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rotations: An R Package for SO(3) Data
by Bryan Stanfill, Heike Hofmann, Ulrike Genschel

Abstract In this article we introduce the rotations package which provides users with the ability to
simulate, analyze and visualize three-dimensional rotation data. More specifically it includes four
commonly used distributions from which to simulate data, four estimators of the central orientation,
six confidence region estimation procedures and two approaches to visualizing rotation data. All of
these features are available for two different parametrizations of rotations: three-by-three matrices and
quaternions. In addition, two datasets are included that illustrate the use of rotation data in practice.

Introduction

Data in the form of three-dimensional rotations have applications in many scientific areas, such as bio-
medical engineering, computer vision, and geological and materials sciences where such data represent
the positions of objects within a three-dimensional reference frame. For example, Humbert et al. (1996),
Bingham et al. (2009) and Bachmann et al. (2010) apply rotation data to study the orientation of cubic
crystals on the surfaces of metal. Rancourt et al. (2000) use rotations to represent variations in human
movement while performing a task.

A common goal shared in the analysis of rotation data across all fields is to estimate the main
or central orientation for a sample of rotations. More formally, let SO(3) denote the rotation group,
which consists of all real-valued 3 × 3 matrices R with determinant equal to +1. Then observations
R1, . . . , Rn ∈ SO(3) can be conceptualized as a random sample from a location model

Ri = SEi, i = 1, . . . , n, (1)

where S ∈ SO(3) is the fixed parameter of interest indicating the central orientation, and E1, . . . , En ∈
SO(3) denote i.i.d. random rotations which symmetrically perturb S. Model (1) is a rotation-matrix
analog of a location model for scalar data Yi = µ + ei, where µ ∈ R denotes a mean and ei ∈ R denotes
an additive error symmetrically distributed around zero.

Assuming the perturbations Ei symmetrically perturb S implies that the observations Ri have no
preferred direction relative to S and that E (Ri) = cS for some c ∈ R+ for all i. Also note that under
the symmetry assumption, (1) could be equivalently specified as Ri = EiS, though the form given in
(1) is the most common form in the literature (see Bingham et al. 2009 for details).

While there is a multitude of packages and functions available in R to estimate the mean in a
location model, the toolbox for rotational data is limited. The orientlib (Murdoch, 2003) package
includes the definition of an orientation class along with a few methods to summarize and visualize
rotation data. A strength of the orientlib package is its thorough exploration of rotation representations,
but the estimation and visualization techniques are lacking and no methods for inference are available.
The onion (Hankin, 2011) package includes functions for rotation algebra but only the quaternion form
is available and data analysis is not possible. The uarsbayes (Qiu, 2013) package includes functions
for data generation and Bayes inference but this package is currently not publicly available. Packages
for circular and spherical data, e.g. circular (Agostinelli and Lund, 2013) and SpherWave (Oh and
Kim, 2013), can possibly be used but their extension to rotation data is not straightforward.

The rotations (Stanfill et al., 2014a) package fills this void by providing users with the tools
necessary to simulate rotations from (1) with four distribution choices for the perturbation matrices
Ei. Estimation and inference for S in (1) is available along with two visualization techniques. The
remainder of this manuscript introduces rotation data more fully and discusses the ways they are
handled by the rotations package. For the latest on this package as well as a full list of available
functions, see help(package = "rotations").

Rotation parametrizations

Several parametrizations of rotations exist. We consider two of the most commonly used: orthogonal
3 × 3 matrices with determinant one and four-dimensional unit vectors called quaternions . The
rotations package allows for both parametrizations as input as well as transforming one into the other.
We will briefly discuss each:

http://CRAN.R-project.org/package=orientlib
http://CRAN.R-project.org/package=onion
http://CRAN.R-project.org/package=circular
http://CRAN.R-project.org/package=SpherWave
http://CRAN.R-project.org/package=rotations
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Matrix form

Rotations in three-dimensions can be represented by 3 × 3 orthogonal matrices with determinant one.
Matrices with these characteristics form a group called the special orthogonal group , or rotation group ,
denoted SO(3). Every element in SO(3) is associated with a skew-symmetric matrix Φ (W) where

Φ (W) =

 0 −w3 w2
w3 0 −w1
−w2 w1 0


and W ∈ R3. Applying the exponential operator to the matrix Φ (W) results in the rotation R

R = exp [Φ (W)] =
∞

∑
k=0

[Φ (W)]k

k!
. (2)

Since Φ (W) is skew-symmetric, it can be shown that (2) reduces to

R = cos(r)I3×3 + sin(r)Φ (U) + [1 − cos(r)]UU⊤, (3)

where r = ∥W∥, U = W/∥W∥. In the material sciences literature r and U ∈ R3 are termed the
misorientation angle and misorientation axis , respectively.

Given a rotation matrix R one can find the associated skew-symmetric matrix Φ (W) by applying
the logarithm operator defined by

Log (R) =

{
0 if θ = 0

r
2 sin r

(
R − R⊤

)
otherwise,

(4)

where r ∈ [−π, π) satisfies tr (R) = 1 + 2 cos r and tr(·) denotes the trace of a matrix. For more on the
correspondence between SO(3) and skew-symmetric matrices see Stanfill et al. (2013).

The rotations package defines the S3 class "SO3", which internally stores a sample of n rotations
as a n × 9 matrix. If n = 1 then an object of class "SO3" is printed as a 3 × 3 matrix but for n > 1 the
n × 9 matrix is printed. Objects can be coerced into, or tested for the class "SO3" with the as.SO3
and is.SO3 functions, respectively. Any object passed to is.SO3 is tested for three characteristics:
dimensionality, orthogonality and determinant one.

The as.SO3 function coerces the input into the class "SO3". There are three types of input
supported by the as.SO3 function. Given a singe angle r and axis U, as.SO3 will form a rotation
matrix according to (3). Equivalently one could supply a three-dimensional vector W , then the length
of that vector will be taken to be the angle of rotation r = ∥W∥ and the axis is taken to be the unit-
vector in the direction of W , i.e. U = W/∥W∥. One can also supply a rotation Q in the quaternion
representation. The as.SO3 function will return the matrix equivalent of Q. For all input types the
function as.SO3 returns an n × 9 matrix of class "SO3" where each row corresponds to a rotation
matrix. Below we illustrate the use of the as.SO3 function by constructing the 3 × 3 matrix associated
with a 90◦ rotation about the y-axis, i.e. r = π/2 and U = (0, 1, 0). In this example and all that follow,
we have rounded the output to three digits for compactness.

r <- pi/2
U <- c(0, 1 ,0)
W <- U*r
R <- as.SO3(W)
R

## [,1] [,2] [,3]
## [1,] 6.12e-17 0 1.00e+00
## [2,] 0.00e+00 1 0.00e+00
## [3,] -1.00e+00 0 6.12e-17

identical(R, as.SO3(U, r))

## [1] TRUE

Given a rotation matrix R, the functions mis.angle and mis.axis will determine the misorien-
tation angle and axis of an object with class "SO3" as illustrated in the next example.
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mis.angle(R)*2/pi

## [1] 1

mis.axis(R)

## [,1] [,2] [,3]
## [1,] 0 1 0

Quaternion form

Quaternions are unit vectors in R4 that are commonly written as

Q = x1 + x2i + x3 j + x4k, (5)

where xl ∈ [−1, 1] for l = 1, 2, 3, 4 and i2 = j2 = k2 = ijk = −1. We can write Q = (s, V) as tuple of
the scalar s for coefficient 1 and vector V for the remaining coefficients, i.e. s = x1 and V = (x2, x3, x4).

A rotation around axis U by angle r translates to Q = (s, V) with

s = cos (r/2), V = U sin (r/2).

Note that rotations in quaternion form are over-parametrized: Q and −Q represent equivalent
rotations. This ambiguity has no impact on the distributional models, parameter estimation or
inference methods to follow. Hence, for consistency, the rotations package only generates quaternions
satisfying x1 ≥ 0. Data provided by the user does not need to satisfy this condition however.

The S3 class "Q4" is defined for the quaternion representation of rotations. All the functionality
of the "SO3" class also exists for the "Q4" class, e.g. is.Q4 and as.Q4 will test for and coerce to
class "Q4", respectively. Internally, a sample of n quaternions is stored in the form of a n × 4 matrix
with each row a unit vector. Single quaternions are printed according to the representation in (5) (see
example below) while a sample of size n is printed as a n × 4 matrix with column names Real, i, j
and k to distinguish between the four components.

The following code creates the same rotation from the previous section in the form of a quaternion
with the as.Q4 function. This function works much the same way as the as.SO3 function in terms of
possible inputs but returns a vector of length four of the class "Q4".

as.Q4(U, r)

## 0.707 + 0 * i + 0.707 * j + 0 * k

as.Q4(as.SO3(U, r))

## 0.707 + 0 * i + 0.707 * j + 0 * k

Data generation

If the rotation Ei ∈ SO(3) from (1) has an axis U that is uniformly distributed on the unit sphere and
an angle r that is independently distributed about zero according to some symmetric distribution
function then Ei is said to belong to the uniform-axis random spin , or UARS , class of distributions.
From Bingham et al. (2009) the density for Ei is given by

f (Ei|κ) =
4π

3 − tr (Ei)
C
(

acos
{

tr(Ei)− 1
2

}∣∣∣∣ κ

)
, (6)

where C(·|κ) is the distribution function associated with the angle of rotation r with concentration
parameter κ. Members of the UARS family of distributions are differentiated based on the angular
distribution C(·|κ).

The rotations package gives the user access to four members of the UARS class. Each member is
differentiated by the distribution function for r: the uniform, the matrix Fisher (Langevin, 1905; Downs,
1972; Khatri and Mardia, 1977; Jupp and Mardia, 1979), the Cayley (Schaeben, 1997; León et al., 2006)
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and the circular-von Mises distribution (Bingham et al., 2009). Note: probability distribution functions
on SO(3) such as (6) are defined with respect to the Haar measure, which we denote by λ. That is,
the expectation of a random rotation R ∈ SO(3) with corresponding misorientation angle r is given
by E (R) =

∫
Ω R f (R|κ)dλ where Ω = SO(3), dλ = [1 − cos(r)]dr/(2π) and dr is the derivative of

r with respect to the Lebesgue measure. Because the Haar measure acts as the uniform measure on
SO(3) and λ (Ω) = 1, then the angular distribution C(r) = [1 − cos(r)]/(2π) is referred to as the
uniform distribution for misorientation angles r and has been included in the rotations package under
the name .haar (see Table 1).

The spread of the Cayley, matrix Fisher and circular-von Mises distributions is controlled by the
concentration parameter κ. Concentration is a distribution specific quantity and is not comparable
across different distributions. To make comparisons across distributions possible we also allow for
specification of the circular variance, which is defined as ν = 1 − E[cos(r)] where E[cos(r)] is often
referred to as the mean resultant length (Fisher, 1996). The form of each angular distribution along
with the circular variance as a function of the concentration parameter is given in Table 1.

Name Density C(r|κ) Circular variance ν Function

Uniform 1−cos(r)
2π

3
2 .haar

Cayley Γ(κ+2)(1+cos r)κ(1−cos r)
2(κ+1)

√
πΓ(κ+1/2)

3
κ+2 .cayley

matrix Fisher [1−cos(r)] exp[2κ cos(r)]
2π[I0(2κ)−I1(2κ)]

3I0(2κ)−4I1(2κ)+I2(2κ)
2[I0(2κ)−I1(2κ)]

.fisher

circular-von Mises exp[κ cos(r)]
2πI0(κ)

I0(κ)−I1(κ)
I0(κ)

.vmises

Table 1: Circular densities and circular variance ν; Ii(·) represents the modified Bessel function of
order i and Γ(·) is the gamma function.

For a given concentration d, p and r take the same meaning as for the more familiar distributions
such as dnorm. To simulate a sample of SO(3) data, the ruars function takes arguments n, rangle,
and kappa to specify the sample size, angular distribution and concentration as shown below. Alter-
natively, one can specify the circular variance ν. Circular variance is used in the event that both circular
variance and concentration are provided. The space argument determines the parametrization to
form. When a sample of rotations is printed then a n × 9 matrix is printed with column titles that
specify which element of the matrix each column corresponds to. For example, the R{1,1} element of a
rotation matrix is printed under the column heading R11 as illustrated below.

Rs <- ruars(n = 20, rangle = rcayley, kappa = 1, space = 'SO3')
Qs <- ruars(n = 20, rangle = rcayley, kappa = 1, space = 'Q4')
Rs <- ruars(n = 20, rangle = rcayley, nu = 1, space = 'SO3')
Qs <- ruars(n = 20, rangle = rcayley, nu = 1, space = 'Q4')
head(Rs,3)

## R11 R21 R31 R12 R22 R32 R13 R23 R33
## [1,] -0.167 -0.717 -0.676 0.235 0.63714 -0.7339 0.957 -0.282 0.0625
## [2,] 0.328 -0.408 0.852 0.934 0.00335 -0.3578 0.143 0.913 0.3819
## [3,] 0.782 -0.183 -0.596 0.219 0.97561 -0.0118 0.583 -0.121 0.8030

Data analysis

In this section we present functions in the rotations package to compute point estimates and confidence
regions for the central orientation S.

Estimation of central orientation

Given a sample of n observations R1, . . . , Rn generated according to (1), the rotations package offers
four built-in ways to estimate the central orientation S. These estimators are either Riemannian- or
Euclidean-based in geometry and use either the L1- or L2- norm, i.e. they are median- or mean-type.
We briefly discuss how the choice of geometry affects estimation of S.
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The choice of geometry results in two different metrics to measure the distance between rotation
matrices R1 and R2 ∈ SO(3). The Euclidean distance, dE, between two rotations is defined by

dE (R1, R2) = ∥R1 − R2∥F ,

where ∥A∥F =
√

tr(A⊤A) denotes the Frobenius norm. The Euclidean distance between two rotation

matrices corresponds to the length of the shortest path in R3×3 that connects them and is therefore an
extrinsic distance metric.

Estimators based on the Euclidean distance form the class of projected estimators. The name is
derived from the method used to compute these estimators. That is, each estimator in this class is the
projection of the the generic 3 × 3 matrix that minimizes the loss function into SO(3). For an object
with class "SO3" the median or mean function with argument type = "projected" will return a
3 × 3 matrix in SO(3) that minimizes the first- or second-order loss function, respectively.

By staying in the Riemannian space SO(3) the natural distance metric becomes the Riemannian
(or geodesic) distance, dR, which for two rotations R1, R2 ∈ SO(3) is defined as

dR (R1, R2) =
1√
2

∥∥∥Log
(

R⊤
1 R2

)∥∥∥
F
= |r|,

where Log(R) denotes the logarithm of R defined in (4) and r ∈ [−π, π) is the misorientation angle of
R⊤

1 R2. The Riemannian distance corresponds to the length of the shortest path that connects R1 and
R2 within the space SO(3) and is therefore an intrinsic distance metric. For this reason, the Riemannian
distance is often considered the more natural metric on SO(3). As demonstrated in Stanfill et al. (2013),
the Euclidean and Riemannian distances are related by dE(R1, R2) = 2

√
2 sin [dR(R1, R2)/2].

Estimators based on the Riemannian distance metric are called geometric estimators because they
preserve the geometry of SO(3). These can be computed using the mean and median functions with
the argument type = "geometric". Table 2 summarizes the four estimators including their formal
definition and how they can be computed.

The estimators in Table 2 find estimates based on minimization of L1- and L2-norms in the chosen
geometry. The function gradient.search provides the option to optimize for any other arbitrary
minimization criterion. As the name suggests, the minimization is done along the gradient of the
minimization function in the rotation space. Starting from an initial, user-specified rotation, the
algorithm finds a (local) minimum by stepping iteratively in the direction of the steepest descent. Step
size is regulated internally by adjusting for curvature of the minimization function.

We highlight this process in the example below. The function L1.error is defined to minimize
the intrinsic L1-norm, the result from the optimization should therefore agree with the geometric
median of the sample. In fact, the difference between the two results is at the same level as the minimal
difference (minerr) used for convergence of the gradient search. What is gained in flexibility of the
optimization is, of course, paid for in terms of speed: the built-in median function is faster by far than
the gradient search.

Also illustrated in the example below is the rot.dist function, which computes the distance
between two objects of class "SO3", e.g. R1 and R2. The argument method specifies which type of dis-
tance to compute: the "extrinsic" option will return the Euclidean distance and the "intrinsic"
option will return the Riemannian distance. If R1 is an n × 9 matrix representing a sample of rotations,
then rot.dist will return a vector of length n where the ith element represents the specified distance
between R2 and the ith row of R1.

# error function definition
L1.error <- function(sample, Shat) {

sum(rot.dist(sample, Shat, method = "intrinsic", p = 1))
}
cayley.sample <- ruars(n = 50, rangle = rcayley, nu = 1, space = "SO3")
# gradient based optimization
system.time(SL1 <- gradient.search(cayley.sample, L1.error))

## user system elapsed
## 2.481 0.006 2.487

# in-built function
system.time(S <- median(cayley.sample, type = "geometric"))

## user system elapsed
## 0.002 0.000 0.003
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rot.dist(S, SL1$Shat)

## [1] 1.24e-05

Estimator name Definition Code

Projected Mean ŜE = argmin
S∈SO(3)

n
∑

i=1
d2

E(S, Ri) mean(Rs,type = "projected")

Projected Median S̃E = argmin
S∈SO(3)

n
∑

i=1
dE(S, Ri) median(Rs,type = "projected")

Geometric Mean ŜR = argmin
S∈SO(3)

n
∑

i=1
d2

R(S, Ri) mean(Rs,type = "geometric")

Geometric Median S̃R = argmin
S∈SO(3)

n
∑

i=1
dR(S, Ri) median(Rs,type = "geometric")

Table 2: A summary of the estimators included in the rotations package. Rs is a sample of n rotations
with class "SO3" or "Q4".

Confidence regions

Asymptotic results for the distribution of the projected mean ŜE and median S̃E can be used to construct
confidence regions for the central orientation S. In the literature two approaches are available to justify
the limiting distribution of the vector in R3 associated with the centered estimator through (2). More
specifically, the vector

√
nĥ has been shown to have a trivariate normal distribution where ĥ ∈ R3

satisfies
exp

[
Φ

(
ĥ
)]

= S⊤ŜE.

The first approach transforms a result from directional statistics while the second uses M-estimation
theory in SO(3) directly. A summary of these methods is given next.

In the context of directional statistics, Prentice (1984) used results found in Tyler (1981) and the fact
that ŜE is a function of the spectral decomposition of R = ∑n

i=1 Ri/n in order to justify a multivariate
normal limiting distribution for the scaled vector

√
n ĥ. Unsatisfied with the coverage rate achieved

by Prentice (1986), Fisher et al. (1996) proposed a pivotal bootstrap procedure that results in coverage
rates closer to the nominal level for small samples. A transformation from unit vectors in Rd to
rotation matrices is required in order to apply the results of Prentice (1984) and Fisher et al. (1996) to
SO(3), therefore they are called transformation-based . The projected median S̃E cannot be expressed
as a function of the sample spectral decomposition, therefore this approach cannot be used to create
confidence regions based on S̃E.

It has also been shown that both estimators ŜE and S̃E are M-estimators, which motivates a direct
approach to confidence region estimation in SO(3) (Chang and Rivest, 2001). In Stanfill et al. (2014b),
a pivotal bootstrap method based on the direct approach was implemented to improve coverage rates
in small samples. Because the results in Chang and Rivest (2001) and Stanfill et al. (2014b) deal with
SO(3) data directly, this approach is called direct .

The six possible confidence regions that result from these two methods are available through
the wrapper function region. They are differentiated based on the method, type and estimator
arguments. Set estimator = "mean" or estimator = "median" to estimate a region based on
ŜE or S̃E, respectively. For ŜE one can choose method = "transformation" for the transformation-
based methods or method = "direct" for the direct method. Since the transformation-based
methods cannot be applied to S̃E an error is returned if estimator = "median" and method =
"transformation" are combined. A bootstrap version of the specified method is implemented if
type = "bootstrap" or the normal limiting distribution can be chosen with
type = "asymptotic". If a bootstrap type region is specified one can additionally specify the
bootstrap sample size with the m argument, which is set to 300 by default. Regardless of the method
and type chosen a single value is returned on the interval (0, π]. This value corresponds to the radius
of the confidence region centered at each of the axes of the specified estimator.
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In the example code below a sample of n = 50 rotations are drawn from the Cayley-UARS(I3×3, κ =
10) distribution then the four types of confidence regions based on the direct approach are constructed.
For a graphical representation of this dataset along with an interpretation of the confidence regions
see Figure 1.

Rs <- ruars(50, rcayley, kappa = 10)
region(
x = Rs,
method = "direct",
type = "asymptotic",
estimator = "mean",
alp = 0.05

)

## [1] 0.174

region(
x = Rs,
method = "direct",
type = "bootstrap",
estimator = "mean",
alp = 0.05,
m = 300

)

## [1] 0.183

region(
x = Rs,
method = "direct",
type = "asymptotic",
estimator = "median",
alp = 0.05

)

## [1] 0.184

region(
x = Rs,
method = "direct",
type = "bootstrap",
estimator = "median",
alp = 0.05,
m = 300

)

## [1] 0.215

Visualizations

The rotations package offers two methods to visualize rotation data in three-dimensions. Because
rotation matrices are orthogonal, each column of a rotation matrix has length one and is perpendicular
to the other axes. Therefore each column of a rotation matrix can be illustrated as a point on the surface
of a unit sphere, which represents the position of the x-, y- or z-axis for that rotation matrix. Since
each sphere represents one of the three axes, three spheres are required to fully visualize a sample of
rotations. Though the use of separate spheres to represent each axis can be seen as a disadvantage,
the proposed visualization method makes the idea of a central orientation and a confidence region
interpretable.

An existing function that can be used to illustrate rotation data is the boat3d function included in
the orientlib package. Given a sample of rotations, the boat3d function produces either a static or
interactive three-dimensional boat to represent the provided data. If only one rotation is of interest,
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the boat3d function is superior to the proposed method because it conveniently illustrates rotational
data in a single image. If multiple rotations are provided, however, the boat3d function will produce
separate side-by-side boats, which can be hard to interpret. In addition, the illustration of a estimated
central orientation or a confidence region in SO(3) with the boat3d function is not presently possible.

The rotations package can be used to produce high-quality static plots within the framework
of the ggplot2 package (Wickham, 2009). Static plots are specifically designed for datasets that are
highly concentrated and for use in presentations or publications. Alternatively, the rotations package
can produce interactive plots using functions included in the sphereplot package (Robotham, 2013).
Interactive plots are designed so that the user can explore a dataset and visualize a diffuse sample.

Calling the plot function with a "SO3" or "Q4" object will result in an interactive or static sphere,
differentiated by setting the argument interactive to TRUE or FALSE, respectively. The center
argument defines the center of the plot and is usually set to the identity rotation id.SO3 or an estimate
of the central orientation, e.g. mean(Rs). The user can specify which columns to visualize with the
col argument with options 1, 2 and 3 representing the x-, y- and z- axes, respectively. For static plots,
multiple axes can be displayed simultaneously by supplying a vector to col; only one column will
be displayed at a time for interactive plots. Also available to static plots is the argument to_range,
which when set to TRUE will display the portion of the sphere where the observations are present.

All four estimates of the central orientation can be plotted along with a sample of rotations.
Setting the argument estimates_show = "all" will display all four simultaneously. If only a few
estimates are of interest then any combination of "proj.mean", "proj.median", "geom.mean"
or "geom.median" are valid inputs. The estimators are indicated by color and a legend is provided,
see Figure 1. Finally, the mean_regions and median_regions options allow the user to draw a
circle on the surface of the sphere representing the confidence region for that axis, centered at ŜE and
S̃E respectively. If estimators are plotted along with the different regions in static plots then shapes
represent the estimators and colors represent the region methods, see Figure 1, while regions and
estimators are always distinguished by colors for the interactive plots. Given the sample of rotations
generated in a previous example, the example below illustrates how to produce static plots using the
plot function for objects of class "SO3" and Figure 1 illustrates the results of these commands.

plot(
x = Rs,
center = mean(Rs),
show_estimates = "all"

)
plot(
x = Rs,
center = mean(Rs),
show_estimates = "proj.mean",
mean_regions = "all",
alp = .05

)

Figure 1: The x-axis of a random sample from the Cayley-UARS distribution with κ = 1 and n = 50.
All four point estimates are displayed on the left and all three region methods along with the projected
mean are on the right.

http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=sphereplot
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Datasets

Datasets drill and nickel are included in the rotations package to illustrate how the two represen-
tations of orientation data discussed here are used in practice. The drill dataset was collected to
assess variation in human movement while performing a task (Rancourt, 1995). Eight subjects drilled
into a metal plate while being monitored by infrared cameras. Quaternions are used to represent
the orientation of each subjects’ wrist, elbow and shoulder in one of six positions. For some subjects
several replicates are available. See Rancourt et al. (2000) for one approach to analyzing these data.
In the example below we load the drill dataset, coerce the observations for subject one’s wrist into
a form usable by the rotations package via as.Q4, then estimate the central orientation with the
projected mean.

data(drill)
head(drill)

## Subject Joint Position Replicate Q1 Q2 Q3 Q4
## 1 1 Wrist 1 1 0.944 -0.192 -0.1558 0.217
## 2 1 Wrist 1 2 0.974 -0.120 -0.1111 0.158
## 3 1 Wrist 1 3 0.965 -0.133 -0.1406 0.177
## 4 1 Wrist 1 4 0.956 -0.134 -0.1152 0.233
## 5 1 Wrist 1 5 0.953 -0.199 -0.0611 0.222
## 6 1 Wrist 2 1 0.963 -0.159 -0.1270 0.177

Subj1Wrist<-subset(drill, Subject == '1' & Joint == 'Wrist')
Subj1Wdata <- as.Q4(Subj1Wrist[,5:8])
mean(Subj1Wdata)

## 0.987 - 0.07 * i - 0.134 * j + 0.049 * k

In the nickel dataset, rotation matrices are used to represent the orientation of cubic crystals on
the surface of a nickel sample measured with Electron Backscatter Diffraction. Each location on
the surface of the nickel is identified by the xpos and ypos columns while the rep column identifies
which of the fourteen replicate scans that measurement corresponds to. The last nine columns, denoted
v1-v9, represent the elements of the rotation matrix at that location in vector form. See Bingham et al.
(2009, 2010) and Stanfill et al. (2013) for more details. In the example below we estimate the central
orientation at location one.

data(nickel)
head(nickel[,1:6])

## xpos ypos location rep V1 V2
## 1 0 0.346 1 1 -0.648 0.686
## 2 0 0.346 1 2 -0.645 0.688
## 3 0 0.346 1 3 -0.645 0.688
## 4 0 0.346 1 4 -0.646 0.688
## 5 0 0.346 1 5 -0.646 0.686
## 6 0 0.346 1 6 -0.644 0.690

Location1<-subset(nickel, location==1)
Loc1data<-as.SO3(Location1[,5:13])
mean(Loc1data)

## [,1] [,2] [,3]
## [1,] -0.645 -0.286 -0.708
## [2,] 0.687 -0.623 -0.374
## [3,] -0.334 -0.728 0.599

Summary

In this manuscript we introduced the rotations package and demonstrated how it can be used
to generate, analyze and visualize rotation data. The rotations package is compatible with the
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quaternion specific onion package by applying its as.quaternion function to a transposed "Q4"
object. Connecting to the onion package gives the user access to a wide range of algebraic functions
unique to quaternions. Also compatible with the rotations package is the orientlib package, which
includes additional parametrizations of rotations. To translate rotation matrices generated by the
rotations package into a form usable by the orientlib package, first coerce a "SO3" object into a matrix
of the same dimension, i.e. n × 9, then apply the rotvector function provided by the orientlib
package. Quaternions are defined in the orientlib package by Q = x1i + x2 j + x3k + x4, cf. (5), which
may lead to confusion when translating quaternions between the orientlib package and either of the
onion or rotations packages. Below is a demonstration of how quaternions and rotation matrices
generated by the rotations package can be translated into a form usable by the onion and orientlib
packages, respectively. See help(package = "onion") and help(package = "orientlib")
for more on these packages.

Qs <- ruars(20, rcayley, space = 'Q4')
Rs <- as.SO3(Qs)
suppressMessages(require(onion))
onionQs <- as.quaternion(matrix(Qs,nrow=4, byrow = TRUE))
suppressMessages(require(orientlib))
orientRs <- rotvector(matrix(Rs, ncol = 9))

Computational speed of the rotations package has been enhanced through use of the Rcpp and
RcppArmadillo packages (Eddelbuettel, 2013; Eddelbuettel and Sanderson, 2014). In future versions of
the package we plan to extend the parametrization and estimator sections to include robust estimators
currently being developed by the authors.

Acknowledgements

We would like to thank the reviewers for their comments and suggestions. The rotations package and
this article have benefited greatly from their time and effort.

Bibliography

C. Agostinelli and U. Lund. circular: Circular Statistics, 2013. URL http://CRAN.R-project.org/
package=circular. R package version 0.4-7. [p1]

F. Bachmann, R. Hielscher, P. Jupp, W. Pantleon, H. Schaeben, and E. Wegert. Inferential statistics of
electron backscatter diffraction data from within individual crystalline grains. Journal of Applied
Crystallography, 43(6):1338–1355, 2010. [p1]

M. A. Bingham, D. J. Nordman, and S. B. Vardeman. Modeling and inference for measured crystal
orientations and a tractable class of symmetric distributions for rotations in three dimensions.
Journal of the American Statistical Association, 104(488):1385–1397, 2009. [p1, 3, 4, 9]

M. A. Bingham, B. K. Lograsso, and F. C. Laabs. A statistical analysis of the variation in measured
crystal orientations obtained through electron backscatter diffraction. Ultramicroscopy, 110(10):
1312–1319, 2010. [p9]

T. Chang and L.-P. Rivest. M-estimation for location and regression parameters in group models: A
case study using Stiefel manifolds. Annals of statistics, 29(3):784–814, 2001. [p6]

T. Downs. Orientation statistics. Biometrika, 59(3):665–676, 1972. [p3]

D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer-Verlag, New York, 2013. ISBN
978-1-4614-6867-7. [p10]

D. Eddelbuettel and C. Sanderson. Rcpparmadillo: Accelerating R with high-performance C++
linear algebra. Computational Statistics and Data Analysis, 71:1054–1063, Mar. 2014. URL http:
//dx.doi.org/10.1016/j.csda.2013.02.005. [p10]

N. I. Fisher. Statistical Analysis of Circular Data. Cambridge University Press, 1996. ISBN 0521568900.
[p4]

N. I. Fisher, P. Hall, B.-Y. Jing, and A. T. Wood. Improved pivotal methods for constructing confidence
regions with directional data. Journal of the American Statistical Association, 91(435):1062–1070, 1996.
[p6]

http://CRAN.R-project.org/package=Rcpp
http://CRAN.R-project.org/package=RcppArmadillo
http://CRAN.R-project.org/package=circular
http://CRAN.R-project.org/package=circular
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005


11

R. K. S. Hankin. onion: octonions and quaternions, 2011. URL http://CRAN.R-project.org/
package=onion. R package version 1.2-4. [p1]

M. Humbert, N. Gey, J. Muller, and C. Esling. Determination of a mean orientation from a cloud
of orientations. Application to electron back-scattering pattern measurements. Journal of Applied
Crystallography, 29(6):662–666, 1996. [p1]

P. Jupp and K. Mardia. Maximum likelihood estimators for the matrix von Mises-Fisher and Bingham
distributions. The Annals of Statistics, 7(3):599–606, 1979. [p3]

C. Khatri and K. Mardia. The von Mises-Fisher matrix distribution in orientation statistics. Journal of
the Royal Statistical Society. Series B (Methodological), 39(1):95–106, 1977. [p3]

P. Langevin. Magnetism and the theory of the electron. Annales de Chimie et de Physique, 5:70, 1905. [p3]

C. León, J. Massé, and L. Rivest. A statistical model for random rotations. Journal of Multivariate
Analysis, 97(2):412–430, 2006. [p3]

D. Murdoch. orientlib: An R package for orientation data. Journal of Statistical Software, 8(19):1–11,
2003. [p1]

H. Oh and D. Kim. SpherWave: Spherical Wavelets and SW-based Spatially Adaptive Methods, 2013. URL
http://CRAN.R-project.org/package=SpherWave. R package version 1.2.2. [p1]

M. Prentice. A distribution-free method of interval estimation for unsigned directional data. Biometrika,
71(1):147–154, 1984. [p6]

M. Prentice. Orientation statistics without parametric assumptions. Journal of the Royal Statistical
Society. Series B (Methodological), 48(2):214–222, 1986. [p6]

Y. Qiu. Isotropic Distributions for 3-Dimensional Rotations and One-sample Bayes Inference. PhD thesis,
Iowa State University, 2013. [p1]

D. Rancourt. Arm Posture and Hand Mechanical Impedance in the Control of a Hand-held Power Drill.
Dissertation, MIT, 1995. [p9]

D. Rancourt, L.-P. Rivest, and J. Asselin. Using orientation statistics to investigate variations in human
kinematics. Journal of the Royal Statistical Society. Series C (Applied Statistics), 49(1):81–94, 2000. [p1, 9]

A. Robotham. sphereplot: Spherical Plotting, 2013. URL http://CRAN.R-project.org/package=
sphereplot. R package version 1.5. [p8]

H. Schaeben. A simple standard orientation density function: The hyperspherical de la Vallée Poussin
kernel. Physica Status Solidi (B), 200(2):367–376, 1997. [p3]

B. Stanfill, U. Genschel, and H. Hofmann. Point estimation of the central orientation of random
rotations. Technometrics, 55(4):524–535, 2013. [p2, 5, 9]

B. Stanfill, H. Hofmann, and U. Genschel. rotations: Tools for Working with Rotation Data, 2014a. URL
http://CRAN.R-project.org/package=rotations. R package version 1.2. [p1]

B. Stanfill, D. Nordman, H. Hofmann, U. Genschel, and J. Zhang. Nonparametric confidence regions
for the central orientation of random rotations. Unpublished manuscript, 2014b. [p6]

D. E. Tyler. Asymptotic inference for eigenvectors. The Annals of Statistics, 9(4):725–736, 1981. [p6]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, 2009. ISBN
978-0-387-98140-6. URL http://had.co.nz/ggplot2/book. [p8]

Bryan Stanfill
Department of Statistics
Iowa State University
Ames, IA 50011
stanfill@iastate.edu

Heike Hofmann
Department of Statistics
Iowa State University

http://CRAN.R-project.org/package=onion
http://CRAN.R-project.org/package=onion
http://CRAN.R-project.org/package=SpherWave
http://CRAN.R-project.org/package=sphereplot
http://CRAN.R-project.org/package=sphereplot
http://CRAN.R-project.org/package=rotations
http://had.co.nz/ggplot2/book
mailto:stanfill@iastate.edu


12

Ames, IA 50011
hofmann@mail.iastate.edu

Ulrike Genschel
Department of Statistics
Iowa State University
Ames, IA 50011
ulrike@mail.iastate.edu

mailto:hofmann@mail.iastate.edu
mailto:ulrike@mail.iastate.edu

	rotations: An R Package for SO(3) Data
	Introduction
	Rotation parametrizations
	Matrix form
	Quaternion form

	Data generation
	Data analysis
	Estimation of central orientation
	Confidence regions

	Visualizations
	Datasets
	Summary
	Acknowledgements


