
A Generic Registry Infrastructure for R

David Meyer

2009-02-17

1 Introduction

More and more, R packages are offering dynamic functionality, allowing users to extend a “reposi-
tory”of initial features or data. For example, the proxy package (Meyer and Buchta, 2008) provides
an enhanced dist() function for computing dissimilarity matrices, allowing to choose among sev-
eral proximity measures stored in a registry. Each entry is composed of a small workhorse function
and some meta data including, e.g., a character vector of aliases, literature references, the formula
in plain text, a function to coerce between similarity and distance, and a type categorization
(binary, metric, etc.). Users can add new proximity measures to the registry at run-time and
immediately use them without recreating the package, specifying one of the aliases defined in the
meta data. Similarly, the relations (Hornik and Meyer, 2008) and CLUE (Hornik, 2005, 2007)
packages use simple registries internally to link some meta data to available functions, used by the
high-level consensus ranking and cluster ensemble functions, respectively.

Such a registry, whether exposed to the user or not, is conceptually a small in-memory data
base where entries with a common field structure are stored and retrieved and whose fields can
be of mixed type. At first sight, a data frame seems to be the data structure of choice for an
appropriate implementation. Unfortunately, data frames are inconvenient to use with factors,
functions, or other recursive types such as lists due to automatic coercions taking place behind
the scenes. In fact, a simpler, record-like structure such as a list with named components (“fields”)
appears more practical. Also, features known from “real” data bases such as compound keys,
validity checking of new entries, and use of access rights are not available by default and need to
be “reinvented” every time they are needed.

The registry package provides a simple mechanism for defining and manipulating user-
extensible registry objects. A typical use case in the context of an R package could include the
following steps:

1. Create one or more registry objects inside the package’s namespace.

2. Insert entries to the registry.

3. Possibly, “seal” the entries and set access rights.

4. Possibly, export the registry object to the user level.

5. Browse and retrieve entries from the registry.

In the following, we explain these steps in more detail: first, how a registry can be set up;
second, how entries can be added, modified and retrieved; and third, how a registry can be sealed
and restricted through the definition of access rights.

2 Creating Registries

A registry basically is a container (implemented in R as an environment), along with some access
functions. A new object of class registry can simply be created using the registry() function:

1

> library(registry)

> R <- registry()

> print(R)

An object of class 'registry' with no entry.

Optional parameters include the specification of an (additional) class for the created registry object
and the individual entries, as well as the specification of some validity function checking new entries
to be added to the registry.

In the following, we will use the example of a simple address book, whose entries include
first and last name, address, age, home/cell phone number, and a business/private classification.
Last and first name build the search key. Age is an optional integer in the range of 1 and 99.
Additionally, at least one phone number should be added to the registry.

We start by creating two simple validity functions. The first one, to be specified at field level
later on, checks a given age:

> checkAge <- function(x) stopifnot(is.na(x) || x > 0 && x < 100)

The second one, specified at registry level, checks whether a given registry entry (list of named
components) contains at least one phone number:

> checkPhone <- function(x) stopifnot(!is.na(x$mobile) || !is.na(x$home))

Next, we create a registry of class Addressbook (inheriting from registry), containing entries of
class Address and using the above validity function.

> R <- registry(registry_class = "Addressbook", entry_class = "Address",

+ validity_FUN = checkPhone)

The additional class for the registry allows, e.g., user-defined printing:

> print.Addressbook <-

+ function(x, ...) {

+ writeLines(sprintf("An address book with %i entries.\n", length(x)))

+ invisible(x)

+ }

> print(R)

An address book with 0 entries.

At this stage, we are ready to set up the field information. First and last names are mandatory
character fields, uniquely identifying an entry (key fields). Lookups should work with partial
completion, ignoring case:

> R$set_field("last", type = "character", is_key = TRUE, index_FUN = match_partial_ignorecase)

> R$set_field("first", type = "character", is_key = TRUE, index_FUN = match_partial_ignorecase)

The address is also character, but optional:

> R$set_field("address", type = "character")

At least one phone number (character) is required. This can be achieved by making them optional,
and using the validity function specified at the registry level to check whether one of them is empty:

> R$set_field("mobile", type = "character")

> R$set_field("home", type = "character")

The age field is an optional integer with a defined range, checked by the field-level validity function:

> R$set_field("age", type = "integer", validity_FUN = checkAge)

2

Finally, the business/private category is defined by specifying the possible alternatives (Business
is set as default):

> R$set_field("type", type = "character",

+ alternatives = c("Business", "Private"),

+ default = "Business")

The setup for a field can be retrieved using get_field():

> R$get_field("type")

type character

alternatives c("Business", "Private")

default Business

is_mandatory FALSE

is_modifiable TRUE

is_key FALSE

index_FUN function (lookup, entry, ...) tolower(lookup) %in%

tolower(entry)

index_FUN_args list()

get_fields() returns the complete list.

3 Using Registries

We now can start adding entries to the registry:

> R$set_entry(last = "Smith", first = "Mary", address = "Vienna",

+ home = "734 43 34", type = "Private", age = 44L)

> R$set_entry(last = "Smith", first = "Peter", address = "New York",

+ mobile = "878 78 87")

If all field values are specified, the field names can be omitted:

> R$set_entry("Myers", "John", "Washington", "52 32 34", "898 89 99",

+ 33L, "Business")

Duplicate or invalid entries are not accepted:

> TRY <- function(expr) tryCatch(expr, error = print)

> TRY(R$set_entry(last = "Smith", first = "Mary"))

<simpleError: Entry already in registry.>

> TRY(R$set_entry(last = "Miller", first = "Henry"))

<simpleError in (function (x) stopifnot(!is.na(x$mobile) || !is.na(x$home)))(list(last = "Miller", first = "Henry", address = NA, mobile = NA, home = NA, age = NA, type = "Business")): !is.na(x$mobile) || !is.na(x$home) is not TRUE>

> TRY(R$set_entry(last = "Miller", first = "Henry", age = 12.5))

<simpleError: Field "age" does not inherit from: integer>

> TRY(R$set_entry(last = "Miller", first = "Henry", age = 999L))

<simpleError in (function (x) stopifnot(is.na(x) || x > 0 && x < 100))(999L): is.na(x) || x > 0 && x < 100 is not TRUE>

A single entry can be retrieved using get_entry():

> R$get_entry(last = "Smith", first = "mar")

3

last Smith

first Mary

address Vienna

mobile NA

home 734 43 34

age 44

type Private

Since returned entries inherit from Address, we can provide a user-defined print method:

> print.Address <- function(x) with(x,

+ writeLines(sprintf("%s %s, %s; home: %s, mobile: %s; age: %i (%s)", first, last, address, home, mobile, age, type)))

> R$get_entry(last = "Smith", first = "mar")

Mary Smith, Vienna; home: 734 43 34, mobile: NA; age: 44 (Private)

Note that even though the first name of Mary Smith is incompletely specified and in lower case,
the lookup is still successful because of the partial matching indexing function. The [[operator
can be used as an alternative to get_entry():

> R[["Myers"]]

John Myers, Washington; home: 898 89 99, mobile: 52 32 34; age: 33 (Business)

For Myers, the last name uniquely identifies the entry, so the first name can be omitted. Key
values can have alternative values:

> R$set_entry(last = "Frears", first = c("Joe", "Jonathan"),

+ address = "Washington", home = "721 42 34")

Either of them can be used for retrieval:

> identical(R[["Frears", "Jonathan"]], R[["Frears", "Joe"]])

[1] TRUE

Unsuccessful lookups result in a return of NULL. Multiple entries can be retrieved using the
get_entries() accessing function. They are returned in a list whose component names are
generated from the key values:

> R$get_entries("Smith")

$Smith_Mary

Mary Smith, Vienna; home: 734 43 34, mobile: NA; age: 44 (Private)

$Smith_Peter

Peter Smith, New York; home: NA, mobile: 878 78 87; age: NA (Business)

Full-text search in all information is provided by grep_entries():

> R$grep_entries("Priv")

$Smith_Mary

Mary Smith, Vienna; home: 734 43 34, mobile: NA; age: 44 (Private)

A list of all entries can be obtained using either of:

> R$get_entries()

> R[]

4

The summary method for registry objects returns a data frame:

> summary(R)

last first address mobile home age type

1 Smith Mary Vienna <NA> 734 43 34 44 Private

2 Smith Peter New York 878 78 87 <NA> NA Business

3 Myers John Washington 52 32 34 898 89 99 33 Business

4 Frears Joe Washington <NA> 721 42 34 NA Business

Entries can also be modified using modify_entry(), specifying key and new field values:

> R[["Smith", "Peter"]]

Peter Smith, New York; home: NA, mobile: 878 78 87; age: NA (Business)

> R$modify_entry(last = "Smith", first = "Peter", age = 22L)

> R[["Smith", "Peter"]]

Peter Smith, New York; home: NA, mobile: 878 78 87; age: 22 (Business)

Finally, entries can be removed using delete_entry():

> R$delete_entry(last = "Smith", first = "Peter")

> R[["Smith", "Peter"]]

NULL

4 Sealing Registries and Setting Access Rights

Occasionally, developers might want to protect a registry that ships with some package to prevent
accidental deletions or alterations. For this, registry offers two mechanisms: first, a registry object
can be “sealed” to prevent modifications of existing data:

> R$seal_entries()

> TRY(R$delete_entry("Smith", "Mary"))

<simpleError: Deletion of entry not allowed.>

> R$set_entry(last = "Slater", first = "Christian", address = "Boston",

+ mobile = "766 23 88")

> R[["Slater"]]

Christian Slater, Boston; home: NA, mobile: 766 23 88; age: NA (Business)

Second, the access permissions for registries can be restricted:

> R$get_permissions()

set_entries modify_entries delete_entries set_fields

TRUE TRUE TRUE TRUE

> R$restrict_permissions(delete_entries = FALSE)

> TRY(R$delete_entry("Slater"))

<simpleError: Deletion of entries not allowed.>

> R$modify_entry(last = "Slater", first = "Christian", age = 44L)

> R[["Slater"]]

Christian Slater, Boston; home: NA, mobile: 766 23 88; age: 44 (Business)

5

References

K. Hornik. A CLUE for CLUster Ensembles. Journal of Statistical Software, 14(12), September
2005. URL http://www.jstatsoft.org/v14/i12/.

K. Hornik. clue: Cluster ensembles, 2007. URL http://CRAN.R-project.org/. R package version
0.3-20.

K. Hornik and D. Meyer. relations: Data Structures and Algorithms for Relations, 2008. R package
version 0.5.

D. Meyer and C. Buchta. proxy: Distance and Similarity Measures, 2008. R package version 0.4-1.

6

http://www.jstatsoft.org/v14/i12/
http://CRAN.R-project.org/

	Introduction
	Creating Registries
	Using Registries
	Sealing Registries and Setting Access Rights

