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allinone Apply all available (sequential) permutation testing approaches of
variable importance measures with one function call

Description

This is a helper function, which allows to perform all (sequential) permutation testing approaches
of variable importance measures described in rfvimptest with a single function call. This may be
useful for comparing the results obtained using the different approaches. Importantly, this function
is computationally efficient by re-using the permuted variable importance values obtained for the
conventional permutation test (that performs all Mmax permutations) for the other approaches. For
details on the different approaches see rfvimptest.

Usage

allinone(
data,
yname,
Mmax = 500,
varnames = NULL,
p0 = 0.06,
p1 = 0.04,
alpha = 0.05,
beta = 0.2,
A = 0.1,
B = 10,
h = 8,
nperm = 1,
ntree = 500,
progressbar = TRUE,
condinf = FALSE,
...

)

Arguments

data A data.frame containing the variables in the model.

yname Name of outcome variable.
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Mmax Maximum number of permutations used in each permutation test. Default is
500.

varnames Optional. Names of the variables for which testing should be performed. By
default all variables in data with the exception of the outcome variable are used.

p0 The value of the p-value in the null hypothesis (H0: p = p0) of SPRT and SAPT.
Default is 0.06.

p1 The value of the p-value in the alternative hypothesis (H1: p = p1) of SPRT and
SAPT. Default is 0.04.

alpha The significance level of SPRT when p = p0. Also known as type I error. Default
is 0.05.

beta One minus the power of SPRT when p = p1. Also known as type II error. Default
is 0.2.

A The quantity A in the formula of SAPT. Default is 0.1 for a type I error of 0.05.
Usually not changed by the user.

B The quantity B in the formula of SAPT. Default is 10 (1/A) for a type I error of
0.05. Usually not changed by the user.

h The quantity h in the formula for the sequential Monte Carlo p-value. The de-
fault value for h is 8. Larger values lead to more precise p-value estimates, but
are computationally more expensive.

nperm The numbers of permutations of the out-of-bag observations over which the re-
sults are averaged, when calculating the variable importance measure values.
Default is 1. Larger values than 1 can only be considered when condinf=TRUE,
that is, when using random forests with conditional inference trees (Hothorn et
al., 2006) as base learners.

ntree Number of trees per forest. Default is 500.

progressbar Output the current progress of the calculations for each variable to the console?
Default is TRUE.

condinf Set this value to TRUE if random forests using conditional inference trees (Hothorn
et al., 2006) should be used and to FALSE if classical random forests using CART
trees should be used. Default is FALSE.

... Further arguments passed to ranger::ranger (if condinf=FALSE) or
party::cforest_unbiased() (if condinf=TRUE).

Value

Object of class allinone with elements

varimp Variable importance for each considered independent variable.

testres The results ("keep H0" vs. "accept H1") of the tests for each considered inde-
pendent variable.

pvalues The p-values of the tests for each considered independent variable. Note that
p-values are only obtained for the method types "pval" and "complete".

stoppedearly For each independent variable, whether the calculations stopped early ("yes") or
the maximum of Mmax permutations was reached ("no").
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perms The number of permutations performed for each independent variable.

Mmax Maximum number of permutations used in each permutation test.

ntree Number of trees per forest.

comptime The time the computations needed.

Author(s)

Alexander Hapfelmeier, Roman Hornung

References

• Breiman, L. (2001). Random forests. Mach Learn, 45:5-32, <doi:10.1023/A:1010933404324>.

• Coleman, T., Peng, W., Mentch, L. (2019). Scalable and efficient hypothesis testing with
random forests. arXiv preprint arXiv:1904.07830, <doi:10.48550/arXiv.1904.07830>.

• Hapfelmeier, A., Hornung, R., Haller, B. (2023). Efficient permutation testing of variable
importance measures by the example of random forests. Comput Stat Data Anal, 181:107689,
<doi:10.1016/j.csda.2022.107689>.

• Hapfelmeier, A., Ulm, K. (2013). A new variable selection approach using Random Forests.
CSDA 60:50–69, <doi:10.1016/j.csda.2012.09.020>.

• Hapfelmeier, A., Hothorn, T., Ulm, K., Strobl, C. (2014). A new variable importance measure
for random forests with missing data. Stat Comput 24:21–34, <doi:10.1007/s112220129349-
1>.

• Hothorn, T., Hornik, K., Zeileis, A. (2006). Unbiased Recursive Partitioning: A Conditional
Inference Framework. J Comput Graph Stat 15(3):651–674, <doi:10.1198/106186006X133933>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast implementation of random forests for high
dimensional data in C++ and R. J Stat Softw 77:1-17, <doi:10.18637/jss.v077.i01>.

See Also

rfvimptest

Examples

# Load package:
library("rfvimptest")

# Set seed to obtain reproducible results:
set.seed(1234)

# Load example data:
data(hearth2)

# NOTE: For illustration purposes very small numbers of maximum
# permutations are considered in the below examples.
# This number would be much too small for actual applications.
# The default number is Max=500.

https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.48550/arXiv.1904.07830
https://doi.org/10.1016/j.csda.2022.107689
https://doi.org/10.1016/j.csda.2012.09.020
https://doi.org/10.1007/s11222-012-9349-1
https://doi.org/10.1007/s11222-012-9349-1
https://doi.org/10.1198/106186006X133933
https://doi.org/10.18637/jss.v077.i01
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# When using condinf=FALSE (default) the results for the two-sample
# permutation tests are not obtained:
(ptest <- allinone(data=hearth2, yname="Class", Mmax=20))

# Variable importance values with p-values from the Monte Carlo p-value
# and the complete approach:
ptest$varimp
ptest$pvalues$pval
ptest$pvalues$complete

# When setting condinf=TRUE the results are obtained for all approaches,
# that is, including those for the two-sample permutation tests
# (in this illustration very small number of trees ntree=30 are used,
# in practice much larger numbers should be used; the default is ntree=500):
(ptest_ci <- allinone(data=hearth2, yname="Class", condinf=TRUE, ntree=30, Mmax=10))
ptest_ci$testres

hearth2 Data on Coronary Artery Disease

Description

This data includes 294 patients undergoing angiography at the Hungarian Institute of Cardiology in
Budapest between 1983 and 1987.

Format

A data frame with 294 observations, ten covariates and one two-class outcome variable

Details

The variables are as follows:

• age. numeric. Age in years

• sex. factor. Sex (1 = male; 0 = female)

• chest_pain. factor. Chest pain type (1 = typical angina; 2 = atypical angina; 3 = non-anginal
pain; 4 = asymptomatic)

• trestbps. numeric. Resting blood pressure (in mm Hg on admission to the hospital)

• chol. numeric. Serum cholestoral in mg/dl

• fbs. factor. Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)

• restecg. factor. Resting electrocardiographic results (1 = having ST-T wave abnormality (T
wave inversions and/or ST elevation or depression of > 0.05 mV); 0 = normal)

• thalach. numeric. Maximum heart rate achieved
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• exang. factor. Exercise induced angina (1 = yes; 0 = no)

• oldpeak. numeric. ST depression induced by exercise relative to rest

• Class. factor. Disease satus (1 = no disease; 2 = coronary artery disease)

The original openML dataset was pre-processed in the following way:

1. The variables were re-named according to the description given on openML.

2. The missing values which were coded as "-9" were replaced by NA values.

3. The variables slope, ca, and thal were excluded, because these featured too many missing
values.

4. The categorical covariates were transformed into factors.

5. There were 6 restecg values of "2" which were replaced by "1".

6. The missing values were imputed: The missing values of the numerical covariates were replaced
by the means of the corresponding non-missing values. The missing values of the categorical co-
variates were replaced by the modes of the corresponding non-missing values.

Note that this dataset is also included in a slightly different form in the R package ordinalForest
(version 2.4-2) under the name hearth. The only difference is that in hearth2, the ordinal outcome
variable Class was transformed into a two-class outcome by only differentiating between diseased
vs. healthy, rather than differentiating between different levels of disease severity.

Source

OpenML: data.name: heart-h, data.id: 1565, link: https://www.openml.org/d/1565/

References

• Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J.-J., Sandhu, S., Guppy, K. H.,
Lee, S., Froelicher, V. (1989) International application of a new probability algorithm for the
diagnosis of coronary artery disease. The American Journal Of Cardiology, 64, 304–310.

• Vanschoren, J., van Rijn, J. N., Bischl, B., Torgo, L. (2013) OpenML: networked science in
machine learning. SIGKDD Explorations, 15(2), 49–60.

Examples

data(hearth2)

table(hearth2$Class)
dim(hearth2)

head(hearth2)

https://www.openml.org/d/1565/
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rfvimptest Testing the statistical significance of predictors in random forests us-
ing sequential permutation testing

Description

Implements several strategies for testing the statistical significance of predictors in random forests
using sequential permutation testing procedures based on the permutation variable importance mea-
sure. See Hapfelmeier et al. (2023) for details.

Usage

rfvimptest(
data,
yname,
Mmax = 500,
varnames = NULL,
p0 = 0.06,
p1 = 0.04,
alpha = 0.05,
beta = 0.2,
A = 0.1,
B = 10,
h = 8,
nperm = 1,
ntree = 500,
progressbar = TRUE,
test = c("general", "twosample")[1],
type = c("SPRT", "SAPT", "pval", "certain", "complete")[1],
condinf = FALSE,
...

)

Arguments

data A data.frame containing the variables in the model.

yname Name of outcome variable.

Mmax Maximum number of permutations used in each permutation test. Default is
500.

varnames Optional. Names of the variables for which testing should be performed. By
default all variables in data with the exception of the outcome variable are used.

p0 The value of the p-value in the null hypothesis (H0: p = p0) of SPRT and SAPT.
Default is 0.06.

p1 The value of the p-value in the alternative hypothesis (H1: p = p1) of SPRT and
SAPT. Default is 0.04.
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alpha The significance level of SPRT when p = p0. Also known as type I error. Default
is 0.05.

beta One minus the power of SPRT when p = p1. Also known as type II error. Default
is 0.2.

A The quantity A in the formula of SAPT. Default is 0.1 for a type I error of 0.05.
Usually not changed by the user.

B The quantity B in the formula of SAPT. Default is 10 (1/A) for a type I error of
0.05. Usually not changed by the user.

h The quantity h in the formula for the sequential Monte Carlo p-value. The de-
fault value for h is 8. Larger values lead to more precise p-value estimates, but
are computationally more expensive.

nperm The numbers of permutations of the out-of-bag observations over which the re-
sults are averaged, when calculating the variable importance measure values.
Default is 1. Larger values than 1 can only be considered when condinf=TRUE,
that is, when using random forests with conditional inference trees (Hothorn et
al., 2006) as base learners.

ntree Number of trees per forest. Default is 500.

progressbar Output the current progress of the calculations for each variable to the console?
Default is TRUE.

test Type of the permutation test to perform. This can be either "general" or "twosam-
ple", where "general" refers to the usual (sequential) permutation test and "twosam-
ple" refers to the two-sample (sequential) permutation test. For the latter, see
also Coleman et al. (2019). Note, however, that "twosample" is experimental
and should not be used for formal testing. See the details section below.

type Type of the sequential method to use in the permutation tests. The choices are:
"SPRT", "SAPT", "pval", "certain", and "complete". See the ’Details’ section
below for details.

condinf Set this value to TRUE if random forests using conditional inference trees (Hothorn
et al., 2006) should be used and to FALSE if classical random forests using CART
trees should be used. Default is FALSE.

... Further arguments passed to ranger::ranger (if condinf=FALSE) or
party::cforest_unbiased() (if condinf=TRUE).

Details

Only the general permutation test (test="general") controls the type I error. In contrast, the
two-sample permutation test (test="twosample") is associated with inflated type I error, which
can lead to false positive findings. An advantage of the two-sample permutation test is that it is
very fast. Therefore, this experimental approach may be used as an informal screening tool for
finding informative variables. It is, however, not a valid testing procedure. Note also that the paper
of Coleman et al. (2019) on which the two-sample test is based has not yet been published in a
peer-reviewed journal and that the theory underlying this procedure might thus still need further
review.

SPRT (type="SPRT") and SAPT (type="SAPT") are similar sequential procedures, where SPRT
is faster with respect to accepting H0, that is, detecting non-informative variables, whereas SAPT
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is faster with respect to accepting H1, that is, detecting informative variables. Therefore, SPRT
may be preferred for datasets with only few informative variables, whereas SAPT is preferable
for datasets with many informative variables. The Monte Carlo p-value based testing procedure
(type="pval") should be used, when p-values are required. The choice type="complete" offers
a conventional permutation test (that is, without sequential testing) (Hapfelmeier and Ulm, 2013).
This choice is computationally the most intensive. Lastly, the choice type="certain" is similar to
type="complete", but performs early stopping by ending the permutation iterations as soon as it
is certain which outcome the conventional permutation test would take. That is, type="certain"
can be considered as a computationally more effective version of type="complete".

Value

Object of class rfvimptest with elements

testtype Type of the permutation test performed and sequential method used.

varimp Variable importance for each considered independent variable.

testres The results ("keep H0" vs. "accept H1") of the tests for each considered inde-
pendent variable.

pvalues The p-values of the tests for each considered independent variable. Note that
p-values are only obtained for the method types "pval" and "complete".

stoppedearly For each independent variable, whether the calculations stopped early ("yes") or
the maximum of Mmax permutations was reached ("no").

perms The number of permutations performed for each independent variable.

Mmax Maximum number of permutations used in each permutation test.

ntree Number of trees per forest.

comptime The time the computations needed.

Author(s)

Alexander Hapfelmeier, Roman Hornung

References

• Breiman, L. (2001). Random forests. Mach Learn, 45:5-32, <doi:10.1023/A:1010933404324>.

• Coleman, T., Peng, W., Mentch, L. (2019). Scalable and efficient hypothesis testing with
random forests. arXiv preprint arXiv:1904.07830, <doi:10.48550/arXiv.1904.07830>.

• Hapfelmeier, A., Hornung, R., Haller, B. (2023). Efficient permutation testing of variable
importance measures by the example of random forests. Comput Stat Data Anal, 181:107689,
<doi:10.1016/j.csda.2022.107689>.

• Hapfelmeier, A., Ulm, K. (2013). A new variable selection approach using Random Forests.
CSDA 60:50–69, <doi:10.1016/j.csda.2012.09.020>.

• Hapfelmeier, A., Hothorn, T., Ulm, K., Strobl, C. (2014). A new variable importance measure
for random forests with missing data. Stat Comput 24:21–34, <doi:10.1007/s112220129349-
1>.

• Hothorn, T., Hornik, K., Zeileis, A. (2006). Unbiased Recursive Partitioning: A Conditional
Inference Framework. J Comput Graph Stat 15(3):651–674, <doi:10.1198/106186006X133933>.

https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.48550/arXiv.1904.07830
https://doi.org/10.1016/j.csda.2022.107689
https://doi.org/10.1016/j.csda.2012.09.020
https://doi.org/10.1007/s11222-012-9349-1
https://doi.org/10.1007/s11222-012-9349-1
https://doi.org/10.1198/106186006X133933
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• Wright, M. N., Ziegler, A. (2017). ranger: A fast implementation of random forests for high
dimensional data in C++ and R. J Stat Softw 77:1-17, <doi:10.18637/jss.v077.i01>.

Examples

## Load package:
library("rfvimptest")

## Set seed to obtain reproducible results:
set.seed(1234)

# Load example data:
data(hearth2)

# NOTE: For illustration purposes a very small number (Mmax=20) of maximum
# permutations is considered. This number would be much too small for actual
# applications. The default number is Max=500.

# By default, SPRT is performed:
(ptest_sprt <- rfvimptest(data=hearth2, yname="Class", Mmax=20))
ptest_sprt$varimp
ptest_sprt$testres

# Calculation of p-values using the Monte Carlo p-value based testing procedure:
(ptest_pval <- rfvimptest(data=hearth2, yname="Class", type="pval", Mmax=20))
ptest_pval$pvalues

# If the frequency of informative variables is expected to be high SAPT can be used:
(ptest_sapt <- rfvimptest(data=hearth2, yname="Class", type="SAPT", Mmax=20))
ptest_sapt$testres

# If it is only of interest to test specific variables in the dataset these variables
# should be passed to rfvimptest() vias the argument 'varnames' because this
# reduces the computational burden considerably:

(ptest_twovar <- rfvimptest(data=hearth2, yname="Class", varnames=c("age", "sex"), Mmax=20))
ptest_twovar$varimp
ptest_twovar$testres

# Two-sample permutation test procedures:

# NOTE: These should be used only for informal screening for informative variables.
# They are not valid statistical tests.

# Here, the maximum number of permutations can be much higher because it is necessary
# here to construct a new forest for each permutation:
rfvimptest(data=hearth2, yname="Class", test="twosample", condinf=TRUE, Mmax=1000)

rfvimptest(data=hearth2, yname="Class", test="twosample", type="pval", condinf=TRUE, Mmax=1000)

https://doi.org/10.18637/jss.v077.i01
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rfvimptest(data=hearth2, yname="Class", test="twosample", type="SAPT", condinf=TRUE, Mmax=1000)

threshold_values Threshold values of a SPRT and SAPT, and calculation of sequential
Monte Carlo p-values

Description

Function to produce threshold values for the number of cumulative successes a sequential permu-
tation test of type="SRPT" or type="SAPT" needs to show in order to "keep H0" or "accept H1"
early in the sequence of tests.

Usage

threshold_values(
p0 = 0.06,
p1 = 0.04,
alpha = 0.05,
beta = 0.2,
A = 0.1,
B = 10,
Mmax = 500,
type = c("SPRT", "SAPT")[1]

)

Arguments

p0 The value of the p-value in the null hypothesis (H0: p = p0) of SPRT and SAPT.
Default is 0.06.

p1 The value of the p-value in the alternative hypothesis (H1: p = p1) of SPRT and
SAPT. Default is 0.04.

alpha The significance level of SPRT when p = p0. Also known as type I error. Default
is 0.05.

beta One minus the power of SPRT when p = p1. Also known as type II error. Default
is 0.2.

A The quantity A in the formula of SAPT. Default is 0.1 for a type I error of 0.05.
Usually not changed by the user.

B The quantity B in the formula of SAPT. Default is 10 (1/A) for a type I error of
0.05. Usually not changed by the user.

Mmax Maximum number of permutations used in each permutation test. Default is
500.

type Type of the sequential test method. The choices are "SPRT" and "SAPT".
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Details

An example of how to calculate sequential Monte Carlo p-values is also given.

The function and examples are intended to support the use of SPRT, SAPT and sequential p-values
for any type of modelling approach, even outside the application in rfvimptest::rfvimptest().

Value

List of two vectors, each containing Mmax threshold values for the number of cumulative successes
a sequential permutation test of type="SRPT" or type="SAPT" needs to show in order to "keep H0"
or "accept H1" early in the sequence of tests.

Author(s)

Alexander Hapfelmeier, Roman Hornung

References

• Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Stat. 16, 117-186,
<doi:10.1214/aoms/1177731118>.

• Lock, R.H. (1991). A sequential approximation to a permutation test. Commun. Stat., Simul.
Comput. 20, 341-363, <doi:10.1080/03610919108812956>.

• Besag, J., Clifford, P. (1991). Sequential Monte Carlo p-values. Biometrika 78, 301-304,
<doi:10.1093/biomet/78.2.301>.

• Hapfelmeier, A., Hornung, R., Haller, B. (2023). Efficient permutation testing of variable
importance measures by the example of random forests. Comput Stat Data Anal, 181:107689,
<doi:10.1016/j.csda.2022.107689>.

Examples

## Load package:
library("rfvimptest")

## Set seed to obtain reproducible results:
set.seed(1234)

# Load example data
data(hearth2)

# Calculation of a SAPT

# Create critical values for a SAPT
myvals <- threshold_values(p0 = 0.06, p1 = 0.04, A = 0.1, B = 10, Mmax = 200, type = "SAPT")
myvals

# Fit a model to the original data
mod <- glm(I(Class == 2) ~ ., data = hearth2)

https://doi.org/10.1214/aoms/1177731118
https://doi.org/10.1080/03610919108812956
https://doi.org/10.1093/biomet/78.2.301
https://doi.org/10.1016/j.csda.2022.107689
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summary(mod)

# Derive a statistic of interest from the model. Here, the negative AIC is used as a statistic
# to be maximised.
stat <- -1 * mod$aic

# Perform the permutations, extract the statistics and stop early according to the critical values
myresult <- sapply(setdiff(names(hearth2), "Class"), function(j) {

permdat <- hearth2
permstats <- c()
for (i in 1:length(myvals[[1]])) {
permdat[, j] <- sample(permdat[, j])
permstats <- c(permstats, -1 * glm(I(Class == 2) ~ ., data = permdat)$aic)

if (sum(permstats >= stat) >= myvals[[1]][i] | sum(permstats >= stat) <= myvals[[2]][i]) break
}
permstats

})

# Statistics obtained after permutation of the data
myresult

# Number of permutations performed until (early) stopping
sapply(myresult, length)

# Derive the SAPT decisions from the statistics
sapply(myresult, function(x) {

if (sum(x >= stat) >= myvals[[1]][length(x)]) return("keep H0")
else if (sum(x >= stat) <= myvals[[2]][length(x)]) return("accept H1")
else ifelse(sum(x >= stat) / length(myvals[[1]]) <= 0.05, "accept H1", "keep H0")

})

# Calculation of sequential Monte Carlo p-values

h <- 10 # Parameter h of the sequential Monte Carlo p-value calculation.

# Perform the permutations, extract the statistics and stop early when h successes are reached
mypvals <- sapply(setdiff(names(hearth2), "Class"), function(j) {

permdat <- hearth2
permstats <- c()
Mmax <- length(myvals[[1]])
for (i in 1:Mmax) {

permdat[, j] <- sample(permdat[, j])
permstats <- c(permstats, -1 * glm(I(Class == 2) ~ ., data = permdat)$aic)
d <- sum(permstats >= stat)
if (d == h) {pval <- d/length(permstats); m <- i; break}
else if (i == Mmax) {pval <- (d + 1)/(Mmax + 1); m <- i}

}
c(pval, m)

})

# p-values and number of permutations performed until (early) stopping
rownames(mypvals) <- c("p-value", "m")
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t(mypvals)
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