Package 'riskdiff'

June 30, 2025

Title Risk Difference Estimation with Multiple Link Functions and Inverse Probability of Treatment Weighting

Version 0.2.1 **Date** 2025-06-25

Description Calculates risk differences (or prevalence differences for cross-sectional data) using generalized linear models with automatic link function selection. Provides robust model fitting with fallback methods, support for stratification and adjustment variables, inverse probability of treatment weighting (IPTW) for causal inference, and publication-ready output formatting. Handles model convergence issues gracefully and provides confidence intervals using multiple approaches. Methods are based on approaches described in Mark W. Donoghoe and Ian C. Marschner (2018) ``logbin: An R Package for Relative Risk Regression Using the Log-Binomial Model" <doi:10.18637/jss.v086.i09> for robust GLM fitting, Peter C. Austin (2011) ``An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies" <doi:10.1080/00273171.2011.568786> for IPTW methods, and standard epidemiological methods for risk difference estimation as described in Kenneth J. Rothman, Sander Greenland and Timothy L. Lash (2008, ISBN:9780781755641) ``Modern Epidemiology".

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

Imports dplyr (>= 1.0.0), purrr, tibble, rlang, scales, stringr, stats, ggplot2

Suggests kableExtra, testthat (>= 3.0.0), knitr, rmarkdown, covr

Config/testthat/edition 3

URL https://github.com/jackmurphy2351/riskdiff

BugReports https://github.com/jackmurphy2351/riskdiff/issues

LazyData true

2 cachar_sample

VignetteBuilder knitr

NeedsCompilation no

Author John D. Murphy [aut, cre] (ORCID:

<https://orcid.org/0000-0002-7714-9976>, MPH, PhD)

Maintainer John D. Murphy <jackmurphy2351@gmail.com>

Repository CRAN

Date/Publication 2025-06-30 08:50:02 UTC

Contents

	cachar_sample	2
	calc_iptw_weights	5
	calc_risk_diff	
	calc_risk_diff_iptw	10
	check_iptw_assumptions	13
	create_balance_plots	14
	create_forest_plot	
	create_rd_table	
	create_simple_table	17
	create_summary_table	18
	format_risk_diff	18
	get_quality_legend	19
	get_valid_boundary_types	20
	print.iptw_result	20
	print.riskdiff_iptw_result	21
	print.riskdiff_result	
	summary.riskdiff_iptw_result	22
Index		23

Description

cachar_sample

A synthetic dataset inspired by cancer screening and risk factor patterns observed during an opportunistic screening program conducted at the Cachar Cancer Hospital and Research Centre in Northeast India, specifically designed to reflect authentic epidemiological relationships without using real patient data.

Synthetic Cancer Risk Factor Study Data

Usage

cachar_sample

cachar_sample 3

Format

```
id Participant identifier (1 to 2500)
age Age in years (continuous, range 18-84)
sex Biological sex: "male" or "female"
residence Residence type: "rural", "urban", or "urban slum"
smoking Current smoking status: "No" or "Yes"
tobacco_chewing Current tobacco chewing: "No" or "Yes"
areca_nut Current areca nut use: "No" or "Yes"
alcohol Current alcohol use: "No" or "Yes"
abnormal_screen Binary outcome: 1 = abnormal screening (precancerous lesions or cancer), 0 = normal
head_neck_abnormal Binary outcome: 1 = head/neck abnormality detected, 0 = normal
age_group Age categories: "Under 40", "40-60", "Over 60"
tobacco_areca_both Combined exposure: "Yes" if both tobacco_chewing and areca_nut are "Yes", "No" otherwise
```

Details

This synthetic dataset was designed to reflect authentic epidemiological patterns observed in Northeast India, particularly the distinctive tobacco and areca nut use patterns of the region. All data points are mathematically generated rather than collected from real individuals.

Key epidemiological features modeled:

A data frame with 2,500 rows and 12 variables:

- Areca nut use: Very high prevalence (~69%) reflecting regional cultural practices
- Tobacco chewing: Moderate to high prevalence (~53%), often used with areca nut
- Smoking: Lower prevalence (~13%) with strong male predominance
- Cancer outcomes: Realistic prevalence (~3.5%) for population-based screening, including both precancerous lesions and invasive cancers
- **Geographic patterns**: Predominantly rural population (~87%)

Synthetic Data Advantages: The synthetic approach preserves authentic statistical relationships while:

- · Avoiding any privacy or ethical concerns
- Ensuring reproducible examples and tests
- Providing controlled demonstration scenarios
- · Maintaining cultural authenticity for educational purposes

Risk Factor Relationships: The data models realistic dose-response relationships between multiple tobacco exposures and cancer outcomes, with particularly strong associations for areca nut use and head/neck abnormalities, reflecting authentic epidemiological patterns from this region.

4 cachar_sample

Note

This synthetic dataset is designed for educational and software demonstration purposes. While the statistical relationships reflect authentic epidemiological patterns, the data should not be used for research conclusions about real populations. The cultural patterns represented (high areca nut use, specific tobacco consumption practices) are authentic to Northeast India.

Source

Synthetic dataset created for the riskdiff package. Inspired by cancer screening patterns observed in Northeast India but contains no real patient data. Statistical relationships designed to reflect authentic epidemiological patterns from this region for educational and methodological purposes.

References

Epidemiological patterns modeled after studies of tobacco use and cancer risk in Northeast India. For research involving actual populations from this region, consult published literature on areca nut and tobacco-related cancer risks in South Asian populations.

Warnakulasuriya S, Trivedy C, Peters TJ (2002). "Areca nut use: an independent risk factor for oral cancer." BMJ, 324(7341), 799-800.

Gupta PC, Ray CS (2004). "Epidemiology of betel quid use." Annals of the Academy of Medicine, Singapore, 33(4 Suppl), 31-36.

```
data(cachar_sample)
head(cachar_sample)
# Basic descriptive statistics
table(cachar_sample$areca_nut, cachar_sample$abnormal_screen)
# Regional tobacco use patterns
with(cachar_sample, table(areca_nut, tobacco_chewing))
# Simple risk difference for areca nut and abnormal screening
rd_areca <- calc_risk_diff(</pre>
 data = cachar_sample,
 outcome = "abnormal_screen",
 exposure = "areca_nut"
print(rd_areca)
# Age-adjusted analysis
rd_adjusted <- calc_risk_diff(
 data = cachar_sample,
 outcome = "abnormal_screen",
 exposure = "areca_nut",
 adjust_vars = "age"
print(rd_adjusted)
```

calc_iptw_weights 5

```
# Stratified by sex
rd_stratified <- calc_risk_diff(</pre>
 data = cachar_sample,
 outcome = "head_neck_abnormal",
 exposure = "smoking",
 strata = "sex"
)
print(rd_stratified)
# Multiple tobacco exposures comparison
rd_smoking <- calc_risk_diff(cachar_sample, "abnormal_screen", "smoking")</pre>
rd_chewing <- calc_risk_diff(cachar_sample, "abnormal_screen", "tobacco_chewing")</pre>
rd_areca <- calc_risk_diff(cachar_sample, "abnormal_screen", "areca_nut")</pre>
# Compare risk differences
cat("Risk differences for abnormal screening:\n")
cat("Smoking:", sprintf("%.1f%%", rd_smoking$rd * 100), "\n")
cat("Tobacco chewing:", sprintf("%.1f%", rd_chewing$rd * 100), "\n")
cat("Areca nut:", sprintf("%.1f%%", rd_areca$rd * 100), "\n")
# Create summary table
cat(create_simple_table(rd_areca, "Abnormal Screening Risk by Areca Nut Use"))
```

calc_iptw_weights

Calculate Propensity Scores and IPTW Weights

Description

Calculates propensity scores and inverse probability of treatment weights for use in standardized risk difference estimation. Implements multiple approaches for weight calculation and includes diagnostic tools.

Usage

```
calc_iptw_weights(
  data,
  treatment,
  covariates,
  method = "logistic",
  weight_type = "ATE",
  stabilize = TRUE,
  trim_weights = TRUE,
  trim_quantiles = c(0.01, 0.99),
  verbose = FALSE
)
```

6 calc_iptw_weights

Arguments

data A data frame containing treatment and covariate data treatment Character string naming the binary treatment variable

covariates Character vector of covariate names for propensity score model

method Method for propensity score estimation: "logistic" (default), "probit", or "cloglog" weight_type

Type of weights to calculate: "ATE" (average treatment effect, default), "ATT"

(average treatment effect on treated), "ATC" (average treatment effect on con-

trols)

stabilize Logical indicating whether to use stabilized weights (default: TRUE) trim_weights Logical indicating whether to trim extreme weights (default: TRUE)

trim_quantiles Vector of length 2 specifying quantiles for weight trimming (default: c(0.01,

0.99))

verbose Logical indicating whether to print diagnostic information (default: FALSE)

Details

Propensity Score Estimation:

The function fits a model predicting treatment assignment from covariates:

• Logistic regression: Standard approach, assumes logit link

• Probit regression: Uses probit link, may be more robust with extreme probabilities

• Complementary log-log: Useful when treatment is rare

Weight Types:

• ATE weights: 1/pi(X) for treated, 1/(1-pi(X)) for controls

• ATT weights: 1 for treated, pi(X)/(1-pi(X)) for controls

• ATC weights: (1-pi(X))/pi(X) for treated, 1 for controls

Where pi(X) is the propensity score (probability of treatment given X).

Stabilized Weights:

When stabilize=TRUE, weights are multiplied by marginal treatment probabilities to reduce variance while maintaining unbiasedness (Robins et al., 2000).

Weight Trimming:

Extreme weights can cause instability. Trimming replaces weights outside specified quantiles with the quantile values (Crump et al., 2009).

Value

A list containing:

data Original data with added propensity scores and weights
ps_model Fitted propensity score model
weights Vector of calculated weights
ps Vector of propensity scores

diagnostics List of diagnostic information including balance statistics

method Method used for propensity score estimation

weight_type Type of weights calculated

calc_risk_diff 7

References

Austin PC (2011). "An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies." Multivariate Behavioral Research, 46(3), 399-424. doi:10.1080/00273171.2011.568786

Crump RK, Hotz VJ, Imbens GW, Mitnik OA (2009). "Dealing with Limited Overlap in Estimation of Average Treatment Effects." Biometrika, 96(1), 187-199.

Hernan MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.

Robins JM, Hernan MA, Brumback B (2000). "Marginal Structural Models and Causal Inference in Epidemiology." Epidemiology, 11(5), 550-560.

Examples

```
data(cachar_sample)
# Calculate ATE weights for areca nut use
iptw_result <- calc_iptw_weights(</pre>
 data = cachar_sample,
 treatment = "areca_nut",
 covariates = c("age", "sex", "residence", "smoking"),
 weight_type = "ATE"
)
# Check balance
print(iptw_result$diagnostics$balance_table)
# Calculate ATT weights (effect on the treated)
iptw_att <- calc_iptw_weights(</pre>
 data = cachar_sample,
 treatment = "tobacco_chewing",
 covariates = c("age", "sex", "residence", "areca_nut"),
 weight_type = "ATT"
)
```

calc_risk_diff

Calculate Risk Differences with Robust Model Fitting and Boundary Detection

Description

Calculates risk differences (or prevalence differences for cross-sectional data) using generalized linear models with identity, log, or logit links. Version 0.2.1 includes enhanced boundary detection, robust confidence intervals, and improved data quality validation to prevent extreme confidence intervals in stratified analyses.

The function addresses common convergence issues with identity link binomial GLMs by implementing a fallback strategy across multiple link functions, similar to approaches described in Donoghoe & Marschner (2018) for relative risk regression.

8 calc_risk_diff

Usage

```
calc_risk_diff(
  data,
  outcome,
  exposure,
  adjust_vars = NULL,
  strata = NULL,
  link = "auto",
  alpha = 0.05,
  boundary_method = "auto",
  verbose = FALSE
)
```

Arguments

data A data frame containing all necessary variables

outcome Character string naming the binary outcome variable (must be 0/1 or logical)

exposure Character string naming the exposure variable of interest adjust_vars Character vector of variables to adjust for (default: NULL) strata Character vector of stratification variables (default: NULL)

link Character string specifying link function: "auto", "identity", "log", or "logit"

(default: "auto")

alpha Significance level for confidence intervals (default: 0.05)

boundary_method

Method for handling boundary cases: "auto", "profile", "bootstrap", "wald" (de-

fault: "auto")

verbose Logical indicating whether to print diagnostic messages (default: FALSE)

Details

New in Version 0.2.1: Enhanced Stability and Quality Validation:

This version adds comprehensive data quality validation to prevent the extreme confidence intervals that could occur in stratified analyses:

Enhanced Data Validation::

- · Pre-analysis checks for stratification feasibility
- Detection of small sample sizes within strata
- Identification of rare outcomes or unbalanced exposures
- Warning for potential separation issues

Boundary Detection and Robust Inference::

When the MLE is on the boundary, standard asymptotic theory may not apply. The function detects and handles:

- upper_bound: Fitted probabilities approaching 1
- lower_bound: Fitted probabilities approaching 0
- separation: Complete or quasi-perfect separation

calc_risk_diff 9

• both_bounds: Mixed boundary issues

Robust Confidence Intervals::

For boundary cases, implements:

- Profile likelihood intervals (preferred when feasible)
- Bootstrap confidence intervals (robust for complex cases)
- Modified Wald intervals with boundary adjustments

Risk Difference Interpretation:

Risk differences represent absolute changes in probability. A risk difference of 0.05 means the exposed group has a 5 percentage point higher risk than the unexposed group. This is often more interpretable than relative measures (risk ratios, odds ratios) for public health decision-making.

Value

A tibble of class "riskdiff_result" containing the following columns:

exposure_var Character. Name of exposure variable analyzed

rd Numeric. Risk difference estimate (proportion scale, e.g. 0.05 = 5 percentage points)

ci lower Numeric. Lower bound of confidence interval

ci_upper Numeric. Upper bound of confidence interval

p_value Numeric. P-value for test of null hypothesis (risk difference = 0)

model_type Character. Link function successfully used ("identity", "log", "logit", or error type)

n_obs Integer. Number of observations used in analysis

on boundary Logical. TRUE if MLE is on parameter space boundary

boundary_type Character. Type of boundary: "none", "upper_bound", "lower_bound", "separation", "both_bounds"

boundary_warning Character. Warning message for boundary cases (if any)

ci_method Character. Method used for confidence intervals ("wald", "profile", "bootstrap")

... Additional columns for stratification variables if specified

The returned object has attributes including the original function call and alpha level used. Risk differences are on the probability scale where 0.05 represents a 5 percentage point difference.

References

Donoghoe MW, Marschner IC (2018). "logbin: An R Package for Relative Risk Regression Using the Log-Binomial Model." Journal of Statistical Software, 86(9), 1-22. doi:10.18637/jss.v086.i09

Marschner IC, Gillett AC (2012). "Relative Risk Regression: Reliable and Flexible Methods for Log-Binomial Models." Biostatistics, 13(1), 179-192.

Venzon DJ, Moolgavkar SH (1988). "A Method for Computing Profile-Likelihood-Based Confidence Intervals." Journal of the Royal Statistical Society, 37(1), 87-94.

Rothman KJ, Greenland S, Lash TL (2008). Modern Epidemiology, 3rd edition. Lippincott Williams & Wilkins.

10 calc_risk_diff_iptw

```
# Simple risk difference
data(cachar_sample)
rd_simple <- calc_risk_diff(</pre>
 data = cachar_sample,
 outcome = "abnormal_screen",
 exposure = "areca_nut"
print(rd_simple)
# Age-adjusted risk difference
rd_adjusted <- calc_risk_diff(</pre>
 data = cachar_sample,
 outcome = "abnormal_screen",
 exposure = "areca_nut",
 adjust_vars = "age"
print(rd_adjusted)
# Stratified analysis with enhanced error checking and boundary detection
rd_stratified <- calc_risk_diff(</pre>
 data = cachar_sample,
 outcome = "abnormal_screen",
 exposure = "areca_nut",
 strata = "residence",
 verbose = TRUE # See diagnostic messages and boundary detection
)
print(rd_stratified)
# Check for boundary cases
if (any(rd_stratified$on_boundary)) {
 cat("Boundary cases detected!\n")
 boundary_rows <- which(rd_stratified$on_boundary)</pre>
 for (i in boundary_rows) {
   cat("Row", i, ":", rd_stratified$boundary_type[i], "\n")
 }
}
# Force profile likelihood CIs for enhanced robustness
rd_profile <- calc_risk_diff(</pre>
 data = cachar_sample,
 outcome = "abnormal_screen",
 exposure = "areca_nut",
 boundary_method = "profile"
)
```

calc_risk_diff_iptw 11

Description

Calculates standardized risk differences using inverse probability of treatment weighting. This approach estimates causal effects under the assumption of no unmeasured confounding by creating a pseudo-population where treatment assignment is independent of measured confounders.

Usage

```
calc_risk_diff_iptw(
  data,
  outcome,
  treatment,
  covariates,
  iptw_weights = NULL,
  weight_type = "ATE",
  ps_method = "logistic",
  stabilize = TRUE,
  trim_weights = TRUE,
  alpha = 0.05,
  bootstrap_ci = FALSE,
  boot_n = 1000,
  verbose = FALSE
)
```

Arguments

data	A data frame containing outcome, treatment, and covariate data
outcome	Character string naming the binary outcome variable
treatment	Character string naming the binary treatment variable
covariates	Character vector of covariate names for propensity score model
iptw_weights	Optional vector of pre-calculated IPTW weights
weight_type	Type of weights if calculating: "ATE", "ATT", or "ATC" (default: "ATE")
ps_method	Method for propensity score estimation (default: "logistic")
stabilize	Whether to use stabilized weights (default: TRUE)
trim_weights	Whether to trim extreme weights (default: TRUE)
alpha	Significance level for confidence intervals (default: 0.05)
bootstrap_ci	Whether to use bootstrap confidence intervals (default: FALSE)
boot_n	Number of bootstrap replicates if bootstrap_ci=TRUE (default: 1000)
verbose	Whether to print diagnostic information (default: FALSE)

Details

Causal Interpretation:

IPTW estimates causal effects by weighting observations to create balance on measured confounders. The estimand depends on the weight type:

• ATE: Average treatment effect in the population

12 calc_risk_diff_iptw

- ATT: Average treatment effect among those who received treatment
- ATC: Average treatment effect among those who did not receive treatment

Standard Errors:

By default, uses robust (sandwich) standard errors that account for propensity score estimation uncertainty. Bootstrap confidence intervals are available as an alternative that may perform better with small samples.

Assumptions:

- 1. No unmeasured confounding: All confounders are measured and included
- 2. Positivity: All subjects have non-zero probability of receiving either treatment
- 3. Correct model specification: Propensity score model is correctly specified

Value

```
treatment_var Character. Name of treatment variable
rd_iptw Numeric. IPTW-standardized risk difference
ci_lower Numeric. Lower confidence interval bound
ci_upper Numeric. Upper confidence interval bound
p_value Numeric. P-value for test of null hypothesis
weight_type Character. Type of weights used
```

A tibble of class "riskdiff_iptw_result" containing:

effective_n Numeric. Effective sample size
risk_treated Numeric. Risk in treated group
risk_control Numeric. Risk in control group

```
data(cachar_sample)
# Standard ATE estimation
rd_iptw <- calc_risk_diff_iptw(</pre>
  data = cachar_sample,
  outcome = "abnormal_screen",
  treatment = "areca_nut",
  covariates = c("age", "sex", "residence", "smoking")
)
print(rd_iptw)
# ATT estimation with bootstrap CI
rd_att <- calc_risk_diff_iptw(
  data = cachar_sample,
  outcome = "head_neck_abnormal",
  treatment = "tobacco_chewing",
  covariates = c("age", "sex", "residence", "areca_nut"),
  weight_type = "ATT",
  bootstrap_ci = TRUE,
```

```
boot_n = 500
)
print(rd_att)
```

check_iptw_assumptions

Check IPTW Assumptions

Description

Provides diagnostic checks for key IPTW assumptions including positivity, balance, and model specification. Returns a comprehensive summary with recommendations for potential issues.

Usage

```
check_iptw_assumptions(
  iptw_result,
  balance_threshold = 0.1,
  extreme_weight_threshold = 10,
  verbose = TRUE
)
```

Arguments

Value

A list containing:

```
    overall_assessment Character indicating "PASS", "CAUTION", or "FAIL"
    positivity List with positivity checks and recommendations
    balance List with balance assessment and problematic variables
    weights List with weight distribution diagnostics
    recommendations Character vector of specific recommendations
```

14 create_balance_plots

Examples

```
data(cachar_sample)

iptw_result <- calc_iptw_weights(
   data = cachar_sample,
   treatment = "areca_nut",
   covariates = c("age", "sex", "residence", "smoking")
)

# Check assumptions
assumptions <- check_iptw_assumptions(iptw_result)
print(assumptions$verall_assessment)
print(assumptions$recommendations)</pre>
```

Description

Creates visualizations to assess covariate balance before and after IPTW weighting. Includes love plots (standardized differences) and propensity score distribution plots.

Usage

```
create_balance_plots(
  iptw_result,
  plot_type = "both",
  threshold = 0.1,
  save_plots = FALSE,
  plot_dir = "plots"
)
```

Arguments

iptw_result	An iptw_result object from calc_iptw_weights()
plot_type	Type of plot: "love" for standardized differences, "ps" for propensity score distributions, or "both"
threshold	Threshold for acceptable standardized difference (default: 0.1)
save_plots	Whether to save plots to files (default: FALSE)
plot_dir	Directory to save plots if save_plots=TRUE (default: "plots")

create_forest_plot 15

Details

Love Plot:

Shows standardized differences for each covariate before and after weighting. Points represent standardized differences, with lines connecting before/after values. Horizontal lines show common thresholds (0.1, 0.25) for acceptable balance.

Propensity Score Plot:

Shows distributions of propensity scores by treatment group before and after weighting. Good overlap indicates positivity assumption is met.

Value

A ggplot object (if plot_type is "love" or "ps") or a list of ggplot objects (if plot_type is "both"). If ggplot2 is not available, returns a message and creates base R plots.

Examples

```
data(cachar_sample)

# Calculate IPTW weights
iptw_result <- calc_iptw_weights(
    data = cachar_sample,
    treatment = "areca_nut",
    covariates = c("age", "sex", "residence", "smoking")
)

# Create balance plots
if (requireNamespace("ggplot2", quietly = TRUE)) {
    plots <- create_balance_plots(iptw_result, plot_type = "both")
    print(plots$love_plot)
    print(plots$ps_plot)
}</pre>
```

create_forest_plot

Create Forest Plot for Risk Difference Results

Description

Creates a forest plot visualization of risk difference results, automatically detecting stratification variables and creating appropriate labels.

Usage

```
create_forest_plot(results, title = "Risk Differences", max_ci_width = 50, ...)
```

16 create_rd_table

Arguments

```
results Results tibble from calc_risk_diff()
title Plot title (default: "Risk Differences")
max_ci_width Maximum CI width for display (default: 50)
... Additional arguments passed to ggplot
```

Value

A ggplot object

Examples

```
data(cachar_sample)
results <- calc_risk_diff(cachar_sample, "abnormal_screen", "areca_nut", strata = "residence")
create_forest_plot(results)</pre>
```

create_rd_table

Create Formatted Table of Risk Difference Results

Description

Creates a publication-ready table of risk difference results with appropriate grouping and formatting. Requires the kableExtra package for full functionality.

Usage

```
create_rd_table(
  results,
  caption = "Risk Differences",
  include_model_type = FALSE,
  ...
)
```

Arguments

```
results Results tibble from calc_risk_diff()
caption Table caption (default: "Risk Differences")
include_model_type
Whether to include model type column (default: FALSE)
... Additional arguments passed to kableExtra::kable()
```

Value

If kableExtra is available, returns a kable table object suitable for rendering in R Markdown or HTML. The table includes formatted risk differences, confidence intervals, and p-values with appropriate styling and footnotes. If kableExtra is not available, returns a formatted tibble with the same information in a basic data frame structure.

create_simple_table 17

Examples

```
data(cachar_sample)
results <- calc_risk_diff(cachar_sample, "abnormal_screen", "smoking")

# Basic table (works without kableExtra)
basic_table <- create_rd_table(results, caption = "Risk of Abnormal Cancer Screening")
print(basic_table)

# Enhanced table (requires kableExtra)
if (requireNamespace("kableExtra", quietly = TRUE)) {
  enhanced_table <- create_rd_table(
    results,
    caption = "Risk of Abnormal Cancer Screening by Smoking Status",
    include_model_type = TRUE
)
  print(enhanced_table)
}</pre>
```

Create a Simple Summary Table

Description

Creates a simple text-based summary table that doesn't require kableExtra.

Usage

```
create_simple_table(results, title = "Risk Difference Results")
```

Arguments

results Results tibble from calc_risk_diff()
title Optional title for the table

Value

A formatted character vector representing the table

```
data(cachar_sample)
results <- calc_risk_diff(cachar_sample, "abnormal_screen", "smoking")
cat(create_simple_table(results))</pre>
```

18 format_risk_diff

Description

Creates a formatted summary table that works with any stratification variables.

Usage

```
create_summary_table(results, caption = "Risk Difference Results")
```

Arguments

```
results Results tibble from calc_risk_diff() caption Table caption
```

Value

A data frame suitable for knitr::kable()

format_risk_diff Format Risk Difference Results for Display

Description

Formats numerical values in risk difference results for presentation, with appropriate percentage formatting and rounding. Enhanced for v0.2.1 to handle boundary information and quality indicators with robust error handling.

Usage

```
format_risk_diff(
  results,
  digits = 2,
  p_accuracy = 0.001,
  show_ci_method = FALSE,
  show_quality = TRUE
)
```

Arguments

results Results tibble from calc_risk_diff()

digits Number of decimal places for percentages (default: 2)

p_accuracy Accuracy for p-values (default: 0.001)

show_ci_method Logical indicating whether to show CI method in output (default: FALSE) show_quality Logical indicating whether to add quality indicators (default: TRUE)

get_quality_legend 19

Value

```
Tibble with additional formatted columns including:
```

```
rd_formatted Risk difference as formatted percentage string
ci_formatted Confidence interval as formatted string
p_value_formatted P-value with appropriate precision
quality_indicator Quality assessment (if show_quality = TRUE)
ci_method_display CI method information (if show_ci_method = TRUE)
```

Examples

```
data(cachar_sample)
results <- calc_risk_diff(cachar_sample, "abnormal_screen", "areca_nut")
formatted <- format_risk_diff(results)
print(formatted)

# Show CI methods and quality indicators
formatted_detailed <- format_risk_diff(results, show_ci_method = TRUE, show_quality = TRUE)
print(formatted_detailed)

# Customize formatting
formatted_custom <- format_risk_diff(results, digits = 3, p_accuracy = 0.01, show_quality = FALSE)
print(formatted_custom)</pre>
```

get_quality_legend

Get Quality Legend for Risk Difference Results

Description

Returns a legend explaining the quality indicators used in formatted results.

Usage

```
get_quality_legend()
```

Value

Character vector with quality indicator explanations

```
quality_legend <- get_quality_legend()
cat(paste(quality_legend, collapse = "\n"))</pre>
```

20 print.iptw_result

Description

Returns the complete list of valid boundary types that can be returned by the boundary detection function.

Usage

```
get_valid_boundary_types()
```

Value

Character vector of valid boundary type names

print.iptw_result

Print Method for IPTW Results

Description

Print Method for IPTW Results

Usage

```
## S3 method for class 'iptw_result'
print(x, ...)
```

Arguments

x An iptw_result object

... Additional arguments passed to print

```
print.riskdiff_iptw_result
```

Print Method for IPTW Risk Difference Results

Description

Print Method for IPTW Risk Difference Results

Usage

```
## S3 method for class 'riskdiff_iptw_result'
print(x, ...)
```

Arguments

```
x A riskdiff_iptw_result object
```

... Additional arguments passed to print

```
print.riskdiff_result Print method for riskdiff_result objects
```

Description

Prints risk difference results in a formatted, readable way showing key statistics including risk differences, confidence intervals, model types used, and enhanced boundary case diagnostics for v0.2.1+.

Usage

```
## S3 method for class 'riskdiff_result'
print(x, show_boundary = TRUE, show_quality = TRUE, ...)
```

Arguments

```
x A riskdiff_result object from calc_risk_diff()
show_boundary Logical indicating whether to show boundary case details (default: TRUE)
show_quality Logical indicating whether to show quality indicators (default: TRUE)
... Additional arguments passed to print methods
```

Value

Invisibly returns the original riskdiff_result object (x). Called primarily for its side effect of printing formatted results to the console.

Examples

```
data(cachar_sample)
result <- calc_risk_diff(cachar_sample, "abnormal_screen", "areca_nut")
print(result)

# Suppress boundary details for cleaner output
print(result, show_boundary = FALSE)</pre>
```

```
summary.riskdiff_iptw_result
```

Summary Method for IPTW Risk Difference Results

Description

Provides a comprehensive summary of IPTW risk difference analysis including effect estimates, diagnostics, and interpretation guidance.

Usage

```
## S3 method for class 'riskdiff_iptw_result'
summary(object, ...)
```

Arguments

```
object A riskdiff_iptw_result object
... Additional arguments (currently ignored)
```

Value

Invisibly returns the input object. Called primarily for side effects (printing summary).

```
data(cachar_sample)

rd_iptw <- calc_risk_diff_iptw(
  data = cachar_sample,
  outcome = "abnormal_screen",
  treatment = "areca_nut",
  covariates = c("age", "sex", "residence", "smoking")
)

summary(rd_iptw)</pre>
```

Index

```
* datasets
    cachar_sample, 2
{\tt cachar\_sample, 2}
calc_iptw_weights, 5
calc_risk_diff, 7
calc_risk_diff_iptw, 10
check_iptw_assumptions, 13
create_balance_plots, 14
create_forest_plot, 15
create\_rd\_table, 16
create_simple_table, 17
create_summary_table, 18
\verb|format_risk_diff|, 18|
get_quality_legend, 19
get_valid_boundary_types, 20
print.iptw_result, 20
print.riskdiff_iptw_result, 21
print.riskdiff_result, 21
summary.riskdiff_iptw_result, 22
```