j.prevetmed.2009.11.009
http://dx.doi.org/10.1017/S0031182008004708
http://dx.doi.org/10.1017/S0031182008004708
http://www.niss.org/sites/default/files/pdfs/technicalreports/tr27.pdf
http://www.niss.org/sites/default/files/pdfs/technicalreports/tr27.pdf


Matthew J. Denwood 23

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472. URL http://www.jstor.org/stable/2246093.

Gilks WR, Richardson S, Spiegelhalter DJ (1998). Markov Chain Monte Carlo in Practice.
Chapman and Hall, Boca Raton, Fla. ISBN 0412055511. URL http://www.loc.gov/

catdir/enhancements/fy0646/98033429-d.html.

Hastings WK (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications.” Biometrika, 57(1), 97–109. URL http://dx.doi.org/10.1093/biomet/

57.1.97.

Kass RE, Carlin BP, Gelman A, Neal RM (1998). “Markov Chain Monte Carlo in Practice:
a Roundtable Discussion.” The American Statistician, 52(2), 93–100.

Lele SR, Dennis B (2009). “Bayesian Methods for Hierarchical Models: are Ecologists Making
a Faustian Bargain?” Ecological Applications : a Publication of the Ecological Society of
America, 19(3), 581–4. ISSN 1051-0761. URL http://www.ncbi.nlm.nih.gov/pubmed/

19425420.

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS book: A practical
introduction to Bayesian analysis. CRC press.

Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000). “WinBUGS - a Bayesian Modelling
Framework: Concepts, Structure, and Extensibility.” Statistics and Computing, 10(4),
325–337. ISSN 0960-3174. URL http://dx.doi.org/10.1023/A:1008929526011.

Phillips G, Tam CC, Conti S, Rodrigues LC, Brown D, Iturriza-Gomara M, Gray J, Lopman
B (2010). “Community Incidence of Norovirus-Associated Infectious Intestinal Disease
in England: Improved Estimates Using Viral Load for Norovirus Diagnosis.” American
Journal of Epidemiology, 171(9), 1014–22. ISSN 1476-6256. URL http://dx.doi.org/

10.1093/aje/kwq021.

Plummer M (2003). “JAGS : A Program for Analysis of Bayesian Graphical Models Using
Gibbs Sampling.” In Proceedings of the 3rd International Workshop on Distributed Statisti-
cal Computing (DSC 2003), pp. March 20–22,Vienna, Austria. ISSN 1609–395X. ISSN
1609395X. doi:10.1.1.13.3406. URL http://www.ci.tuwien.ac.at/Conferences/

DSC-2003/Drafts/Plummer.pdf.

Plummer M (2008). “Penalized loss functions for Bayesian model comparison.” Biostatistics,
9, 523–539. ISSN 14654644. doi:10.1093/biostatistics/kxm049.

Plummer M (2016). rjags: Bayesian Graphical Models using MCMC. R package version 4-6,
URL http://CRAN.R-project.org/package=rjags.

Plummer M, Best N, Cowles K, Vines K (2006). “CODA: Convergence Diagnosis and Out-
put Analysis for MCMC.” R News, 6(1), 7–11. URL http://CRAN.R-project.org/doc/

Rnews/.

Polson NG, Scott JG (2011). “On the Half-Cauchy Prior for a Global Scale Parameter.”
Cornell University Library: arXiv.org. URL http://arxiv.org/abs/1104.4937.

http://www.jstor.org/stable/2246093
http://www.loc.gov/catdir/enhancements/fy0646/98033429-d.html
http://www.loc.gov/catdir/enhancements/fy0646/98033429-d.html
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://www.ncbi.nlm.nih.gov/pubmed/19425420
http://www.ncbi.nlm.nih.gov/pubmed/19425420
http://dx.doi.org/10.1023/A:1008929526011
http://dx.doi.org/10.1093/aje/kwq021
http://dx.doi.org/10.1093/aje/kwq021
https://doi.org/10.1.1.13.3406
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf
https://doi.org/10.1093/biostatistics/kxm049
http://CRAN.R-project.org/package=rjags
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://arxiv.org/abs/1104.4937


24 runjags: JAGS Interface Utilities and Additional Distributions

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Shaw DJ, Grenfell BT, Dobson AP (1998). “Patterns of Macroparasite Aggregation in Wildlife
Host Populations.” Parasitology, 117, 597–610. ISSN 0031-1820.

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002). “Bayesian Measures of Model
Complexity and Fit.” Journal of the Royal Statistical Society B, 64(4), 583–639. ISSN
13697412. URL http://www.jstor.org/stable/3088806.

Tierney L, Rossini AJ, Li N, Sevcikova H (2013). snow: Simple Network of Workstations.
R package version 0.3-13, URL http://cran.r-project.org/package=snow.

Toft N, Innocent GT, Gettinby G, Reid SWJ (2007). “Assessing the Convergence of Markov
Chain Monte Carlo Methods: an Example from Evaluation of Diagnostic Tests in Absence
of a Gold Standard.” Preventive Veterinary Medicine, 79(2-4), 244–256. ISSN 0167-5877.
URL http://dx.doi.org/10.1016/j.prevetmed.2007.01.003.

Van Hauwermeiren M, Vose D (2009). A Compendium of Distributions. Vose Software, Ghent,
Belgium. URL http://www.vosesoftware.com/content/ebook.pdf.

Wabersich D, Vandekerckhove J (2014). “Extending JAGS: a tutorial on adding custom
distributions to JAGS (with a diffusion model example).” Behavior research methods, 46(1),
15–28. ISSN 1554-3528. doi:10.3758/s13428-013-0369-3. URL http://www.ncbi.nlm.

nih.gov/pubmed/23959766.

Wilson K, Grenfell BT (1997). “Generalized Linear Modelling for Parasitologists.” Par-
asitology Today, 13(1), 33–38. ISSN 0169-4758. URL http://dx.doi.org/10.1016/

S0169-4758(96)40009-6.

Wilson K, Grenfell BT, Shaw DJ (1996). “Analysis of Aggregated Parasite Distributions: a
Comparison of Methods.” Functional Ecology, 10, 592–601.

Yin Z, Conti S, Desai S, Stafford M, Slater W, Gill ON, Simms I (2013). “The Geographic
Relationship Between Sexual Health Deprivation and the Index of Multiple Deprivation
2010: a Comparison of two Indices.” Sexual Health, 10(2), 102–11. ISSN 1448-5028. URL
http://dx.doi.org/10.1071/SH12057.

http://www.R-project.org/
http://www.jstor.org/stable/3088806
http://cran.r-project.org/package=snow
http://dx.doi.org/10.1016/j.prevetmed.2007.01.003
http://www.vosesoftware.com/content/ebook.pdf
https://doi.org/10.3758/s13428-013-0369-3
http://www.ncbi.nlm.nih.gov/pubmed/23959766
http://www.ncbi.nlm.nih.gov/pubmed/23959766
http://dx.doi.org/10.1016/S0169-4758(96)40009-6
http://dx.doi.org/10.1016/S0169-4758(96)40009-6
http://dx.doi.org/10.1071/SH12057


Matthew J. Denwood 25

A. Formulation of the negative binomial as a gamma-Poisson

The compound probability mass function of a Poisson distribution (with mean λ) integrated
over a gamma distribution (with shape and scale parameters α and β respectively) is given
in Equation 1.

f(x; α, β) =

∫

∞

0

λx

x!
e−λ . βα 1

Γ(α)
λα−1e−βλ dλ (1)

Substituting α = r and β = 1−p
p

into Equation 1 gives Equation 2, which can be re-written
and simplified to Equation 4.

f(x; r, p) =

∫

∞

0

λx

x!
e−λ .

(

1 − p

p

)r 1

Γ(r)
λr−1e

−

(

1−p

p

)

λ
dλ (2)

=
(1 − p)r

x! pr Γ(r)

∫

∞

0
λx+r−1e−λe

−
(1−p)λ

p dλ (3)

=
(1 − p)r

x! pr Γ(r)

∫

∞

0
λx+r−1e

−
λ
p dλ (4)

Substituting the gamma function Γ(b+1)
ab+1 =

∫

∞

0 tbe−atdt for a = 1
p
, b = x + r − 1 and t = λ

into Equation 4 gives Equation 5.

f(x; r, p) =
(1 − p)r

x! pr Γ(r)

Γ(x + r − 1 + 1)
(

1
p

)x+r−1+1 (5)

=
(1 − p)r

x! pr Γ(r)
Γ(x + r) px+r (6)

=
Γ(x + r)

x! Γ(r)
px(1 − p)r (7)

Equation 7 is the probability mass function of the negative binomial distribution defining the
number of successes x before r failures with success probability p, which is therefore exactly
equivalent to a gamma-Poisson compound distribution with mean α

β
= pr

1−p
and shape α = r.

Affiliation:

Matthew J. Denwood
Department of Large Animal Sciences
Section for Animal Welfare and Disease Control
Faculty of Health and Medical Sciences
University of Copenhagen
Denmark
E-mail: md@sund.ku.dk

URL: http://iph.ku.dk/english/employees/?pure=en/persons/487288/

mailto:md@sund.ku.dk
http://iph.ku.dk/english/employees/?pure=en/persons/487288/

	Introduction
	Package functions
	Preparation
	Basic usage
	Alternative usage
	Extending models
	Visualization methods
	GLMM templates
	JAGS module
	Method options
	Simulation studies

	Illustration of usage with a simulation study
	Model formulation and assessment
	Sensitivity to prior distributions
	Discussion

	Summary
	Formulation of the negative binomial as a gamma-Poisson

