## ----eval=FALSE--------------------------------------------------------------- # library(rdataretriever) # library(DBI) # library(dplyr) # library(dbplyr) # library(raster) # library(ggplot2) ## ----echo = FALSE, results = "hide", eval=FALSE------------------------------- # rdataretriever::get_updates() ## ----echo = FALSE, results = "hide", eval=FALSE------------------------------- # rdataretriever::install_sqlite('breed-bird-survey', 'bbs.sqlite') ## ----eval=FALSE--------------------------------------------------------------- # bbs_db <- dbConnect(RSQLite::SQLite(), 'bbs.sqlite') ## ----eval=FALSE--------------------------------------------------------------- # surveys <- tbl(bbs_db, "breed_bird_survey_counts") # sites <- tbl(bbs_db, "breed_bird_survey_routes") ## ----eval=FALSE--------------------------------------------------------------- # rich_data <- surveys %>% # filter(year == 2016) %>% # group_by(statenum, route) %>% # summarize(richness = n()) %>% # collect() # rich_data ## ----eval=FALSE--------------------------------------------------------------- # bioclim <- getData('worldclim', var = 'bio', res = 10) ## ----eval=FALSE--------------------------------------------------------------- # sites <- as.data.frame(sites) # sites_spatial <- SpatialPointsDataFrame(sites[c('longitude', 'latitude')], sites) ## ----eval=FALSE--------------------------------------------------------------- # bioclim_bbs <- extract(bioclim, sites_spatial) %>% # cbind(sites) # richness_w_env <- inner_join(rich_data, bioclim_bbs) # richness_w_env ## ----eval=FALSE--------------------------------------------------------------- # ggplot(richness_w_env, aes(x = bio12, y = richness)) + # geom_point(alpha = 0.5) + # labs(x = "Annual Precipitation", y = "Number of Species") ## ----eval=FALSE--------------------------------------------------------------- # ggplot(richness_w_env, aes(x = bio12, y = richness)) + # geom_point(alpha = 0.5) + # geom_smooth() ## ----fig.height = 8, fig.width = 8, warning = FALSE, eval=FALSE--------------- # richness_w_env_high_n <- richness_w_env %>% # group_by(statenum) %>% # filter(n() >= 50) # # ggplot(richness_w_env_high_n, aes(x = bio12, y = richness)) + # geom_point() + # geom_smooth() + # facet_wrap(~statenum, scales = 'free') + # labs(x = "Annual Precipitation", y = "Number of Species")