Package ‘reshape’

June 19, 2025
Version 0.8.10
Title Flexibly Reshape Data
Description Flexibly restructure and aggregate data using
just two functions: melt and cast.
URL http://had.co.nz/reshape
Depends R (>=2.6.1)
Imports plyr
License MIT + file LICENSE
LazyData true
NeedsCompilation no
Author Hadley Wickham [aut, cre]
Maintainer Hadley Wickham <hadley@rstudio.com>
Repository CRAN
Date/Publication 2025-06-19 15:40:06 UTC

Contents

CaASL . . . L e e e e e e e e e e e e e e e
colsplit. e e e
combine_factor e e
condense.df
expand.grid.df
French fries e e e
funstofun L e
melto e e e
MEItarray o e e e e e e e e e e
melt.dataframe
merge_all
NAMETOWS . . & v v v v e
TECASL . . v e e e e e e e e e e
TENAIMNE v b vt e e e e e e e e e e

http://had.co.nz/reshape

2 cast
rescaler 14
Smiths L 15
sort_df . . .o e, 15
sparseby . . . L L e e 16
SLAMP . . . L e e e e 17
TIPS . o o 18
uniquedefaulto 19
untable L L e 19
Index 20
cast Cast function
Description
Cast a molten data frame into the reshaped or aggregated form you want
Usage
cast(data, formula = ... ~ variable, fun.aggregate=NULL, ...,
margins=FALSE, subset=TRUE, df=FALSE, fill=NULL, add.missing=FALSE,
value = guess_value(data))
Arguments
data molten data frame, see melt
formula casting formula, see details for specifics
fun.aggregate aggregation function
add.missing fill in missing combinations?
value name of value column
further arguments are passed to aggregating function
margins vector of variable names (can include "grand_col" and "grand_row") to compute
margins for, or TRUE to computer all margins
subset logical vector to subset data set with before reshaping
df argument used internally
fill value with which to fill in structural missings, defaults to value from applying

fun.aggregate to 0 length vector

cast

Details

Along with melt and recast, this is the only function you should ever need to use. Once you have
melted your data, cast will arrange it into the form you desire based on the specification given by
formula.

The cast formula has the following format: x_variable + x_2 ~y_variable +y_2 ~z_variable
~ ... | list_variable + ... The order of the variables makes a difference. The first varies slow-
est, and the last fastest. There are a couple of special variables: "..." represents all other variables
not used in the formula and "." represents no variable, so you can do formula=var1 ~ .

Creating high-D arrays is simple, and allows a class of transformations that are hard without apply
and sweep

If the combination of variables you supply does not uniquely identify one row in the original data
set, you will need to supply an aggregating function, fun.aggregate. This function should take a
vector of numbers and return a summary statistic(s). It must return the same number of arguments
regardless of the length of the input vector. If it returns multiple value you can use "result_variable"
to control where they appear. By default they will appear as the last column variable.

The margins argument should be passed a vector of variable names, eg. c("month”,"day"). It
will silently drop any variables that can not be margined over. You can also use "grand_col" and
"grand_row" to get grand row and column margins respectively.

Subset takes a logical vector that will be evaluated in the context of data, so you can do something
like subset = variable=="1length"

All the actual reshaping is done by reshapel, see its documentation for details of the implementa-
tion

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

See Also

reshapel, http://had.co.nz/reshape/

Examples

#Air quality example
names(airquality) <- tolower(names(airquality))
agm <- melt(airquality, id=c("month”, "day"), na.rm=TRUE)

cast(agm, day ~ month ~ variable)

cast(agm, month ~ variable, mean)

cast(agm, month ~ . | variable, mean)

cast(agm, month ~ variable, mean, margins=c("”grand_row”, "grand_col"))
cast(agm, day ~ month, mean, subset=variable=="ozone")

cast(agm, month ~ variable, range)

cast(agm, month ~ variable + result_variable, range)

cast(agm, variable ~ month ~ result_variable,range)

#Chick weight example
names(ChickWeight) <- tolower(names(ChickWeight))

http://had.co.nz/reshape/

colsplit

chick_m <- melt(ChickWeight, id=2:4, na.rm=TRUE)

cast(chick_m, time ~ variable, mean) # average effect of time
cast(chick_m, diet ~ variable, mean) # average effect of diet
cast(chick_m, diet ~ time ~ variable, mean) # average effect of diet & time

How many chicks at each time? - checking for balance
cast(chick_m, time ~ diet, length)

cast(chick_m, chick ~ time, mean)

cast(chick_m, chick ~ time, mean, subset=time < 10 & chick < 20)

cast(chick_m, diet + chick ~ time)
cast(chick_m, chick ~ time ~ diet)
cast(chick_m, diet + chick ~ time, mean, margins="diet")

#Tips example
cast(melt(tips), sex ~ smoker, mean, subset=variable=="total_bill")
cast(melt(tips), sex ~ smoker | variable, mean)

ff_d <- melt(french_fries, id=1:4, na.rm=TRUE)

cast(ff_d, subject ~ time, length)

cast(ff_d, subject ~ time, length, fill=0)

cast(ff_d, subject ~ time, function(x) 30 - length(x))
cast(ff_d, subject ~ time, function(x) 30 - length(x), fill=30)

cast(ff_d, variable ~ ., c(min, max))
cast(ff_d, variable ~ ., function(x) quantile(x,c(0.25,0.5)))
cast(ff_d, treatment ~ variable, mean, margins=c("grand_col”, "grand_row"))

cast(ff_d, treatment + subject ~ variable, mean, margins="treatment")

colsplit Split a vector into multiple columns

Description

This function can be used to split up a column that has been pasted together.

Usage
colsplit(x, split="", names)
Arguments
X character vector or factor to split up
split regular expression to split on
names names for output columns
Author(s)

Hadley Wickham <h.wickham @ gmail.com>

combine_factor

combine_factor Combine factor levels

Description

Convenience function to make it easy to combine multiple levels

Usage

combine_factor(fac, variable=levels(fac), other.label="Other")

Arguments
fac factor variable
variable either a vector of . See examples for more details.
other.label label for other level

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

Examples

df <- data.frame(a = LETTERS[sample(5, 15, replace=TRUE)], y = rnorm(15))
combine_factor(df$a, c(1,2,2,1,2))

combine_factor(df$a, c(1:4, 1))

(f <~ reorder(dfa, dfy))

percent <- tapply(abs(df$y), df$a, sum)

combine_factor(f, c(order(percent)[1:3]1))

condense.df Condense a data frame
Description
Condense
Usage
condense.df (data, variables, fun, ...)
Arguments
data data frame
variables character vector of variables to condense over
fun function to condense with

arguments passed to condensing function

6 expand.grid.df
Author(s)

Hadley Wickham <h.wickham @ gmail.com>

expand.grid.df Expand grid

Description

Expand grid of data frames
Usage

expand.grid.df (..., unique=TRUE)
Arguments

list of data frames (first varies fastest)

unique only use unique rows?
Details

Creates new data frame containing all combination of rows from data.frames in . . .
Author(s)

Hadley Wickham <h.wickham @ gmail.com>
Examples

expand.grid.df(data
expand.grid.df (data
expand.grid.df(data
expand.grid.df(data

.frame(a=
.frame(a=
.frame(a=
.frame(a=

1
1
1
1

’

’

)

’

:2))

:2), data.frame())

:2), data.frame(c=1:2, d=1:2))

:2), data.frame(c=1:2, d=1:2), data.frame(e=c("a","b")))

French fries 7

French fries Sensory data from a french fries experiment

Description

This data was collected from a sensory experiment conducted at Iowa State University in 2004. The
investigators were interested in the effect of using three different fryer oils had on the taste of the
fries.

Variables:

* time in weeks from start of study.
* treatment (type of oil),

* subject,

* replicate,

* potato-y flavour,

* buttery flavour,

* grassy flavour,

¢ rancid flavour,

* painty flavour

Usage

data(french_fries)

Format

A data frame with 696 rows and 9 variables

funstofun Aggregate multiple functions into a single function

Description

Combine multiple functions to a single function returning a named vector of outputs

Usage

funstofun(...)

Arguments

functions to combine

8 melt

Details

Each function should produce a single number as output

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

Examples

funstofun(min, max)(1:10)
funstofun(length, mean, var)(rnorm(100))

melt Melt

Description

Melt an object into a form suitable for easy casting.

Usage
melt(data, ...)
Arguments
data Data set to melt
Other arguments passed to the specific melt method
Details

This the generic melt function. See the following functions for specific details for different data
structures:

e melt.data.frame for data.frames
* melt.array for arrays, matrices and tables

e melt.list for lists

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

melt.array

melt.array Melt an array

Description

This function melts a high-dimensional array into a form that you can use cast with.

Usage

S3 method for class 'array'

melt(data, varnames = names(dimnames(data)), ...)
Arguments

data array to melt

varnames variable names to use in molten data.frame

other arguments ignored

Details

This code is conceptually similar to as.data. frame. table

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

Examples

a <- array(1:24, c(2,3,4))

melt(a)

melt(a, varnames=c("X","Y","Z"))

dimnames(a) <- lapply(dim(a), function(x) LETTERS[1:x1)
melt(a)

melt(a, varnames=c("X","Y","Z"))

dimnames(a)[1] <- 1list(NULL)

melt(a)

10

melt.data.frame

melt.data.frame

Melt a data frame

Description

Melt a data frame into form suitable for easy casting.

Usage

S3 method for class 'data.frame'
melt(data, id.vars, measure.vars,

variable_name = "variable"”, na.rm = l!preserve.na, preserve.na = TRUE, ...)
Arguments
data Data set to melt

id.vars

measure.vars

variable_name
na.rm

preserve.na

Details

Id variables. If blank, will use all non measure.vars variables. Can be integer
(variable position) or string (variable name)

Measured variables. If blank, will use all non id.vars variables. Can be integer
(variable position) or string (variable name)

Name of the variable that will store the names of the original variables
Should NA values be removed from the data set?
Old argument name, now deprecated

other arguments ignored

You need to tell melt which of your variables are id variables, and which are measured variables.
If you only supply one of id.vars and measure.vars, melt will assume the remainder of the
variables in the data set belong to the other. If you supply neither, melt will assume factor and
character variables are id variables, and all others are measured.

Value

molten data

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

See Also

http://had.co.nz/reshape/

http://had.co.nz/reshape/

merge_all

Examples

head(melt(tips))

names(airquality) <- tolower(names(airquality))
melt(airquality, id=c("month”, "day"))
names(ChickWeight) <- tolower(names(ChickWeight))
melt(ChickWeight, id=2:4)

11

merge_all Merge all

Description

Merge together a series of data.frames

Usage
merge_all(dfs, ...)
Arguments
dfs list of data frames to merge
other arguments passed on to merge
Details

Order of data frames should be from most complete to least complete

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

See Also

merge_recurse

12 recast

namerows Name rows

Description

Add variable to data frame containing rownames

Usage

namerows (df, col.name = "id")
Arguments

df data frame

col.name name of new column containing rownames
Details

This is useful when the thing that you want to melt by is the rownames of the data frame, not an
explicit variable

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

recast Recast

Description

melt and cast data in a single step

Usage
recast(data, formula, ..., id.var, measure.var)
Arguments
data Data set to melt
formula Casting formula, see cast for specifics
Other arguments passed to cast
id.var Identifying variables. If blank, will use all non measure.var variables

measure.var Measured variables. If blank, will use all non id.var variables

rename

Details

This conveniently wraps melting and casting a data frame into one step.

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

See Also

http://had.co.nz/reshape/

Examples

recast(french_fries, time ~ variable, id.var=1:4)

13

rename Rename

Description

Rename an object

Usage

rename(x, replace)

Arguments

X object to be renamed

replace named vector specifying new names
Details

The rename function provide an easy way to rename the columns of a data.frame or the items in a

list.

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

http://had.co.nz/reshape/

14

Examples
rename(mtcars, c(wt = "weight”, cyl = "cylinders"))
a <- list(a=1, b=2, c=3)
rename(a, c(b = "a", ¢ = "b", a="c"))

Example supplied by Timothy Bates
names <- c("john", "tim"”, "andy")
ages <- c(50, 46, 25)

mydata <- data.frame(names,ages)
names(mydata) #-> "name”, "ages"

lets change "ages" to singular.

nb: The operation is not done in place, so you need to set your

data to that returned from rename

mydata <- rename(mydata, c(ages="age"))
names(mydata) #-> "name”, "age

n

rescaler

rescaler Rescaler

Description

Convenient methods for rescaling data

Usage
rescaler(x, type="sd", ...)
Arguments
X object to rescale
type type of rescaling to use (see description for details)
other options (only pasesed to rank)
Details

Provides methods for vectors, matrices and data.frames

Currently, five rescaling options are implemented:

¢ I: do nothing
* range: scale to [0, 1]

¢ rank: convert values to ranks

* robust: robust version of sd, substract median and divide by median absolute deviation

* sd: subtract mean and divide by standard deviation

Smiths

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

See Also

rescaler.default

15

Smiths Demo data describing the Smiths

Description

A small demo dataset describing John and Mary Smith. Used in the introductory vignette.

Usage

data(smiths)

Format

A data frame with 2 rows and 5 variables

sort_df Sort data frame

Description

Convenience method for sorting a data frame using the given variables.

Usage

sort_df (data, vars=names(data))

Arguments

data data frame to sort

vars variables to use for sorting
Details

Simple wrapper around order

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

16 sparseby

sparseby Apply a Function to a Data Frame split by levels of indices

Description
Function sparseby is a modified version of by for tapply applied to data frames. It always returns
a new data frame rather than a multi-way array.

Usage

sparseby(data, INDICES = list(), FUN, ..., GROUPNAMES = TRUE)

Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a variable or list of variables indicating the subgroups of data
FUN a function to be applied to data frame subsets of data.
further arguments to FUN.
GROUPNAMES a logical variable indicating whether the group names should be bound to the
result
Details

A data frame or matrix is split by row into data frames or matrices respectively subsetted by the
values of one or more factors, and function FUN is applied to each subset in turn.

sparseby is much faster and more memory efficient than by or tapply in the situation where the
combinations of INDICES present in the data form a sparse subset of all possible combinations.

Value

A data frame or matrix containing the results of FUN applied to each subgroup of the matrix. The
result depends on what is returned from FUN:

If FUN returns NULL on any subsets, those are dropped.

If it returns a single value or a vector of values, the length must be consistent across all subgroups.
These will be returned as values in rows of the resulting data frame or matrix.

If it returns data frames or matrices, they must all have the same number of columns, and they will
be bound with rbind into a single data frame or matrix.

Names for the columns will be taken from the names in the list of INDICES or from the results of
FUN, as appropriate.

Author(s)

Duncan Murdoch

stamp 17

See Also

tapply, by

Examples

x <- data.frame(index=c(rep(1,4),rep(2,3)),value=c(1:7))
X
sparseby(x,x$index, nrow)

The version below works entirely in matrices
x <- as.matrix(x)
sparseby(x,list(group = x[,"index"]), function(subset) c(mean=mean(subset[,2])))

stamp Stamp

Description
Stamp is like reshape but the "stamping" function is passed the entire data frame, instead of just a
few variables.

Usage

stamp(data, formula = . ~ ., fun.aggregate, ..., margins=NULL,
subset=TRUE, add.missing=FALSE)

Arguments
data data.frame (no molten)
formula formula that describes arrangement of result, columns ~ rows, see reshape for

more information
fun.aggregate aggregation function to use, should take a data frame as the first argument

arguments passed to the aggregation function

margins margins to compute (character vector, or TRUE for all margins), can contain
grand_row or grand_col to inclue grand row or column margins respectively.
subset logical vector by which to subset the data frame, evaluated in the context of the
data frame so you can
add.missing fill in missing combinations?
Details

It is very similar to the by function except in the form of the output which is arranged using the
formula as in reshape

Note that it’s very easy to create objects that R can’t print with this function. You will probably
want to save the results to a variable and then use extract the results. See the examples.

18 Tips

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

Tips Tipping data

Description
One waiter recorded information about each tip he received over a period of a few months working

in one restaurant. He collected several variables:

* tip in dollars,

* bill in dollars,

* sex of the bill payer,

» whether there were smokers in the party,
* day of the week,

* time of day,

* size of the party.

In all he recorded 244 tips. The data was reported in a collection of case studies for business
statistics (Bryant & Smith 1995).

Usage

data(tips)

Format

A data frame with 244 rows and 7 variables

References

Bryant, P. G. and Smith, M (1995) Practical Data Analysis: Case Studies in Business Statistics.
Homewood, IL: Richard D. Irwin Publishing:

uniquedefault 19

uniquedefault Unique default

Description

Convenience function for setting default if not unique

Usage

uniquedefault(values, default)

Arguments

values vector of values

default default to use if values not uniquez

Details

Used by ggplot2

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

untable Untable a dataset

Description

Inverse of table

Usage
untable(df, num)

Arguments

df matrix or data.frame to untable

num vector of counts (of same length as df)
Details

Given a tabulated dataset (or matrix) this will untabulate it by repeating each row by the number of
times it was repeated

Author(s)

Hadley Wickham <h.wickham @ gmail.com>

Index

* category french_fries (French fries), 7
sparseby, 16 funstofun, 7

* datasets
French fries, 7 melt, 2, 3,8, 12
Smiths, 15 melt.array, 8,9
Tips, 18 melt.data.frame, 8, 10

* iteration melt.list, 8
sparseby, 16 melt.matrix (melt.array), 9

* manip melt.table (melt.array), 9
cast, 2 merge_all, 11

colsplit, 4
combine_factor, 5
condense.df, 5
expand.grid.df, 6
funstofun, 7
melt, 8
melt.array, 9
melt.data.frame, 10
merge_all, 11
namerows, 12
recast, 12
rename, 13
rescaler, 14
sort_df, 15
stamp, 17
uniquedefault, 19
untable, 19

apply, 3
as.data.frame. table, 9

by, 16, 17

cast, 2,9, 12
colsplit, 4
combine_factor, 5
condense.df, 5

expand.grid.df, 6

French fries, 7

20

merge_recurse, 11
namerows, 12

rank, 14

rbind, 716
recast, 3, 12
rename, 13
rescaler, 14
rescaler.default, /5
reshape, 17
reshapel, 3

Smiths, 15

smiths (Smiths), 15
sort_df, 15
sparseby, 16
stamp, 17

sweep, 3

tapply, 16, 17
Tips, 18
tips (Tips), 18

uniquedefault, 19
untable, 19

	cast
	colsplit
	combine_factor
	condense.df
	expand.grid.df
	French fries
	funstofun
	melt
	melt.array
	melt.data.frame
	merge_all
	namerows
	recast
	rename
	rescaler
	Smiths
	sort_df
	sparseby
	stamp
	Tips
	uniquedefault
	untable
	Index

