Package ‘quantspec’

July 11, 2024

Version 1.2-4

Encoding UTF-8

Date 2024-07-10

Title Quantile-Based Spectral Analysis of Time Series
Depends R (>=3.0.0), stats4

Suggests testthat

Imports methods, graphics, quantreg, abind, zoo, snowfall, Repp (>=
0.11.0)

Description Methods to determine, smooth and plot quantile periodograms for
univariate and multivariate time series. See Kley (2016) <doi:10.18637/jss.v070.103>
for a description and tutorial.

License GPL (>=2)
URL https://github.com/tobiaskley/quantspec

BugReports https://github.com/tobiaskley/quantspec/issues
LazyData TRUE
LinkingTo Rcpp

Collate 'Class-BootPos.R' 'generics.R' 'Class-LagOperator.R'
'Class-ClippedCov.R' 'Class-QSpecQuantity.R' 'aux-functions.R'
'Class-FreqRep.R' 'Class-ClippedFT.R' 'Class-QuantileSD.R'
'Class-IntegrQuantileSD.R' 'Class-Weight.R'
'Class-KernelWeight.R' 'Class-LagEstimator.R' 'kernels.R'
'Class-LagKernelWeight.R' 'Class-MovingBlocks.R'
'Class-QRegEstimator.R' 'Class-QuantilePG.R'
'Class-SmoothedPG.R' 'Class-SpecDistrWeight.R' 'RcppExports.R’
'data.R' 'deprecated.R' 'models.R' 'quantspec-package.R'

RoxygenNote 7.3.2
NeedsCompilation yes

Author Tobias Kley [aut, cre],
Stefan Birr [ctb] (Contributions to lag window estimation)

Maintainer Tobias Kley <tobias.kley@uni-goettingen.de>

1


https://doi.org/10.18637/jss.v070.i03
https://github.com/tobiaskley/quantspec
https://github.com/tobiaskley/quantspec/issues

2 Contents

Repository CRAN
Date/Publication 2024-07-11 12:50:02 UTC

Contents
quantspec-package . . . . . .. ... e e e e 4
.computeCOhErency . . . . . . . .. e e e e e 8
computeSdNaive . . . . .. 9
BootPos-class . . . . . . ... 9
ClippedCov-class . . . . . . . . . e e 10
ClippedCov-CONStructor . . . . . . . . .ttt vttt e e e e e e 10
ClippedFT-class . . . . . . . . . . e 11
ClippedFT-constructor . . . . . . . . . . . . i ittt e e 12
CloSESt.POS . . .« . L e e e e 13
data-spS500 . . . . .. e e 14
data-wheatprices . . . . . . . . .. e e e e e 14
FreqRep-class . . . . . . . . . 15
frequenciesValidator . . . . . . . . .. .. 17
GENETICS-ACCESSOTS . .« « & v v v v v e e e e e e e e e e e e e e e e e 18
eNerics-assoCiations . . . . . . . . . ... e e 19
generics-functions . . . . . . ... L. e e e 20
getB-FreqRep . . . . . . . . e 21
getB-LagOperator . . . . . . . . . .. e e 21
getBootPos-FreqRep . . . . . . . . .. 22
getBootPos-LagOperator . . . . . . . . . . .. 22
getBw-KernelWeight . . . . . . . . .. .. 23
getBw-LagKernelWeight . . . . . . . . . . .. . ... ... .. 23
getCoherency-QuantileSD . . . . . . . . ... 24
getCoherency-SmoothedPG . . . . . . . . .. ... 25
getCoherencySdNaive-SmoothedPG . . . . . . ... ... ... .. ... ... ..... 26
getDescr-Weight . . . . . . . ... 27
getFreqRep-QuantilePG . . . . . . . ..o 28
getFrequencies-FreqRep . . . . . . . . . . .. 28
getFrequencies-QSpecQuantity . . . . . . . . ... Lo o 29
getlsRankBased-FreqRep . . . . . . . . . . ... 29
getlsRankBased-LagOperator . . . . . . . . . . . . . .. 30
getLagOperator-LagEstimator . . . . . . ... ... ... . ... ... 30
getlevels-FreqRep . . . . . . . . L L 31
getlLevels-LagOperator . . . . . . . . . . . . e 31
getLevels-QSpecQuantity . . . . . . . . ..o 32
getMaxLag-LagOperator . . . . . . . . . . . . .. 32
getMeanPG-QuantileSD . . . . . . ... 33
getN-QuantileSD . . . . . . .. 33
getParallel-QRegEstimator . . . . . . . .. . ... .. 34
getPointwiseCIs-LagEstimator . . . . . . . . . ... . ... .. ... . ... ... 34
getPointwiseCIs-SmoothedPG . . . . . . . ... ... oL oo 36

getPositions-MovingBlocks . . . . . . ..o oo 37



Contents

3
getQuantilePG-QuantileSD . . . . . . . . ... 38
getQuantilePG-SmoothedPG . . . . . . . ... Lo 39
getQuantileSD-IntegrQuantileSD . . . . . . . .. ..o 39
getR-QuantileSD . . . . .. oL 40
getSdBoot-LagEstimator . . . . . . . . . ... 40
getSdBoot-SmoothedPG . . . . . . ... oL oo 41
getSdNaive-LagEstimator . . . . . . . . . . . ... 42
getSdNaive-SmoothedPG . . . . . . . . ... 43
getStdError-QuantileSD . . . . ... 0oL 44
getTs-QuantileSD . . . . . . . .. L 45
getType-QuantileSD . . . . . . . . L 46
getValues-FreqRep . . . . . . . . . .. 46
getValues-IntegrQuantileSD . . . . . . . . . ... L 47
getValues-KernelWeight . . . . . . . . .. ... 48
getValues-LagEstimator . . . . . . . . . . . .. 49
getValues-LagKernelWeight . . . . . . . . ... ... ... 0oL 50
getValues-LagOperator . . . . . . . . . . . ... e 50
getValues-QuantilePG . . . . . . . . . . ... 51
getValues-QuantileSD . . . . . . . ... L 52
getValues-SmoothedPG . . . . . . . . . ... L 53
getValues-SpecDistrWeight . . . . . . . . . . ... o 54
getW-KernelWeight . . . . . . . . . . . . e 54
getW-LagKernelWeight . . . . . . . .. .. ... ... oo 55
getWeight-LagEstimator . . . . . . . . . . . ... .. 55
getWeight-SmoothedPG . . . . . . . . . . .. 56
getWnj-KernelWeight . . . . . . . . . . ..o 56
getY-FreqRep . . . . . . . .o 57
increasePrecision-QuantileSD . . . . . .. ... 57
IntegrQuantileSD-class . . . . . . . . . . .. 58
IntegrQuantileSD-constructor . . . . . . . .. ... Lo oL 59
isswholenumber . . . . . . ... o 60
kernels . . . . . . . 61
KernelWeight-class . . . . . . . . . . . 62
KernelWeight-constructor . . . . . . . . . . . . ... 63
LagEstimator-class . . . . . . . . . L 64
LagEstimator-constructor . . . . . . . . . . ..o e e e e e 64
LagKernelWeight-class . . . . . . . . . .. . . 65
LagKernelWeight-constructor. . . . . . . . . . . . . .. 66
LagOperator-class . . . . . . . . . o 0 i e e e e e 67
enTS . . . . e 67
MovingBlocks-class . . . . . . ... 68
MovingBlocks-constructor . . . . . . ... o 68
plot-FreqRep . . . . . . . o e 69
plot-IntegrQuantileSD . . . . . . . ... 70
plot-KernelWeight . . . . . . . . . . . .. 71
plot-LagEstimator . . . . . . . . . . . . e 72
plot-LagKernelWeight . . . . . . . .. ... ... . 73

plot-LagOperator . . . . . . . . . . . e 74



4 quantspec-package
plot-QuantilePG . . . . . . . . . e 75
plot-QuantileSD . . . . . . . L. 76
plot-SmoothedPG . . . . . . . . .. 77
plot-SpecDistrWeight . . . . . . . . .. ... o 79
QRegEstimator-class . . . . . . . . . .. e e 80
QRegEstimator-constructor . . . . . . . . ... oL e e 80
QSpecQuantity-class . . . . . . . ... e e e e 82
QuantilePG-class . . . . . . . . . . . e e 82
QuantilePG-constructor . . . . . . . . . . ... e e e e 84
QuantileSD-class . . . . . . . . . . e e e e 85
QuantileSD-constructor . . . . . . . . . ... e e e e e e 88
quantspec-defunct . . . . ... Lo 89
SmoothedPG-class . . . . . . . . . . .. 90
SmoothedPG-constructor . . . . . . . . . ... 91
SpecDistrWeight-class . . . . . . . . . .. 93
SpecDistrWeight-constructor . . . . . . . . . ... L. o L 93
timeSeriesValidator . . . . . . . . ... 94
ts-models . ... L L e e 94
ts-models-ARL . . . . . 95
ts-models-AR2 . . . .o 96
ts-models-ARCHI . . . . . . . .. 97
ts-models-QART . . . . .. e 97
Weight-class . . . . . . . . . . e 98

Index 99

quantspec-package Quantile-Based Spectral Analysis of Time Series

Description

Methods to determine, smooth and plot quantile periodograms for univariate and (since v1.2-0)
multivariate time series. See Kley (2016) <doi:10.18637/jss.v070.103> for a description and tutorial.

Details

Package: quantspec
Type: Package
Version:  1.2-4

Date: 2024-07-10
License: GPL (>=2)



quantspec-package 5

Contents

The quantspec package contains a hierachy of S4 classes with corresponding methods and func-
tions serving as constructors. The following class diagrams provide an overview on the structure
of the package. In the first and second class diagram the classes implementing the estimators are
shown. In the first diagram the classes related to periodogram-based estimation are displayed:

QSpecQuantity

+values: array[J,P,K1,P,K2,B]
+frequencies: numeric[J]
+levels: <numeric[Ki]> list[2]

+show()
uantile! > moothe o ei
QuantilePG [L—1 SmoothedPG L L Weight
— +sdNaive: array[J,P,K1,P,K2] +values: array[N]
1 +initialize() -sdNaive.done: logical +descr: character
+quantilePG(Y, . .) dBoot: (3,P.K1,P,K2]
plot(..) +sdBoot: array[J,P,K1,P, +show()
-sdBoot.done: logical +plot()
+initialize()
+getPointwiseCIs(..)
+smoothedPG(Y,..)
+smoothedPG (qPG, . . )
+plot(..)
KernelWeight SpecDistrWeight
+W: function(x) Finitialize()
. N 0.1 *SWE_"“'"e"iCN +specDistrileight ()
FreqRep =1 BootPos +Wnj: array[N]
- - - - +initialize()
+Y: numeric[N,P] +1: numeric +kernelWeight (W, N, bw, descr)
+frequencies: numeric[J] +T: numeric
+levels: numeric[K] +show()

+values: array[J,P,K,B]
+isRankBased: logical
+B: numeric

+show()

+plot(levels)

MovingBlocks

+initialize()

- - +getPositions(B=1): matrix([N,B]
QRegEstimator ClippedFT +movingBlocks (1,N)

+method: character

+parallel: logical

+initialize()

+qRegEstimator(Y,..)

+initialize()
+clippedFT(Y,..)

In the second diagram the classes related to lag window-based estimation are displayed:



QSpecQuantity

+values: array[J,P,K1,P,K2,B]
+frequencies: numeric[J]
+levels: <numeric[Ki]> list[2]

+getPositions(B=1):
+movingBlocks(1,N)

matrix[N,B]

+show()

Weight B il LagEstimator
+values: array|[N] +sdNaive: array[J,P,K1,P,K2]
+descr: character -sdNaive.done: logical
+show() +initialize() 1
+plot() +getPointwiseCIs(..)

+lagEstimator(Y,..)
+plot(..)
LagKernelWeight .
+W: function(x) LagOperator
+bw: numeric 1 +Y: numeric[N]
+initialize() ———<>f+maxLag: int
+lagKernelWeight(W,N,bw,K,descr) +levels: <numeric[Ki]> list[2]
+show() +values: numeric[N-1,P,K1,P,K2]
+plot() +isRankBased: logical
+show()
+plot(levels)
BootPos |21
+Ll: numeric
+T: numeric
+show() ClippedCov
+initialize()
+clippedCov(Y)
MovingBlocks
+initialize()

quantspec-package

In the third class diagram the classes implementing model quantities are displayed. A relation to
the “empirical classes” is given via the fact that the quantile spectral densities are computed by
simulation of quantile periodograms and a common abstract superclass QSpecQuantity which is
used to provide a common interface to quantile spectral quantities.

QSpecQuantity

+values: array[J,P,K1,P,K2,B]
+frequencies: numeric[J]
+levels: <numeric[Ki]> list[2]

+show()
A

IntegrQuantileSD

+initialize()

+plot(..)

+integrQuantileSD(object=2"8,ts,
+integrQuantileSD(object:QuantileSD)

.)

-sumPG: array[J,P,K1,P,K2]
-sumSqPG: array[J,P,K1,P,K2]
+meanPG: array[J,P,K1,P,K2]
+stdError: array[J,P,K1,P,K2]

" P -
——1 QuantileSD k11-*I'" QuantilePG
:g 23$2:12 +initialize()
+t)./pe: character +quantilePG(Y,..)
+ts: function +plot(..)
-seed.last

+increasePrecision(R=1)
+initialize()
+quantileSD(N=2"8,ts,..)
+plot(..)

Besides the object-oriented design a few auxiliary functions exists. They serve as parameters or are
mostly for internal use. A more detailed description of the framework can be found in the paper on

the package (Kley, 2016).



quantspec-package 7

Organization of the source code / files in the /R folder

All of the source code related to the specification of a certain class is contained in a file named
Class-[Name_of_the_class].R. This includes, in the following order,

1. all roxygen @include to insure the correctly generated collate for the DESCRIPTION file.

2. \setClass preceded by a meaningful roxygen documentation.
3. specification of an initialize method, where appropriate.
4

. all accessor and mutator method (i. e., getter and setter); first the ones returning attributes of
the object, then the ones returning associated objects.

9,1

constructors; use generics if there is more than one of them.

6. show and plot methods.

Coding Conventions

To improve readability of the software and documentation this package was written in the spirit
of the “Coding conventions of the Java Programming Language” (Oracle, 2015). In particular, the
naming conventions for classes and methods have been adopted, where “Class names should be
nouns, in mixed case with the first letter of each internal word capitalized.” and “Methods should
be verbs, in mixed case with the first letter lowercase, with the first letter of each internal word
capitalized.”

Naming Conventions for the Documentation

To reflect the structure of the contents of the package in the documentation file, the following system
for naming of the sections is adopted:

* Documentation of an S4 class is named as the name of the class followed by “-class”. [cf.
QuantilePG-class]

* Documentation of a constructor for an S4-class is named as the name of the class followed by
“-constructor”. [cf. QuantilePG-constructor]

* Documentation of a method dispaching to an object of a certain S4 class is named by the name
of the method, followed by “-”, followed by the name of the Class. [cf. getValues-QuantilePG]

Author(s)
Tobias Kley

References

Kley, T. (2014a). Quantile-Based Spectral Analysis: Asymptotic Theory and Computation. Ph.D.
Dissertation, Ruhr University Bochum. https://hss-opus.ub.ruhr-uni-bochum.de/opus4/
frontdoor/index/index/docId/3894.

Kley, T. (2016). Quantile-Based Spectral Analysis in an Object-Oriented Framework and a Refer-
ence Implementation in R: The quantspec Package. Journal of Statistical Software, 70(3), 1-27.

Dette, H., Hallin, M., Kley, T. & Volgushev, S. (2015). Of Copulas, Quantiles, Ranks and Spectra:
an Lj-approach to spectral analysis. Bernoulli, 21(2), 781-831. [cf. http://arxiv.org/abs/
1111.7205]


https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/3894
https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/3894
http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1111.7205

8 .computeCoherency

Kley, T., Volgusheyv, S., Dette, H. & Hallin, M. (2016). Quantile Spectral Processes: Asymptotic
Analysis and Inference. Bernoulli, 22(3), 1770-1807. [cf. http://arxiv.org/abs/1401.8104]

Barunik, J. & Kley, T. (2019). Quantile Coherency: A General Measure for Dependence between
Cyclical Economic Variables. Econometrics Journal, 22, 131-152. [cf. http://arxiv.org/abs/
1510.06946]

Oracle (2015). Coding conventions of the Java Programming Language. https://www.oracle.
com/java/technologies/javase/codeconventions-contents.html. Accessed 2015-03-25.

See Also

Useful links:

* https://github.com/tobiaskley/quantspec

* Report bugs at https://github.com/tobiaskley/quantspec/issues

.computeCoherency Workhorse function for getCoherency-SmoothedPG.

Description

C++ implementation to increase performance.

Arguments
v a 3-dimensional array of complex numbers; dimensions are [N, K1, K2], where
N frequencies are w; := 27j/N for j =0,..., N.
W a vector of length W of length N used for smoothing.
Value

Returns an array with complex numbers o (71, T2, w; as defined in Kley et. al (2016), p. 26.

References

Barunik, J. & Kley, T. (2019). Quantile Coherency: A General Measure for Dependence Be-
tween Cyclical Economic Variables. Econometrics Journal, 22, 131-152. http://arxiv.org/
abs/1401.8104.


http://arxiv.org/abs/1401.8104
http://arxiv.org/abs/1510.06946
http://arxiv.org/abs/1510.06946
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://github.com/tobiaskley/quantspec
https://github.com/tobiaskley/quantspec/issues
http://arxiv.org/abs/1401.8104
http://arxiv.org/abs/1401.8104

.computeSdNaive 9

.computeSdNaive Workhorse function for getSdNaive-SmoothedPG.

Description

C++ implementation to increase performance.

Arguments
\% a 3-dimensional array of complex numbers; dimensions are [N, K1, K2], where
N frequencies are w; := 2mj /N forj =0,...,N.
W a vector of length W of length N used for smoothing.
Value

Returns an array with complex numbers o (7, 72, w; as defined in Kley et. al (2016), p. 26.

References

Dette, H., Hallin, M., Kley, T. & Volgushev, S. (2015). Of Copulas, Quantiles, Ranks and Spectra:
an Lj-approach to spectral analysis. Bernoulli, 21(2), 781-831. [cf. http://arxiv.org/abs/
1111.7205]

BootPos-class Class for Generation of Bootstrapped Replications of a Time Series.

Description
BootPos is an S4 class that provides a common interface to different algorithms that can be used
for implementation of a block bootstrap procedure in the time domain.

Details

After initialization the bootstrapping can be performed by applying getPositions to the object.

Different block bootstraps are implemented by creating a subclass together with a getPositions
method that contains the implementation of the block resampling procedure.

Currently the following implementations are available:
* MovingBlocks and getPositions-MovingBlocks.

Slots
1 the (expected) block length for the block bootstrap methods

N number of available observations to bootstrap from


http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1111.7205

10 ClippedCov-constructor

References

Lahiri, S. N. (1999). Theoretical Comparisons of Block Bootstrap Methods. The Annals of Statis-
tics, 27(1), 386-404.

ClippedCov-class Class to calculate copula covariances from a time series
with given levels.  Calculates for each combination of levels
(r_1,7_2) and for all k < maxLag the copula covariances
Cov(1_X_0< 7_1,1_X_k < 7_2) and writes it to values[k] from
its superclass LagOperator.

Description
Foreachlagk = @, ..., maxLag and combination of levels (71, 75) from levels.1 x levels.2 the
statistic
1 n—k R A
I Z(I{Fn(yt) <7} = 1) I{Fn(Yiqr) < 2} — 72)
t=1

is determined and stored to the array values.

Details

Currently, the implementation of this class allows only for the analysis of univariate time series.

ClippedCov-constructor
Create an instance of the ClippedCov class.

Description

Create an instance of the ClippedCov class.

Usage

clippedCov(
Y,
maxLag = length(Y) - 1,
levels.1 = ¢c(0.5),
levels.2 = levels.1,
isRankBased = TRUE,
B =0,
1=o0,
type.boot = c("none”, "mbb")



ClippedFT-class 11

Arguments
Y Time series to calculate the copula covariance from
maxLag maximum lag between observations that should be used
levels.1 a vector of numerics that determines the level of clipping
levels.2 a vector of numerics that determines the level of clipping
isRankBased If true the time series is first transformed to pseudo data; currently only rank-
based estimation is possible.
B number of bootstrap replications
1 (expected) length of blocks
type.boot A flag to choose a method for the block bootstrap; currently two options are
implemented: "none” and "mbb"” which means to do a moving blocks bootstrap
with B and 1 as specified.
Value

Returns an instance of ClippedCov.

See Also

LagOperator

Examples

ccf <- clippedCov(rnorm(200), maxLag = 25, levels.1 = c(0.1,0.5,0.9))
dim(getValues(ccf))

#print values for levels (.5,.5)

plot(ccf, maxLag = 20)

ClippedFT-class Class for Fourier transform of the clipped time series.

Description

ClippedFT is an S4 class that implements the necessary calculations to determine the Fourier trans-
form of the clipped time series. As a subclass to FreqRep it inherits slots and methods defined
there; it servers as a frequency representation of a time series as described in Kley et. al (2016) for
univariate time series and in Barunik & Kley (2015) for multivariate time series.

Details

For each frequency w from frequencies and level g from levels the statistic

n—1
> I{Yii < qle

t=0
is determined and stored to the array values. Internally the methods mvfft and fft are used to
achieve good performance.

Note that, all remarks made in the documentation of the super-class FreqRep apply.



12 ClippedFT-constructor

References

Kley, T., Volgusheyv, S., Dette, H. & Hallin, M. (2016). Quantile Spectral Processes: Asymptotic
Analysis and Inference. Bernoulli, 22(3), 1770-1807. [cf. http://arxiv.org/abs/1401.8104]

Barunik, J. & Kley, T. (2015). Quantile Cross-Spectral Measures of Dependence between Economic
Variables. [preprint available from the authors]

See Also

For an example see FreqRep.

ClippedFT-constructor Create an instance of the ClippedFT class.

Description

The parameter type.boot can be set to choose a block bootstrapping procedure. If "none” is
chosen, a moving blocks bootstrap with 1=1enTS(Y) and N=1enTS(Y) would be done. Note that in
that case one would also chose B=0 which means that getPositions would never be called. If B>@
then each bootstrap replication would be the undisturbed time series.

Usage
clippedFT(
Y,
frequencies = 2 * pi/lenTS(Y) * @:(lenTS(Y) - 1),
levels = 0.5,
isRankBased = TRUE,
B =20,
1=o0,
type.boot = c("none”, "mbb")
)
Arguments
Y A matrix of real numbers containing the time series from which to determine
the quantile periodogram as columns, or a ts object or a zoo object.
frequencies A vector containing frequencies at which to determine the quantile periodogram.
levels A vector of length K containing the levels at which the ClippedFT frequency
representation is to be determined.
isRankBased If true the time series is first transformed to pseudo data [cf. FregRep].
B number of bootstrap replications
1 (expected) length of blocks
type.boot A flag to choose a method for the block bootstrap; currently two options are

implemented: "none"” and "mbb"” which means to do a moving blocks bootstrap
with B and 1 as specified.


http://arxiv.org/abs/1401.8104

closest.pos 13

Value

Returns an instance of ClippedFT.

See Also

For an example see FregRep.

closest.pos Positions of elements which are closest to some reference elements.

Description

For two vectors X and Y a vector of indices I is returned, such that 1ength(Y) and length(I) coin-
cide and X[I[j1] is an element of X which has minimal distance to Y[ j1, forall j=1, ..., length(Y).
In case that there are multiple elements with minimal distance, the smallest index (the index of the
first element with minimal distance) is returned.

Usage

closest.pos(X, Y)

Arguments
X Vector of elements among which to find the closest one for each element in Y.
Y Vector of elements for which to find the clostest element in X.

Value

Returns a vector of same length as X, with indices indicating which element in Y is closest.

Examples

X1 <- ¢(1,2,3)
closest.pos(X1, 1.7)
closest.pos(X1, c(1.3,2.2))

X2 <- ¢(2,1,3)
closest.pos(X2, 1.5)



14 data-wheatprices

data-sp500 S&P 500: Standard and Poor’s 500 stock index, 2007-2010

Description

Contains the returns of the S&P 500 stock index for the years 2007-2010. The returns were com-
puted as (Adjusted.Close-Open)/Open.

Format

A univariate time series with 1008 observations; a zoo object

Details

The data was downloaded from the Yahoo! Finance Website.

References

Yahoo! Finance Website

Examples

plot(sp500)

data-wheatprices Beveridge’s Wheat Price Index (detrended and demeaned), 1500—1869

Description

Contains a detrended and demeaned version of the well-known Beveridge Wheat Price Index which
gives annual price data from 1500 to 1869, averaged over many locations in western and central
Europe [cf. Beveridge (1921)]. The index series x; was detrended as proposed by Granger (1964),
p. 21, by letting

Lt
Zjl'ifw Tt+j ’

where x; := x1,t < 1 and x; := x,,t > n. The time series in the data set is also demeaned by

letting
n
2t =Y — n~t Zyt-
t=1

Yt =

Format

A univariate time series (z;) with 370 observations; a ts object.



FreqRep-class 15

Details

The index data cited in Beveridge’s paper was taken from bev in the tseries package.

References

Beveridge, W. H. (1921). Weather and Harvest Cycles. The Economic Journal, 31(124):429-452.

Granger, C. W. J. (1964). Spectral Analysis of Economic Time Series. Princeton University Press,
Princeton, NJ.

Examples
plot(wheatprices)
FregRep-class Class for Frequency Representation.
Description
FreqRep is an S4 class that encapsulates, for a multivariate time series (Y7 ;)i=0,....n-1,4 = 1,....,d

the data structures for the storage of a frequency representation. Examples of such frequency rep-
resentations include

* the Fourier transformation of the clipped time series ({/{Y;; < ¢}), or

* the weighted L, -projection of (Y;;) onto an harmonic basis.

Examples are realized by implementing a sub-class to FregRep. Currently, implementations for the
two examples mentioned above are available: ClippedFT and QRegEstimator.

Details

It is always an option to base the calculations on the pseudo data R; ,, ;/n where R, ,, ; denotes the
rank of Y; ; among (Y} ;)i=0,... n—1-

To allow for a block bootstrapping procedure a number of B estimates determined from bootstrap
replications of the time series which are yield by use of a BootPos-object can be stored on initial-
ization.

The data in the frequency domain is stored in the array values, which has dimensions (J,P,K,B+1),
where J is the number of frequencies, P is the dimension of the time series, K is the number
of levels and B is the number of bootstrap replications requested on intialization. In particular,
values[j,i,k, 1] corresponds to the time series’ frequency representation with frequencies[j],
dimension i and levels[k], while values[j,i,k,b+1] is the for the same, but determined from
the bth block bootstrapped replicate of the time series.



16 FreqRep-class

Slots

Y The time series of which the frequency representation is to be determined.

frequencies The frequencies for which the frequency representation will be determined. On ini-
talization frequenciesValidator is called, so that it will always be a vector of reals from
[0, 7] Also, only Fourier frequencies of the form 27j /n with integers j and n the length(Y)
are allowed.

levels The levels for which the frequency representation will be determined. If the flag i sRankBased
is set to FALSE, then it can be any vector of reals. If isRankBased is set to TRUE, then it has to
be from [0, 1].

values The array holding the determined frequency representation. Use a getValues method of
the relevant subclass to access it.

isRankBased A flag that is FALSE if the determined values are based on the original time series
and TRUE if it is based on the pseudo data as described in the Details section of this topic.

positions.boot An object of type BootPos, that is used to determine the block bootstrapped
replicates of the time series.

B Number of bootstrap replications to perform.

Examples

Y <- rnorm(32)
freq <- 2*pixc(0:31)/32
levels <- ¢(0.25,0.5,0.75)

cFT <- clippedFT(Y, freq, levels)
plot(cFT)
# Get values for all Fourier frequencies and all levels available.

V.all <- getValues(cFT)

# Get values for every second frequency available

V.coarse <- getValues(cFT, frequencies = 2xpi*c(0:15)/16, levels = levels)

# Trying to get values on a finer grid of frequencies than available will

# yield a warning and then all values with frequencies closest to that finer
# grid.

V.fine <- getValues(cFT, frequencies = 2*pixc(0:63)/64, levels = levels)

# Finally, get values for the available Fourier frequencies from [@,pi] and
# only for tau=0.25

V.part <- getValues(cFT, frequencies = 2xpixc(0:16)/32, levels = c(0.25))

# Alternatively this can be phrased like this:
V.part.alt <- getValues(cFT, frequencies = freq[freq <= pi], levels = c(0.25))



frequencies Validator 17

frequenciesValidator  Validates if frequencies are Fourier frequencies from [0, ].

Description
Validation of the parameter freq is perfomed in six steps:

1. Throw an error if parameter is not a vector or not numeric.
2. Transform each element w of the vector to [0, 27), by replacing it with w mod 2.

3. Check whether all elements w of the vector are Fourier frequency 27 /T, j € Z. If this is
not the case issue a warning and round each frequency to the next Fourier frequency of the
mentioned type; the smaller one, if there are two.

4. Transform each element w with 7 < w < 27 of the vector to [0, 7], by replacing it with
2T — w.

5. Check for doubles and remove all but the first appearance.

6. Sort in ascending order.

Any subset of the six steps can be chosen, but 1 should almost always be among the steps to be
performed.

Usage

frequenciesValidator(freq, N, steps = 1:6)

Arguments
freq the vector of frequencies to be validated.
N the base of the Fourier frequencies against which the values in freq will be
compared.
steps a vector containing a subset of {1, 2,3, 4,5, 6}, indicating which of the steps are
to be performed.
Value

Returns a vector of Fourier frequencies that is yield by the transformations described above.
Examples
freq <- 2xpi*c(3,2,5,8,9)/10

res <- frequenciesValidator(freq, N=10, steps=1:3)
res *x 10 / (2*pi) # Returns: [1] 3258 9

res <- frequenciesValidator(freq, N=10, steps=1:4)
res * 10 / (2*pi) # Returns: [1] 3 25 21



18 generics-accessors

res <- frequenciesValidator(freq, N=10, steps=1:5)
res * 10 / (2*pi) # Returns: [1] 3 2 51

res <- frequenciesValidator(freq, N=10, steps=1:6)
res x 10 / (2*%pi) # Returns: [1] 1 2 3 5

generics-accessors Generic functions for accessing attributes of objects

Description

These generic functions are needed to access the objects’ attributes. Note that the naming conven-
tion getAttribute was applied, where attribute is the name of the attribute/slot of the class of
the object.

Usage
getY(object, ...)
getValues(object, ...)
getCoherency(object, ...)
getIsRankBased(object, ...)
getB(object, ...)
getlLagOperator(object, ...)
getMaxLag(object, ...)
getParallel(object, ...)
getFrequencies(object, ...)
getLevels(object, ...)
getMeanPG(object, ...)
getStdError(object, ...)
getN(object, ...)
getR(object, ...)

getType(object, ...)



generics-associations 19

getTs(object, ...)
getCoherencySdNaive(object, ...)
getSdNaive(object, ...)
getSdBoot(object, ...)
getPointwiseCIs(object, ...)
getDescr(object, ...)
getW(object, ...)

getBw(object, ...)
getWnj(object, ...)

Arguments

object object from which to get the value

optional parameters; for documentation see the documentation of the methods
to each of the generic.

See Also

For an overview on the classes of the framework, and all of their attributes, see the class diagrams
in the package description [cf. quantspec-package].

generics-associations Generic functions for accessing associations of objects

Description

These generic functions are needed to access the objects’ associated objects. Note that the naming
convention getAssociatedObject was applied, where AssociatedObject is the name of the class
of the associated object.

Usage
getQuantilePG(object, ...)
getBootPos(object, ...)
getFreqgRep(object, ...)
getQuantileSD(object, ...)

getWeight (object, ...)



20 generics-functions

Arguments
object object from which to get the associated object
optional parameters; for documentation see the documentation of the methods
to each of the generic.
See Also

For an overview on the classes of the framework, and all associations, see the class diagrams in the
package description [cf. quantspec-package].

generics-functions Generic functions for implementation of methods of a class

Description

These generic functions need to be defined to allow for the automatic dispaching mechanism.

Usage
increasePrecision(object, ...)
getPositions(object, ...)
Arguments
object specifies the object from which the method is to be applied.
optional parameters; for documentation see the documentation of the methods
to the generic.
See Also

For an overview on the classes of the framework, and all of their methods, see the class diagrams in
the package description [cf. quantspec-package].



getB-FreqRep

21

getB-FregRep Get B from a FregRep object.

Description

Get B from a FreqgRep object.

Usage
## S4 method for signature 'FregRep'
getB(object)

Arguments

object FregRep of which to get the B

Value

Returns the attribute B that’s a slot of object.

getB-LagOperator Get B from a LagOperator object.

Description

Get B from a LagOperator object.

Usage
## S4 method for signature 'LagOperator'
getB(object)

Arguments

object LagOperator of which to get the B

Value

Returns the attribute B that’s a slot of object.



22 getBootPos-LagOperator

getBootPos-FregRep Get associated BootPos from a FreqRep.

Description

Get associated BootPos from a FregRep.

Usage
## S4 method for signature 'FregRep'
getBootPos(object)
Arguments
object FregRep from which to get the BootPos.
Value

Returns the BootPos object associated.

getBootPos-LagOperator
Get associated BootPos from a LagOperator.

Description

Get associated BootPos from a LagOperator.

Usage
## S4 method for signature 'LagOperator’
getBootPos(object)
Arguments
object LagOperator from which to get the BootPos.
Value

Returns the BootPos object associated.



getBw-Kernel Weight 23

getBw-KernelWeight Get attribute bw (bandwidth / scaling parameter used for smoothing)
from a KernelWeight.

Description

Get attribute bw (bandwidth / scaling parameter used for smoothing) from a KernelWeight.

Usage
## S4 method for signature 'KernelWeight'
getBw(object)

Arguments

object KernelWeight from which to get the bandwidth bw.

Value

Returns the bw attribute.

getBw-LagKernelWeight Get attribute bw (bandwidth / scaling parameter used for smoothing)
from a LagKernelWeight.

Description

Get attribute bw (bandwidth / scaling parameter used for smoothing) from a LagKernelWeight.

Usage
## S4 method for signature 'LagKernelWeight'
getBw(object)

Arguments

object LagKernelWeight from which to get the bandwidth bw.

Value

Returns the bw attribute.



24 getCoherency-QuantileSD

getCoherency-QuantileSD
Compute quantile coherency from a quantile spectral density kernel

Description

Returns quantile coherency defined as

JI072 (w; 11, 70)
(fi1I1(w; 1, 1) fI2092 (w3 T2, ) ) /2

where f71+92 (w; 71, 7o) is the quantile spectral density.

Usage

## S4 method for signature 'QuantileSD'
getCoherency(
object,
frequencies = 2 * pi * (0:(object@ - 1))/object@N,
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),
d1 = 1:(dim(object@values)[2]),
d2 = 1:(dim(object@values)[4])

)
Arguments
object QuantileSD of which to get the values
frequencies a vector of frequencies for which to get the values
levels.1 the first vector of levels for which to get the values
levels.2 the second vector of levels for which to get the values
di optional parameter that determine for which jl to return the data; may be a
vector of elements 1, ..., D
d2 same as d1, but for j2
Details

For the mechanism of selecting frequencies, dimensions and/or levels see, for example, getValues-QuantileSD.

Value

Returns data from the coherency as defined in the details.

See Also

For examples on how to use this function go to QuantileSD.



getCoherency-SmoothedPG 25

getCoherency-SmoothedPG
Compute quantile coherency from a smoothed quantile periodogram.

Description
Returns quantile coherency defined as

G792 (w11, T2)
(Gjlajl (OJ; Ti, Tl)Gj2*j2 (w; T2, 7-2))1/2

where G712 (w; 11, 72) is the smoothed quantile periodogram.

Usage

## S4 method for signature 'SmoothedPG'
getCoherency(
object,
frequencies = 2 *x pi x (0:(lenTS(object@gPGe@freqRep@Y) -
1))/1enTS(object@gPG@freqRep@Y),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),
d1 = 1:(dim(object@values)[2]),

d2 = 1:(dim(object@values)[4])
)
Arguments
object SmoothedPG of which to get the values
frequencies a vector of frequencies for which to get the values
levels.1 the first vector of levels for which to get the values
levels.2 the second vector of levels for which to get the values
di optional parameter that determine for which jl to return the data; may be a
vector of elements 1, ..., D
d2 same as d1, but for j2
Details

For the mechanism of selecting frequencies, dimensions and/or levels see, for example, getValues-SmoothedPG.

Value

Returns data from the array values that’s a slot of object.

See Also

An example on how to use this function is analogously to the example given in getValues-QuantilePG.



26 getCoherencySdNaive-SmoothedPG

getCoherencySdNaive-SmoothedPG
Get estimates for the standard deviation of the coherency computed
from smoothed quantile periodogram.

Description

Determines and returns an array of dimension [J,K1,K2], where J=length(frequencies),K1=length(levels.1),
andK2=1length(levels.?2)). Whether available or not, boostrap repetitions are ignored by this pro-

cedure. At position (j,k1,k2) the returned value is the standard deviation estimated correspond-

ing to frequencies[j], levels.1[k1] and levels.2[k2] that are closest to the frequencies,

levels.1 and levels.?2 available in object; closest.pos is used to determine what closest to

means.

Usage

## S4 method for signature 'SmoothedPG'
getCoherencySdNaive(

object,

frequencies = 2 * pi * (0:(lenTS(object@qPG@fregRep@Y) -

1))/1lenTS(object@gPGefreqRepQY),

levels.1 = getLevels(object, 1),

levels.2 = getLevels(object, 2),

dl = 1:(dim(object@values)[2]),

d2 = 1:(dim(object@values)[4]),

type C(II-IH’ H2”>,
impl - C("R”, "CH)
)
Arguments
object SmoothedPG of which to get the estimates for the standard deviation.
frequencies a vector of frequencies for which to get the result
levels.1 the first vector of levels for which to get the result
levels.2 the second vector of levels for which to get the result
di optional parameter that determine for which jl to return the data; may be a
vector of elements 1, ..., D
d2 same as d1, but for j2
type can be "1", where cov(Z, Conj(Z)) is subtracted, or "2", where it’s not

impl choose "R" or "C" for one of the two implementations available



getDescr-Weight 27

Details

If not only one, but multiple time series are under study, the dimension of the returned vector is of
dimension [J,P,K1,P,K2], where P denotes the dimension of the time series.

Requires that the SmoothedPG is available at all Fourier frequencies from (0, 7r]. If this is not the
case the missing values are imputed by taking one that is available and has a frequency that is closest
to the missing Fourier frequency; closest. pos is used to determine which one this is.

A precise definition on how the standard deviations of the smoothed quantile periodogram are esti-
mated is given in Barunik and Kley (2015). The estimate returned is denoted by o (71, T2; w) on p.
26 of the arXiv preprint.

Note the “standard deviation” estimated here is not the square root of the complex-valued variance.
It’s real part is the square root of the variance of the real part of the estimator and the imaginary part
is the square root of the imaginary part of the variance of the estimator.

Value

Returns the estimate described above.

References

Kley, T., Volgusheyv, S., Dette, H. & Hallin, M. (2016). Quantile Spectral Processes: Asymptotic
Analysis and Inference. Bernoulli, 22(3), 1770-1807. [cf. http://arxiv.org/abs/1401.8104]

Barunik, J. & Kley, T. (2015). Quantile Cross-Spectral Measures of Dependence between Economic
Variables. [preprint available from the authors]

getDescr-Weight Get attribute descr from a Weight.

Description

Get attribute descr from a Weight.

Usage
## S4 method for signature 'Weight'
getDescr(object)
Arguments
object Weight from which to get the descr.
Value

Returns the descr attribute.


http://arxiv.org/abs/1401.8104

28

getFrequencies-FreqRep

getFregRep-QuantilePG Get associated FreqRep from a QuantilePG.

Description

Get associated FreqRep from a QuantilePG.

Usage
## S4 method for signature 'QuantilePG'
getFreqRep(object)
Arguments
object QuantilePG from which to get the FreqgRep.
Value

Returns the FreqRep object associated.

getFrequencies-FreqRep
Get attribute frequencies from a FreqRep.

Description

Get attribute frequencies from a FreqRep.

Usage
## S4 method for signature 'FregRep'
getFrequencies(object)

Arguments

object FreqRep from which to get the frequencies.

Value

Returns the frequencies attribute, as a vector of real numbers.



getFrequencies-QSpecQuantity

29

getFrequencies-QSpecQuantity

Get attribute frequencies from a QSpecQuantity.

Description

Get attribute frequencies from a QSpecQuantity.

Usage
## S4 method for signature 'QSpecQuantity'
getFrequencies(object)

Arguments

object QSpecQuantity from which to get the frequencies.

Value

Returns the frequencies attribute, as a vector of real numbers.

Examples

gPG <- quantilePG(rnorm(10), levels.1=c(0.25,0.5))
freq <- getFrequencies(qPG)

getIsRankBased-FregRep
Get isRankBased from a FreqRep object

Description

Get isRankBased from a FregRep object

Usage
## S4 method for signature 'FregRep'
getIsRankBased(object)

Arguments

object FregRep of which to get the isRankBased

Value

Returns the attribute isRankBased that’s a slot of object.



30 getLagOperator-LagEstimator

getIsRankBased-LagOperator
Get isRankBased from a LagOperator object

Description

Get isRankBased from a LagOperator object

Usage
## S4 method for signature 'LagOperator'
getIsRankBased(object)

Arguments

object LagOperator of which to get the isRankBased

Value

Returns the attribute isRankBased that’s a slot of object.

getlagOperator-LagEstimator
Get associated LagOperator from a LagEstimator.

Description

Get associated LagOperator from a LagEstimator.

Usage
## S4 method for signature 'LagEstimator'
getLagOperator(object)

Arguments

object LagEstimator from which to get the LagOperator.

Value

Returns the LagOperator object associated.



getLevels-FreqRep 31

getlLevels-FreqRep Get attribute levels from a FregRep.

Description

Get attribute levels from a FreqgRep.

Usage
## S4 method for signature 'FregRep'
getLevels(object)
Arguments
object FregRep from which to get the levels.
Value

Returns the levels attribute, as a vector of real numbers.

getlevels-LagOperator Get attribute levels from a LagOperator.

Description

If the optional parameter j is supplied, then the jth vector of levels will be returned, a list with all
vectors otherwise.

Usage

## S4 method for signature 'LagOperator'’
getLevels(object, j)

Arguments

object LagOperator from which to get the levels.

j Index pointing to a set of levels in the list; optional.
Value

Returns levels attribute, as a vector of real numbers.



32 getMaxLag-LagOperator

getlLevels-QSpecQuantity
Get attribute levels from a QSpecQuantity.

Description
If the optional parameter j is supplied, then the jth vector of levels will be returned, a list with all
vectors otherwise.

Usage

## S4 method for signature 'QSpecQuantity'
getLevels(object, j)

Arguments

object QSpecQuantity from which to get the levels.

b Index pointing to a set of levels in the list; optional.
Value

Returns levels attribute, as a vector of real numbers.

Examples

gPG <- quantilePG(rnorm(10), levels.1=c(0@.25,0.5))
levels.list <- getlLevels(gPG)
levels.1 <- getlLevels(gPG,1)

getMaxLag-LagOperator Get maxLag from a LagOperator object.

Description

Get maxLag from a LagOperator object.

Usage
## S4 method for signature 'LagOperator’
getMaxLag(object)
Arguments
object LagOperator of which to get the maxLag
Value

Returns the attribute maxLag that’s a slot of object.



getMeanPG-QuantileSD 33

getMeanPG-QuantileSD  Get meanPG from a quantile spectral density kernel

Description

The selection mechanism for frequencies and levels operates in the same way as described in
getValues-QuantileSD. The format of the output is also described there.

Usage

## S4 method for signature 'QuantileSD'
getMeanPG(
object,
frequencies = 2 x pi * (0:(getN(object) - 1))/getN(object),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),
dl = 1:(dim(object@values)[2]),
d2 = 1:(dim(object@values)[4])

)
Arguments
object QuantileSD of which to get the meanPG
frequencies a vector of frequencies for which to get the meanPG
levels.1 the first vector of levels for which to get the meanPG
levels.2 the second vector of levels for which to get the meanPG
di optional parameter that determine for which j1 to return the meanPG; may be a
vector of elements 1, ..., D
d2 same as d1, but for j2
Value

Returns the array meanPG that’s a slot of object.

getN-QuantileSD Get N from a quantile spectral density kernel

Description

Get N from a quantile spectral density kernel

Usage

## S4 method for signature 'QuantileSD'
getN(object)



34 getPointwiseClIs-LagEstimator

Arguments

object QuantileSD of which to get the N

Value

Returns the attribute N that’s a slot of object.

getParallel-QRegEstimator
Get getParallel from a QRegEstimator object

Description

Get getParallel from a QRegEstimator object

Usage
## S4 method for signature 'QRegEstimator'
getParallel (object)
Arguments
object QRegEstimator of which to get the parallel
Value

Returns the attribute parallel that’s a slot of object.

getPointwiseCIs-LagEstimator

Get pointwise confidence intervals for the quantile spectral density
kernel

Description

Returns a list of two arrays lowerCIs and upperCIs that contain the upper and lower limits for a
level 1-alpha confidence interval of the copula spectral density kernel. Each array is of dimension
[J,K1,K2], where J=1ength(frequencies),Kl1=1ength(levels.1),andK2=1length(levels.2)).
At position (j,k1,k2) the real (imaginary) part of the returned values are the bounds of the con-
fidence interval for the the real (imaginary) part of the quantile spectrum, which corresponds to
frequencies[j], levels.1[k1] and levels.2[k2] closest to the Fourier frequencies, levels. 1
and levels. 2 available in object; closest. pos is used to determine what closest to means.



getPointwiseCls-LagEstimator 35

Usage
## S4 method for signature 'LagEstimator'
getPointwiseCIs(
object,
frequencies = 2 * pi * (@:(length(object@Y) - 1))/length(object@Y),

levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),

alpha = 0.1,

type = c("naive.sd”, "boot.sd"”, "boot.full")

Arguments

object
frequencies
levels.1
levels.2
alpha

type

Details

LagEstimator of which to get the confidence intervals
a vector of frequencies for which to get the result

the first vector of levels for which to get the result

the second vector of levels for which to get the result
the level of the confidence interval; must be from (0, 1)

a flag indicating which type of confidence interval should be returned; can only
take one values at the moment.

Currently, only one type of confidence interval is available:

* "naive.sd": confidence intervals based on the asymptotic normality of the lag-window esti-
mator; standard deviations are estimated using getSdNaive.

Value

Returns a named list of two arrays lowerCIS and upperCIs containing the lower and upper bounds
for the confidence intervals.

Examples

lagEst <- lagEstimator(rnorm(2210), levels.1=0.5)
CI.upper <- Re(getPointwiseCIs(lagEst)$upperCIs[,1,1])
CI.lower <- Re(getPointwiseCIs(lagEst)$lowerCIs[,1,1])
freq = 2*xpix(0:1023)/1024
plot(x = freq, y = rep(0.25/(2*pi),1024),
ylim=c(min(CI.lower), max(CI.upper)),
type="1", col="red") # true spectrum
lines(x = freq, y = CI.upper)
lines(x = freq, y = CI.lower)



36 getPointwiseCls-SmoothedPG

getPointwiseCIs-SmoothedPG
Get pointwise confidence intervals for the quantile spectral density
kernel, quantile coherency or quantile coherence.

Description

Returns a list of two arrays lowerCIs and upperCIs that contain the upper and lower limits for a

level 1-alpha confidence interval of the quantity of interest. Each array is of dimension [J,K1,K2]

if a univariate time series is being analysed or of dimension [J,D1,K1,D2,K2], where J=1ength(frequencies),
D1=length(d1), D2=1length(d2), K1=1length(levels. 1), and K2=1ength(levels.2)). At posi-

tion (j,k1,k2) or (j,i1,k1,1i2,k2) the real (imaginary) part of the returned values are the bounds

of the confidence interval for the the real (imaginary) part of the quantity under anlysis, which cor-

responds to frequencies[j], d1[i1], d2[i2], levels.1[k1] and levels.2[k2] closest to the

Fourier frequencies, levels.1 and levels.?2 available in object; closest.pos is used to deter-

mine what closest to means.

Usage
## S4 method for signature 'SmoothedPG'
getPointwiseCIs(
object,
quantity = c("spectral density”, "coherency"”, "coherence"),

frequencies = 2 * pi * (0:(lenTS(object@qPG@fregRep@Y) -
1))/1enTS(object@qPG@freqRep@Y),

levels.1 = getLevels(object, 1),

levels.2 = getLevels(object, 2),

d1 = 1:(dim(object@values)[2]),

d2 = 1:(dim(object@values)[4]),

alpha = 0.1,
type = c("naive.sd”, "boot.sd"”, "boot.full")
)
Arguments
object SmoothedPG of which to get the confidence intervals
quantity a flag indicating for which the pointwise confidence bands will be determined.
Can take one of the possible values discussed above.
frequencies a vector of frequencies for which to get the result
levels.1 the first vector of levels for which to get the result
levels.2 the second vector of levels for which to get the result
d1 optional parameter that determine for which jl to return the data; may be a
vector of elements 1, ..., D
d2 same as d1, but for j2

alpha the level of the confidence interval; must be from (0, 1)



getPositions-MovingBlocks 37

type a flag indicating which type of confidence interval should be returned; can take
one of the three values discussed above.

Details

Currently, pointwise confidence bands for two different quantity are implemented:

* "spectral density"”: confidence intervals for the quantile spectral density as described in
Kley et. al (2016) for the univariate case and in Barunik and Kley (2015) for the multivariate
case.

» "coherency”: confidence intervals for the quantile coherency as described in Barunik and
Kley (2015).

Currently, three different types of confidence intervals are available:

* "naive.sd": confidence intervals based on the asymptotic normality of the smoothed quantile
periodogram; standard deviations are estimated using getSdNaive.

* "boot.sd": confidence intervals based on the asymptotic normality of the smoothed quantile
periodogram; standard deviations are estimated using getSdBoot.

* "boot.full”: confidence intervals determined by estimating the quantiles of he distribu-
tion of the smoothed quantile periodogram, by the empirical quantiles of the sample of boot-
strapped replications.

Value

Returns a named list of two arrays lowerCIS and upperCIs containing the lower and upper bounds
for the confidence intervals.

Examples

sPG <- smoothedPG(rnorm(2*10), levels.1=0.5)
CI.upper <- Re(getPointwiseCIs(sPG)$upperCIs[,1,1])
CI.lower <- Re(getPointwiseCIs(sPG)$lowerCIs[,1,1])
freq = 2*xpix(0:1023)/1024
plot(x = freq, y = rep(0.25/(2*pi),1024),
ylim=c(min(CI.lower), max(CI.upper)),
type="1", col="red") # true spectrum
lines(x = freq, y = CI.upper)
lines(x = freq, y = CI.lower)

getPositions-MovingBlocks
Get Positions for the Moving Blocks Bootstrap.

Description

Get Positions for the Moving Blocks Bootstrap.



38 getQuantilePG-QuantileSD

Usage

## S4 method for signature 'MovingBlocks'
getPositions(object, B = 1)

Arguments
object a MovingBlocks object; used to specify the parameters N, 1 and the type of the
bootstrap.
B Number of independent repetitions to bootstrap.
Value

a matrix of dimension [N,B] where each column gives the positions in which to reorder the obser-
vations to yield one bootstrap replication.

getQuantilePG-QuantileSD
Get associated QuantilePG from a QuantileSD.

Description

Get associated QuantilePG from a QuantileSD.

Usage

## S4 method for signature 'QuantileSD'
getQuantilePG(object)

Arguments

object QuantileSD from which to get the QuantilePG.

Value

Returns the QuantilePG object associated.



getQuantilePG-SmoothedPG 39

getQuantilePG-SmoothedPG
Get associated QuantilePG from a SmoothedPG.

Description

Get associated QuantilePG from a SmoothedPG.

Usage
## S4 method for signature 'SmoothedPG'
getQuantilePG(object)

Arguments

object SmoothedPG from which to get the QuantilePG.

Value

Returns the QuantilePG object associated.

getQuantileSD-IntegrQuantileSD
Get associated getQuantileSD from an IntegrQuantileSD.

Description

Get associated getQuantileSD from an IntegrQuantileSD.

Usage
## S4 method for signature 'IntegrQuantileSD'
getQuantileSD(object)

Arguments

object IntegrQuantileSD from which to get the getQuantileSD.

Value

Returns the getQuantileSD object associated.



40 getSdBoot-LagEstimator

getR-QuantileSD Get R from a quantile spectral density kernel

Description

Get R from a quantile spectral density kernel

Usage
## S4 method for signature 'QuantileSD'
getR(object)

Arguments

object QuantileSD of which to get the R

Value

Returns the attribute R that’s a slot of object.

getSdBoot-LagEstimator

Get bootstrap estimates for the standard deviation of the lag-window
type estimator.

Description

Determines and returns an array of dimension [J,K1,K2], where J=1length(frequencies),K1=length(levels.1),
and K2=1ength(levels.2)). At position (j,k1,k2) the real part of the returned value is the stan-

dard deviation estimated from the real parts of the bootstrap replications and the imaginary part

of the returned value is the standard deviation estimated from the imaginary part of the bootstrap

replications. The estimate is determined from those bootstrap replicates of the estimator that have
frequencies[j], levels.1[k1] and levels.2[k2] closest to the frequencies, levels.1 and

levels. 2 available in object; closest.pos is used to determine what closest to means.

Usage

## S4 method for signature 'LagEstimator'
getSdBoot (
object,
frequencies = 2 * pi * (@:(length(object@lagOp@Y) - 1))/length(object@lagOp@Y),
levels.1 = getlevels(object, 1),
levels.2 = getLevels(object, 2)
)



getSdBoot-SmoothedPG 41

Arguments
object LagEstimator of which to get the bootstrap estimates for the standard deviation.
frequencies a vector of frequencies for which to get the result
levels.1 the first vector of levels for which to get the result
levels.2 the second vector of levels for which to get the result
Details

Requires that the LagEstimator is available at all Fourier frequencies from (0, ]. If this is not
the case the missing values are imputed by taking one that is available and has a frequency that is
closest to the missing Fourier frequency; closest.pos is used to determine which one this is.

If there are no bootstrap replicates available (i. e., B == @) an error is returned.

Note the “standard deviation” estimated here is not the square root of the complex-valued variance.
It’s real part is the square root of the variance of the real part of the estimator and the imaginary part
is the square root of the imaginary part of the variance of the estimator.

Value

Returns the estimate described above.

getSdBoot-SmoothedPG  Get bootstrap estimates for the standard deviation of the smoothed
quantile periodogram.

Description

Determines and returns an array of dimension [J,K1,K2], where J=1ength(frequencies),Ki=length(levels.1),
and K2=1length(levels.2)). At position (j,k1,k2) the real part of the returned value is the stan-

dard deviation estimated from the real parts of the bootstrap replications and the imaginary part

of the returned value is the standard deviation estimated from the imaginary part of the bootstrap

replications. The estimate is determined from those bootstrap replicates of the estimator that have
frequencies[j], levels.1[k1] and levels.2[k2] closest to the frequencies, levels.1 and

levels. 2 available in object; closest.pos is used to determine what closest to means.

Usage

## S4 method for signature 'SmoothedPG'
getSdBoot (
object,
frequencies = 2 * pi * (@:(lenTS(object@qPG@fregRep@Y) -
1))/1enTS(object@gPG@freqRep@Y),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2)



42 getSdNaive-LagEstimator

Arguments
object SmoothedPG of which to get the bootstrap estimates for the standard deviation.
frequencies a vector of frequencies for which to get the result
levels.1 the first vector of levels for which to get the result
levels.2 the second vector of levels for which to get the result
Details

Requires that the SmoothedPG is available at all Fourier frequencies from (0, 7] If this is not the
case the missing values are imputed by taking one that is available and has a frequency that is closest
to the missing Fourier frequency; closest. pos is used to determine which one this is.

If there are no bootstrap replicates available (i. e., B == @) an error is returned.

Note the “standard deviation” estimated here is not the square root of the complex-valued variance.
It’s real part is the square root of the variance of the real part of the estimator and the imaginary part
is the square root of the imaginary part of the variance of the estimator.

Value

Returns the estimate described above.

getSdNaive-LagEstimator
Get estimates for the standard deviation of the lagEstimator derived
from the asymptotics (see Birr et al (2015))

Description

Determines and returns an array of dimension [J,K1,K2], where J=1ength(frequencies),Ki=length(levels.1),
and K2=length(levels.2)). At position (j,k1,k2) the returned value is the standard deviation

estimated corresponding to frequencies[j], levels.1[k1] and levels.2[k2] that are closest to

the frequencies, levels.1 and levels. 2 available in object; closest.pos is used to determine

what closest to means.

Usage

## S4 method for signature 'LagEstimator'
getSdNaive(
object,
frequencies = 2 * pi * (0:(length(object@Y) - 1))/length(object@Y),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2)

)



getSdNaive-SmoothedPG 43

Arguments
object LagEstimator of which to get the estimates for the standard deviation.
frequencies a vector of frequencies for which to get the result
levels.1 the first vector of levels for which to get the result
levels.2 the second vector of levels for which to get the result
Details

Requires that the LagEstimator is available at all Fourier frequencies from (0, x]. If this is not
the case the missing values are imputed by taking one that is available and has a frequency that is
closest to the missing Fourier frequency; closest. pos is used to determine which one this is.

Note the “standard deviation” estimated here is not the square root of the complex-valued variance.
It’s real part is the square root of the variance of the real part of the estimator and the imaginary part
is the square root of the imaginary part of the variance of the estimator.

Value

Returns the estimate described above.

getSdNaive-SmoothedPG Get estimates for the standard deviation of the smoothed quantile pe-
riodogram.

Description

Determines and returns an array of dimension [J,K1,K2], where J=1ength(frequencies),Ki=length(levels.1),
and K2=length(levels.2)). Whether available or not, boostrap repetitions are ignored by this pro-

cedure. At position (j,k1,k2) the returned value is the standard deviation estimated correspond-

ing to frequencies[j], levels.1[k1] and levels.2[k2] that are closest to the frequencies,

levels.1 and levels.?2 available in object; closest.pos is used to determine what closest to

means.

Usage

## S4 method for signature 'SmoothedPG'
getSdNaive(
object,
frequencies = 2 * pi * (0:(lenTS(object@qPG@fregRep@Y) -
1))/1enTS(object@qPG@freqRep@Y),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),
dl = 1:(dim(object@values)[2]),
d2 = 1:(dim(object@values)[4]),
impl = c("R", "C")



44

Arguments
object
frequencies
levels.1
levels.2

di

d2
impl

Details

getStdError-QuantileSD

SmoothedPG of which to get the estimates for the standard deviation.
a vector of frequencies for which to get the result

the first vector of levels for which to get the result

the second vector of levels for which to get the result

optional parameter that determine for which jl to return the data; may be a
vector of elements 1, ..., D

same as d1, but for j2

choose "R" or "C" for one of the two implementations available

If not only one, but multiple time series are under study, the dimension of the returned vector is of
dimension [J,P,K1,P,K2,B+1], where P denotes the dimension of the time series.

Requires that the SmoothedPG is available at all Fourier frequencies from (0, 7r]. If this is not the
case the missing values are imputed by taking one that is available and has a frequency that is closest
to the missing Fourier frequency; closest. pos is used to determine which one this is.

A precise definition on how the standard deviations of the smoothed quantile periodogram are esti-
mated is given in Barunik&Kley (2015).

Note the “standard deviation” estimated here is not the square root of the complex-valued variance.
It’s real part is the square root of the variance of the real part of the estimator and the imaginary part
is the square root of the imaginary part of the variance of the estimator.

Value

Returns the estimate described above.

References

Dette, H., Hallin, M., Kley, T. & Volgushev, S. (2015). Of Copulas, Quantiles, Ranks and Spectra:
an Lj-approach to spectral analysis. Bernoulli, 21(2), 781-831. [cf. http://arxiv.org/abs/

1111.7205]

getStdError-QuantileSD

Get stdError from a quantile spectral density kernel

Description

The selection mechanism for frequencies and levels operates in the same way as described in
getValues-QuantileSD. The format of the output is also described there.


http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1111.7205

getTs-QuantileSD 45

Usage

## S4 method for signature 'QuantileSD'
getStdError(
object,
frequencies = 2 * pi x (@:(object@N - 1))/object@N,
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),
d1 = 1:(dim(object@values)[2]),
d2 = 1:(dim(object@values)[4])

)
Arguments
object QuantileSD of which to get the stdError
frequencies a vector of frequencies for which to get the stdError
levels.1 the first vector of levels for which to get the stdError
levels.2 the second vector of levels for which to get the stdError
d1 optional parameter that determine for which j1 to return the stdError; may be
a vector of elements 1, ..., D
d2 same as d1, but for j2
Value

Returns the array stdError that’s a slot of object.

getTs-QuantileSD Get ts from a quantile spectral density kernel

Description

Get ts from a quantile spectral density kernel

Usage
## S4 method for signature 'QuantileSD'
getTs(object)

Arguments

object QuantileSD of which to get the ts

Value

Returns the attribute ts that’s a slot of object.



46 getValues-FreqRep

getType-QuantileSD Get type from a quantile spectral density kernel

Description

Get type from a quantile spectral density kernel

Usage
## S4 method for signature 'QuantileSD'
getType(object)

Arguments

object QuantileSD of which to get the type

Value

Returns the attribute type that’s a slot of object.

getValues-FreqgRep Get values from a frequency representation.

Description

For two vectors frequencies and levels the values from an object of type FreqRep are returned.

Usage

## S4 method for signature 'FreqRep'
getValues(
object,
frequencies = 2 * pi * (0:(lenTS(object@Y) - 1))/lenTS(object@Y),
levels = object@levels,
d = 1:(dim(object@values)[2])

)
Arguments
object FreqRep of which to get the values
frequencies a vector of frequencies for which to get the values
levels a vector of levels for which to get the values
d optional parameter that determine of which component to return the data; may

be a vector of elements 1, ..., D



getValues-IntegrQuantileSD 47

Details

The two parameters frequencies and levels are expected to be vectors of reals; an error is thrown
otherwise. If any of the frequencies or levels requested is not available from object a warning
is issued, and the values with frequencies and levels closest to the ones requested are returned. Note
that the frequencies are transformed to [0, ] using frequenciesValidator when checking if they
are available in object.

The returned array of values is of dimension [J,K,B+1], where J=1ength(frequencies), K=length(levels),
and B denotes the value stored in slot B of object. At position (j,k,b) the returned value is the one
corresponding to frequencies[j] and levels[k] that are closest to the frequencies and levels

available in object; closest.pos is used to determine what closest to means.

Value

Returns data from the array values that’s a slot of object.

Examples

Y <- rnorm(32)

freq <- 2*pixc(0:31)/32

levels <- ¢(0.25,0.5,0.75)

cFT <- clippedFT(Y, freq, levels)

V.all <- getValues(cFT)

V.coarse <- getValues(cFT, frequencies = 2xpixc(0:15)/16, levels = levels)
V.fine <- getValues(cFT, frequencies = 2xpixc(0:63)/64, levels = levels)
V.part <- getValues(cFT, frequencies = 2xpi*c(0:16)/32, levels = c(0.25))

getValues-IntegrQuantileSD
Get values from a simulated integrated quantile spectral density kernel

Description

If none of the optional parameters is specified then the values are returned for all Fourier frequen-
cies in [0, 27) (base given by slot N) and all levels available. The frequencies and levels can be
freely specified. The returned array then has, at position (j,k1,k2,b), the value corresponding
to the frequencies[j], levels.1[k1] and levels.2[k2] that are closest to the frequencies,
levels.1 and levels. 2 available in object; closest.pos is used to determine what closest to
means.

Usage

## S4 method for signature 'IntegrQuantileSD'
getValues(
object,
frequencies = 2 * pi * (0:(getN(object@gsd) - 1))/getN(object@gsd),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2)



48 getValues-Kernel Weight

Arguments
object IntegrQuantileSD of which to get the values
frequencies a vector of frequencies for which to get the values
levels.1 the first vector of levels for which to get the values
levels.2 the second vector of levels for which to get the values
Value

Returns data from the array values that’s a slot of object.

See Also

For examples on how to use this function go to IntegrQuantileSD.

getValues-KernelWeight
Get values from a weight object determined by a kernel function W and

a bandwidth b.

Description

For an object of type KernelWeight and an optional integer N the weights W,, are returned as a
vector that has W,, (27 (k — 1)/n) at position k.

Usage

## S4 method for signature 'KernelWeight'
getValues(object, N = length(object@env$values))

Arguments
object KernelWeight of which to get the values
N a numeric specifying the number of equaly spaced Fourier frequencies from
[0, 27) for which the weight will be computed; by default the number N specified
on construction.
Value

Returns a vector of size N as described in the Details section.



getValues-LagEstimator 49

getValues-LagEstimator
Get values from a lag-window type estimator.

Description

The returned array of values is of dimension [J,K1,K2], where J=1ength(frequencies),Ki=length(levels.1)
and K2=length(levels.2)). At position (j,k1,k2) the returned value is the one correspond-

ing to frequencies[j], levels.1[k1] and levels.2[k2] that are closest to the frequencies,

levels.1 and levels.?2 available in object; closest.pos is used to determine what closest to

means.

Usage

## S4 method for signature 'LagEstimator'
getValues(
object,
frequencies = 2 * pi x (0:(length(object@Y) - 1))/length(object@Y),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2)

)
Arguments
object LagEstimator of which to get the values
frequencies a vector of frequencies for which to get the values
levels.1 the first vector of levels for which to get the values
levels.2 the second vector of levels for which to get the values
Value

Returns data from the array values that’s a slot of object.

See Also

An example on how to use this function is analogously to the example given in getValues-QuantilePG.



50 getValues-LagOperator

getValues-LagKernelWeight

Get values from a weight object determined by a kernel function W and
a bandwidth bw.

Description
For an object of type LagKernelWeight and an optional integer K the weights W}, are returned as
a vector that has W, ((k — 1)/bw) at position k.

Usage

## S4 method for signature 'LagKernelWeight'
getValues(object, K = length(object@env$values))

Arguments
object LagKernelWeight of which to get the values
K a numeric that determines the largest lag. The weight will be computed for the
K integers 0 : (K — 1); by default the number K specified on construction.
Value

Returns a vector of size K as described in the Details section.

getValues-LagOperator Get attribute values from a LagOperator.

Description

Get attribute values from a LagOperator.

Usage

## S4 method for signature 'LagOperator’
getValues(object, levels.1, levels.2)

Arguments
object LagOperator from which to get the values.
levels.1 the first vector of levels for which to get the values
levels.2 the second vector of levels for which to get the values
Value

Returns the values attribute.



getValues-QuantilePG 51

getValues-QuantilePG  Get values from a quantile periodogram.

Description

For vectors frequencies, levels.1 and levels. 2 the values from an object of type QuantilePG
are returned.

Usage

## S4 method for signature 'QuantilePG'
getValues(
object,
frequencies = 2 * pi * (0:(lenTS(object@freqgRep@Y) - 1))/lenTS(object@fregRepQY),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),
d1 = 1:(dim(object@freqRep@Y)[2]),
d2 = 1:(dim(object@freqRep@Y)[2])

)
Arguments
object QuantilePG of which to get the values
frequencies a vector of frequencies for which to get the values
levels.1 the first vector of levels for which to get the values
levels.2 the second vector of levels for which to get the values
di optional parameter that determine for which jl to return the data; may be a
vector of elements 1, ..., D
d2 same as d1, but for j2
Details

Fetching of the periodogram values basically happens by passing frequencies and the union
of levels.1 and levels.2 to getValues. Therefore, the parameters frequencies, levels.1
and levels.1 are expected to be vectors of reals; an error is thrown otherwise. If any of the
frequencies, levels. 1 and levels. 2 requested is not available from object a warning is issued.
Note that the frequencies are transformed to [0, 7] using frequenciesValidator when checking if
they are available in object.

The returned array of values is of dimension [J,K1,K2,B+1], where J=length(frequencies),
K1=length(levels.1),K2=1ength(levels.2)), and B denotes the value stored in slot B of fregRep
that’s a slot of object. At position (j,k1,k2,b) the returned value is the one corresponding to
frequencies[j], levels.1[k1] and levels. 2[k2] that are closest to the frequencies, levels.1
and levels. 2 available in object; closest. pos is used to determine what closest to means.



52 getValues-QuantileSD

Value

Returns data from the array values that’s a slot of object.

Examples

Y <- rnorm(32)
freq <- 2xpixc(0:31)/32
levels <- ¢(0.25,0.5,0.75)
gPG <- quantilePG(Y, levels.1=levels)
V.all <- getValues(gPG)
V.coarse <- getValues(qPG, frequencies = 2*pi*c(0:15)/16)
V.fine <- getValues(qPG, frequencies = 2xpi*c(0:63)/64)
V.part <- getValues(qPG, frequencies = 2*pixc(0:16)/32,
levels.1 = c(0.25), levels.2 = c(0.5,0.75))

getValues-QuantileSD  Get values from a quantile spectral density kernel

Description

If none of the optional parameters is specified then the values are returned for all Fourier frequen-
cies in [0, 27) (base given by slot N) and all levels available. The frequencies and levels can be
freely specified. The returned array then has, at position (j,k1,k2,b), the value corresponding
to the frequencies[j], levels.1[k1] and levels.2[k2] that are closest to the frequencies,
levels.1 and levels. 2 available in object; closest.pos is used to determine what closest to
means.

Usage

## S4 method for signature 'QuantileSD'
getValues(
object,
frequencies = 2 * pi * (0:(object@N - 1))/object@N,
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),
dl = 1:(dim(object@values)[2]),

d2 = 1:(dim(object@values)[4])
)
Arguments
object QuantileSD of which to get the values
frequencies a vector of frequencies for which to get the values
levels.1 the first vector of levels for which to get the values
levels.2 the second vector of levels for which to get the values
di optional parameter that determine for which jl to return the data; may be a

vector of elements 1, ..., D
d2 same as d1, but for j2



getValues-SmoothedPG 53

Value

Returns data from the array values that’s a slot of object.

See Also

For examples on how to use this function go to QuantileSD.

getValues-SmoothedPG  Get values from a smoothed quantile periodogram.

Description

The returned array of values is of dimension [J,K1,K2,B+1], where J=length(frequencies),
K1=length(levels.1),K2=1ength(levels.2)), and B denotes the value stored in slot B of freqRep
[that is the number of boostrap repetitions performed on initialization]. At position (j,k1,k2,b)
the returned value is the one corresponding to frequencies[j], levels.1[k1] and levels.2[k2]
that are closest to the frequencies, levels.1 and levels. 2 available in object; closest.pos is
used to determine what closest to means. b==1 corresponds to the estimate without bootstrapping;
b>1 corresponds to the b-1st bootstrap estimate.

Usage

## S4 method for signature 'SmoothedPG'
getValues(
object,
frequencies = 2 * pi * (0:(lenTS(object@qPG@fregRep@Y) -
1))/1enTS(object@qPG@freqRep@Y),
levels.1 = getLevels(object, 1),
levels.2 = getLevels(object, 2),
d1 = 1:(dim(object@values)[2]),
d2 = 1:(dim(object@values)[4])

)
Arguments
object SmoothedPG of which to get the values
frequencies a vector of frequencies for which to get the values
levels.1 the first vector of levels for which to get the values
levels.2 the second vector of levels for which to get the values
di optional parameter that determine for which jl to return the data; may be a
vector of elements 1, ..., D
d2 same as d1, but for j2
Details

If not only one, but multiple time series are under study, the dimension of the returned vector is of
dimension [J,P,K1,P,K2,B+1], where P denotes the dimension of the time series.



54 getW-KernelWeight

Value

Returns data from the array values that’s a slot of object.

See Also

An example on how to use this function is analogously to the example given in getValues-QuantilePG.

getValues-SpecDistrWeight
Get values from a weight object of type SpecDistrWeight

Description

For an object of type SpecDistrWeight and an optional integer N the weights W), are returned as
a vector that has W,, (27 (k — 1)/n) at position k.

Usage

## S4 method for signature 'SpecDistrWeight'
getValues(object, N = length(object@env$values))

Arguments
object SpecDistrWeight of which to get the values
N a numeric specifying the number of equaly spaced Fourier frequencies from
[0, 27) for which the weight will be computed; by default the number N specified
on construction.
Value

Returns a vector of size N as described in the Description section.

getW-KernelWeight Get attribute W (kernel used for smoothing) from a KernelWeight.

Description

Get attribute W (kernel used for smoothing) from a KernelWeight.

Usage

## S4 method for signature 'KernelWeight'
getW(object)



getW-LagKernelWeight 55

Arguments

object KernelWeight from which to get the kernel W.

Value

Returns the W attribute.

getW-LagKernelWeight  Get attribute W (kernel used for smoothing) from a LagKernelWeight.

Description

Get attribute W (kernel used for smoothing) from a LagKernelWeight.

Usage
## S4 method for signature 'LagKernelWeight'
getW(object)

Arguments

object LagKernelWeight from which to get the kernel W.

Value

Returns the W attribute.

getWeight-LagEstimator
Get associated Weight from a LagEstimator.

Description

Get associated Weight from a LagEstimator.

Usage

## S4 method for signature 'LagEstimator'

getWeight (object)
Arguments

object LagEstimator from which to get the Weight.
Value

Returns the Weight object associated.



56 getWnj-KernelWeight

getWeight-SmoothedPG  Get associated Weight from a SmoothedPG.

Description

Get associated Weight from a SmoothedPG.

Usage

## S4 method for signature 'SmoothedPG'

getWeight (object)
Arguments

object SmoothedPG from which to get the Weight.
Value

Returns the Weight object associated.

getWnj-KernelWeight Get attribute Wnj from a QSpecQuantity.

Description
If the optional parameter j is supplied, then only the jth element(s) of the vector will be returned,
the entire vector otherwise.

Usage

## S4 method for signature 'KernelWeight'
getWnj(object, j)

Arguments

object KernelWeight from which to get the Wnj.

j an integer or vector of indices specifying which Wnj[j] to return.
Value

Returns levels attribute, as a vector of real numbers.

Examples

wgt <- kernelWeight(W=W1, N=2"3, bw=0.7)
getWnj(wgt)

getWnj(wgt, 2)

getWnj(wgt, c(2,7))



getY-FreqRep 57

getY-FregRep Get Y from a FregRep object.

Description

Get Y from a FregRep object.

Usage

## S4 method for signature 'FregRep'
getY(object, d = 1)

Arguments
object FreqRep of which to get the Y
d optional parameter that determine which time series to return; may be a vector
of elements 1, ..., D
Value

Returns the attribute Y that’s a slot of object.

increasePrecision-QuantileSD
Increase the precision of a QuantileSD

Description
The precision is increased by generating an additional R QuantilePG objects (independent of the
previous ones) and then including them in the average.

Usage

## S4 method for signature 'QuantileSD'
increasePrecision(object, R = 1, quiet = FALSE)

Arguments
object The QuantileSD of which to increase the precision.
R value of which to enlarge R
quiet Don’t report progress to console when computing the R independent quantile
periodograms.
Value

Returns an QuantileSD object determined from oldR + R independent repetitions.



58 IntegrQuantileSD-class

Examples

## Not run:
# First simulate a copula spectral density from R=20 independent runs.
csd <- quantileSD(N=2%9, ts=tsl1, levels.1=c(0.25,0.5), type="copula”, R=20)

# Check out the result:
getR(csd)
plot(csd)

# Now increase the number of independent simulation runs to 50.
csd <- increasePrecision(csd, R=30)

# Check out the (more precise) result:
getR(csd)
plot(csd)

## End(Not run)

IntegrQuantileSD-class
Class for a simulated integrated quantile (i. e., Laplace or copula)
density kernel.

Description

IntegrQuantileSD is an S4 class that implements the necessary calculations to determine an inte-
grated version of the quantile spectral density kernel (computed via QuantileSD). In particular it
can be determined for any model from which a time series of length N can be sampled via a function
call ts(N).

Details

In the simulation the quantile spectral density is first determined via QuantileSD, it’s values are
recovered using getValues-QuantileSD and then cumulated using cumsum.

Note that, all remarks made in the documentation of the super-class QSpecQuantity apply.

Slots

gsd aQuantileSD from which to begin the computations.

Examples

HEHHHHHRHEEHHEHHHEHBHEHEHREEEEHEEHEEHHEHHAEHEREEEHEHHEH RS HHHEHREEEEHEEEHEHREEHEHR
## This script illustrates how to estimate integrated quantile spectral densities

## Simulate a time series Y1,...,Y128 from the QAR(1) process discussed in
## Dette et. al (2015).
set.seed(2581)



IntegrQuantileSD-constructor 59

Y <- ts1(128)

## For a defined set of quantile levels ...
levels <- ¢(0.25,0.5,0.75)

## ... and a weight (of Type A), defined using the Epanechnikov kernel ...
wgt <- specDistrWeight()

## ... compute a smoothed quantile periodogram (based on the clipped time series).

## Repeat the estimation 100 times, using the moving blocks bootstrap with

## block length 1=32.

sPG.cl <- smoothedPG(Y, levels.1 = levels, type="clipped”, weight = wgt,
type.boot = "mbb”, B=100, 1=32)

## Create a (model) spectral density kernel for he QAR(1) model for display
## in the next plot.
csd <- quantileSD(N=2"8, seed.init = 2581, type = "copula”,
ts = ts1, levels.l1=levels, R = 100)
icsd <- integrQuantileSD(csd)

plot(sPG.cl, ptw.CIs = 0.1, gsd = icsd, type.CIs = "boot.full")

IntegrQuantileSD-constructor
Create an instance of the IntegrQuantileSD class.

Description

Create an instance of the IntegrQuantileSD class.

Usage

integrQuantileSD(
object = 28,
type = c("copula”, "Laplace"),
ts = rnorm,
seed.init = 2581,
levels.1 = 0.5,
levels.2 = levels.1,
R=1,
quiet = FALSE

Arguments

object the number N of Fourier frequencies to be used; alternatively a QuantileSD
object can be supplied (then all the other parameters will be ignored)



60

type

ts

seed.init

levels.1

levels.2

quiet

Value

is.wholenumber

can be either "Laplace” or "copula”; indicates whether the marginals are to be
assumed uniform [0, 1] distributed.

a function that has one argument n and, each time it is invoked, returns a new
time series from the model for which the integrated quantile spectral density
kernel is to be simulated.

an integer serving as an initial seed for the simulations.

A vector of length K1 containing the levels x1 at which the QuantileSD is to be
determined.

A vector of length K2 containing the levels x2 at which the QuantileSD is to be
determined.

an integer that determines the number of independent simulations; the larger this
number the more precise is the result.

Don’t report progress to console when computing the R independent quantile
periodograms.

Returns an instance of IntegrQuantileSD.

See Also

For an example see IntegrQuantileSD.

is.wholenumber

Checks whether x contains integer numbers.

Description

Borrowed from the example in integer.

Usage
is.wholenumber(x, tol = .Machine$double.eps”0.5)
Arguments
X a vector to be checked for integers
tol an optional parameter specifying to which precision the check is to be per-
formed.
Value

Returns a vector of logicals with the same length as x; each element i is TRUE iff x[i] is an integer.



kernels

Examples

## Not run:

is.wholenumber (1) # is TRUE

(x <- seq(1, 5, by = 0.5) )

is.wholenumber( x ) #--> TRUE FALSE TRUE ...

## End(Not run)

61

kernels Kernel function.

Description

Implementations of kernel functions

Usage
Wo (x)

W1(x)
W2 (x)
W3 (x)

WDaniell(x, a = (pi/2))

WParzen(u)
Arguments
X real-valued argument to the function; can be a vector
a real number between 0 and
u real number
Details

Daniell kernel function Wo: 1
—1T <}
9 {lz| < m}

Epanechnikov kernel W1 (i. e., variance minimizing kernel function of order 2):

(1= 51| <)

Variance minimizing kernel function W2 of order 4:

15

@(7(95/77)4 —10(x/7)% + 3)I{|z| < 7).



62 KernelWeight-class

Variance minimizing kernel function W3 of order 6:

2?%(_99(1‘/71')6 + 189(%‘/7‘(’)4 _ 105(1‘/77')2 + 15)I{]z| < 7}

Kernel yield by convolution of two Daniell kernels:

1 —
7(1—”'7“1{@ || gw}).
T™+a a

Parzen Window for lagEstimators

Examples

plot(x=seq(-8,8,0.05), y=Wo(seq(-8,8,0.05)), type="1")
plot(x=seq(-8,8,0.05), y=W1(seq(-8,8,0.05)), type="1")
plot(x=seq(-8,8,0.05), y=W2(seq(-8,8,0.05)), type="1")
plot(x=seq(-8,8,0.05), y=W3(seq(-8,8,0.05)), type="1")
plot(x=seq(-pi,pi,0.05), y=WDaniell(seq(-pi,pi,0.05),a=(pi/2)), type="1")
plot(x=seq(-2,2,0.05),y=WParzen(seq(-2,2,0.05)),type = "1")

KernelWeight-class Class for Brillinger-type Kernel weights.

Description

KernelWeight is an S4 class that implements a weighting function by specification of a kernel
function W and a scale parameter bw.

Details
It extends the class Weight and writes
Wy (2r(k —1)/N) =Y bw™ "W (2rbw ™ [(k — 1)/N + j])
jez
to values[k] [nested inside env] for k=1, ...,N. The number length(values) of Fourier fre-

quencies for which W will be evaluated may be set on construction or updated when evoking the
method getValues. To standardize the weights used in the convolution to unity

N—-1
Wi =Y Wy(2ms/N)
j#5=0

is stored to Wnj[s] for s=1, ... N, for later usage.

Slots

W a kernel function

bw bandwidth

env An environment to allow for slots which need to be accessable in a call-by-reference manner:
values A vector storing the weights; see the Details section.
Wnj A vector storing the terms used for normalization; see the Details section.



KernelWeight-constructor 63

References
Brillinger, D. R. (1975). Time Series: Data Analysis and Theory. Holt, Rinehart and Winston, Inc.,
New York. [cf. p. 146 {.]

See Also

Examples for implementations of kernels W can be found at: kernels.

KernelWeight-constructor
Create an instance of the KernelWeight class.

Description

Create an instance of the KernelWeight class.

Usage
kernelWeight(
W = Wwe,
N=1,
bw = 0.1 x N*(-1/5),
descr = paste("bw=", round(bw, 3), ", N=", N, sep = "")
)
Arguments
W A kernel function
N Fourier basis; number of grid points in [0, 27) for which the weights will be
computed.
bw bandwidth; if a vector, then a list of weights is returned
descr a description to be used in some plots
Value

Returns an instance of KernelWeight.

See Also

kernels

Examples

wgtl <- kernelWeight(W=W@, N=16, bw=c(0.1,0.3,0.7))
print(wgtl)

wgt2 <- kernelWeight(W=W1, N=2"8, bw=0.1)

plot(wgt2, main="Weights determined from Epanechnikov kernel")



64 LagEstimator-constructor

LagEstimator-class Class for a lag-window type estimator.

Description

For a given time series Y a lag-window estimator of the Form
J@) = 3 K(k)D(Yo, Vi) exp(—iwk)
|kl<n—1

will be calculated on initalization. The LagKernelWeight K_n is determined by the slot weight
and the LagOperator I'(Yy, Y} ) is defined by the slot lagOp.

Details

Currently, the implementation of this class allows only for the analysis of univariate time series.

Slots

Y the time series where the lag estimator was applied one

weight aWeight object to be used as lag window

lagOp alagOperator object that determines which kind of bivariate structure should be calculated.
env An environment to allow for slots which need to be accessable in a call-by-reference manner:

sdNaive An array used for storage of the naively estimated standard deviations of the smoothed
periodogram.

sdNaive.done a flag indicating whether sdNaive has been set yet.

LagEstimator-constructor
Create an instance of the LagEstimator class.

Description

A LagEstimator object can be created from numeric, a ts, or a zoo object. Also a LagOperator
and a Weight object can be used to create different types of estimators.

Usage

lagEstimator(
Y,
frequencies = 2 * pi/length(Y) * @:(length(Y) - 1),
levels.1 = 0.5,
levels.2 = levels.1,
weight = lagKernelWeight(K = length(Y), bw = 100),
type = c("clippedCov")



LagKernelWeight-class 65

Arguments
Y a time series (numeric, ts, or zoo object) or a LagOperator from which to
determine the LagEstimator
frequencies A vector containing (Fourier-)frequencies at which to determine the smoothed
periodogram.
levels.1 the first vector of levels for which to compute the LagEstimator
levels.2 the second vector of levels for which to compute the LagEstimator
weight Object of type Weight to be used for smoothing.
type if Y is a time series, this indicates which LagOperator will be used
Value

Returns an instance of LagEstimator.

Examples

Y <= rnorm(100)

levels.1 <- ¢(0.1,0.5,0.9)

weight <- lagKernelWeight(W = WParzen, bw = 10, K = length(Y))
lagOp <- clippedCov(Y,levels.1 = levels.1)

lagEst <- lagEstimator(lagOp, weight = weight)

LagKernelWeight-class Class for lag window generators

Description
LagKernelWeight is an S4 class that implements a weighting function by specification of a kernel
function W and a scale parameter bw.

Details

It extends the class Weight and writes

W ([k]) := W (z[k]/bw)
to values[k] [nested inside env] for k=1, ...,length(x). The points x where W is evaluated
may be set on construction or updated when evoking the method getValues.

Slots

W a kernel function
bw bandwidth
env An environment to allow for slots which need to be accessable in a call-by-reference manner:

values A vector storing the weights; see the Details section.



66 LagKernelWeight-constructor

See Also

Examples for implementations of kernels W can be found at: kernels.

LagKernelWeight-constructor
Create an instance of the LagKernelWeight class.

Description

Create an instance of the LagKernelWeight class.

Usage
lagKernelWeight(
W = WParzen,
bw = K/2,
K =10,
descr = paste("bw=", bw, ", K=", K, sep = "")
)
Arguments
W A kernel function
bw bandwidth
K a numeric that determines the largest lag. The weight will be computed for the
K integers 0 : (K — 1); by default the number K specified on construction.
descr a description to be used in some plots
Value

Returns an instance of LagKernelWeight.

See Also

kernels

Examples

wgtl <- lagKernelWeight(W=WParzen, K=20, bw=10)
print(wgtl)



LagOperator-class 67

LagOperator-class Interface Class to access different types of operators on time series.

Description

LagOperator is an S4 class that provides a common interface to implementations of an operator
I'(Y') which is calculated on all pairs of observations (Yp, Y},) with lag smaller than maxLag

Details

Currently one implementation is available: (1) C1lippedCov.

Currently, the implementation of this class allows only for the analysis of univariate time series.

Slots

values an array of dimension c(maxLag, length(levels.1),length(levels.2)) containing the
values of the operator.

Y is the time series the operator shall be applied to
maxLag maximum lag between two observations
levels a vector of numerics that determines the levels of the operator

isRankBased A flag that is FALSE if the determined values are based on the original time series
and TRUE if it is based on the ranks.

positions.boot An object of type BootPos, that is used to determine the block bootstrapped
replicates of the time series.

B Number of bootstrap replications to perform.

lenTS Validates if Y is of an appropriate type for a time series and returns
the length of the time series.

Description

Runs timeSeriesValidator and returns the number of rows of the returned matrix.

Usage

lenTS(Y)

Arguments

Y the time series to be validated and of which the length is to be returned.



68 MovingBlocks-constructor

Value

Returns the length of the time series after validating it’s valid.

Examples

Y <- 1lenTS(sp500)

Y <- lenTS(wheatprices)

Y <- lenTS(rnorm(10))

## Not run: Y <- lenTS("Not a valid input")

MovingBlocks-class Class for Moving Blocks Bootstrap implementation.

Description

MovingBlocks is an S4 class that implements the moving blocks bootstrap described in KAY%nsch
(1989).

Details

MovingBlocks extends the S4 class BootPos and the remarks made in its documentation apply here
as well.

The Moving Blocks Bootstrap method of KAV4nsch (1989) resamples blocks randomly, with re-
placement from the collection of overlapping blocks of length 1 that start with observation 1, 2, ...,
N-1+1. A more precise description of the procedure can also be found in Lahiri (1999), p. 389.

References
KAVinsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The
Annals of Statistics, 17, 1217-1261.

See Also

getPositions-MovingBlocks

MovingBlocks-constructor
Create an instance of the MovingBlocks class.

Description

Create an instance of the MovingBlocks class.

Usage
movingBlocks(1l, N)



plot-FreqRep 69

Arguments

1 the block length for the block bootstrap methods

N number of available observations to bootstrap from
Value

Returns an instance of MovingBlocks.

plot-FreqRep Plot the values of the FregRep.

Description

Creates a K x 2 plot depicting a FregRep object. Each of the K “lines” of subplots shows the
frequency representation for one value of 7. The real and imaginary part are shown on the left and
the right, respectively.

Usage
## S4 method for signature 'FreqRep,ANY'
plot(
X,
ratio = 2,

frequencies = 2 *x pi x (1:(floor(1lenTS(x@Y)/2)))/1enTS(x@Y),
levels = x@levels,
d = 1:(dim(x@Y)[2])

)
Arguments
X The FreqRep to plot.
ratio quotient of width over height of the subplots; use this parameter to produce
landscape or portrait shaped plots.
frequencies a set of frequencies for which the values are to be plotted.
levels a set of levels for which the values are to be plotted.
d vector indicating which components of a multivariate time series should be in
the plot.
Value

Plots the FreqgRep for all frequencies and levels specified.



70 plot-IntegrQuantileSD

plot-IntegrQuantileSD Plot the values of the IntegrQuantileSD.

Description

Creates a K x K plot depicting an integrated quantile spectral density. In each of the subplots either
the real part (on and below the diagonal; i. e., 73 < 72) or the imaginary part (above the diagonal;
i. e., 71 > Ty)of

* the integrated quantile spectral density (black line),

for the combination of levels 7; and 7 denoted on the left and bottom margin of the plot are
displayed.

Usage
## S4 method for signature 'IntegrQuantileSD,ANY'
plot(
X’
ratio = 3/2,

widthlab = lcm(1),

xlab = expression(omega/2 * pi),

ylab = NULL,

frequencies = 2 * pi * (1:(floor(getN(getQuantileSD(x))/2)))/getN(getQuantileSD(x)),
levels = getlLevels(x, 1)

)
Arguments
X The IntegrQuantileSD to plot
ratio quotient of width over height of the subplots; use this parameter to produce
landscape or portrait shaped plots.
widthlab width for the labels (left and bottom); default is 1cm(1), cf. layout.
xlab label that will be shown on the bottom of the plots; can be an expression (for
formulas), characters or NULL to force omission (to save space).
ylab label that will be shown on the left side of the plots; can be an expression (for
formulas), characters or NULL to force omission (to save space).
frequencies a set of frequencies for which the values are to be plotted.
levels a set of levels for which the values are to be plotted.
Value

Plots the simulated integrated quantile spectral density for all frequencies and levels specified.



plot-KernelWeight 71

plot-KernelWeight Plot the values of the KernelWeight.

Description

Creates a plot visualizing the weights W, (w) [cf. KernelWeight-class] that are used to estimate
the quantile spectral density.

Usage
## S4 method for signature 'KernelWeight,missing'
plot(
X’
y)
ylab = expression(W[n](omega)),
xlab = expression(omega),

main = x@descr,

)
Arguments
X The KernelWeight to plot.
y missing arg from the generic; will be ignored.
ylab label for the y-axis; optional
x1lab label for the x-axis; optional
main titel (on top) of the plot; optional
optional parameters used for plotting
Details

In the plot the values at the frequencies 27j/N,j = L+ 1— N,...,L, L := | N/2] are shown,
where N is the parameter specified on construction of the object or N := 3, if that parameter was
smaller than three. A warning is given in the later case.

Value

Plots the KernelWeight.

Examples

plot(kernelWeight (W1, bw=0.3),
ylab=expression(W[n](x)),
xlab=expression(x),
main="Weights to an Epanechnikov kernel”, sub="bw=0.3")



72

plot-LagEstimator

plot-LagEstimator

Plot the values of a LagEstimator.

Description

Creates a K x K plot displaying all levels combinations from the argument levels. In each of the
subplots either the real part (on and below the diagonal; i. e., 73 < T3) or the imaginary parts (above
the diagonal; i. e., 71 > 7») of the lag-window estimator, for the combination of levels 7, and 7o
denoted on the left and bottom margin of the plot are displayed.

Usage

## S4 method for signature 'LagEstimator,ANY'

plot(
X!
ptw.CIs =

9.1,
ratio = 3/2,

widthlab = lcm(1),
xlab = expression(omega/2 * pi),

ylab = NULL,
type.scaling = c("individual”, "real-imaginary”, "all"),
frequencies = x@frequencies,
type.CIs = c("naive.sd"),
levels = intersect(x@levels[[1]], x@levels[[2]1]1)
)
Arguments
X The LagEstimator object to plot
ptw.CIs the confidence level for the confidence intervals to be displayed; must be a num-
ber from [0,1]; if null, then no confidence intervals will be plotted.
ratio quotient of width over height of the subplots; use this parameter to produce
landscape or portrait shaped plots.
widthlab width for the labels (left and bottom); default is 1cm(1), cf. layout.
xlab label that will be shown on the bottom of the plots; can be an expression (for
formulas), characters or NULL to force omission (to save space).
ylab label that will be shown on the left side of the plots; can be an expression (for

type.scaling

frequencies

formulas), characters or NULL to force omission (to save space).

amethod for scaling of the subplots; currently there are three options: "individual”
will scale each of the K*2 subplots to minimum and maximum of the values

in that plot, "real-imaginary"” will scale each of the subplots displaying real
parts and each of the subplots displaying imaginary parts to the minimum and
maximum of the values display in these subportion of plots. The option "all”
will scale the subplots to the minimum and maximum in all of the subplots.

a set of frequencies for which the values are to be plotted.



plot-LagKernel Weight 73

type.CIs indicates the method to be used for determining the confidence intervals; the
methods available are those provided by getPointwiseCIs-LagEstimator.
levels a set of levels for which the values are to be plotted.
Value

Returns the plot described in the Description section.
See Birr et al. (2015)

References

Birr, S., Volgushev, S., Kley, T., Dette, H. & Hallin, M. (2015). Quantile Spectral Analysis for
Locally Stationary Time Series. http://arxiv.org/abs/1404.4605.

plot-LagKernelWeight  Plot the values of the LagKernelWeight.

Description

Creates a plot visualizing the weights W,, (k [cf. LagKernelWeight-class] that are used to esti-
mate the quantile spectral density.

Usage
## S4 method for signature 'LagKernelWeight,missing'
plot(
X’
y’
ylab = expression(W[n](k)),

xlab = expression(k),
main = x@descr,

Arguments
X The LagKernelWeight to plot.
y missing arg from the generic; will be ignored.
ylab label for the y-axis; optional
x1lab label for the x-axis; optional
main titel (on top) of the plot; optional
optional parameters used for plotting
Details

In the plot the values at the points k/bw with k € {—K, ..., K} are shown.


http://arxiv.org/abs/1404.4605

74 plot-LagOperator

Value

Plots the LagKernelWeight.

Examples

plot(lagKernelWeight (WParzen, bw=10, K = 20),
ylab=expression(W[n](x)),
xlab=expression(x),
main="Weights to the Parzen Window")

plot-LagOperator Plot the values of the LagOperator.

Description

Creates a K x K plot (where K is the length of the levels parameter) showing the values of the
LagOperator. The plots below the diagonal show the positive Lags and the plots above display the
negative ones.

Usage

## S4 method for signature 'LagOperator,ANY'
plot(
X,
levels = intersect(x@levels.1, x@levels.2),
maxLag = maxLag,
widthlab = lcm(1),

ratio = 3/2,
xlab = expression(omega/2 * pi),
ylab = NULL
)
Arguments
X The LagOperator to plot.
levels a set of levels for which the values are to be plotted.
maxLag maximum Lag that should be displayed. It defaults to the maximum number of
Lags available but usually a smaller number yields a more informative result.
widthlab width for the labels (left and bottom); default is 1cm(1), cf. layout.
ratio quotient of width over height of the subplots; use this parameter to produce
landscape or portrait shaped plots.
xlab label that will be shown on the bottom of the plots; can be an expression (for
formulas), characters or NULL to force omission (to save space).
ylab label that will be shown on the left side of the plots; can be an expression (for

formulas), characters or NULL to force omission (to save space).



plot-QuantilePG

75

plot-QuantilePG

Plot the values of the QuantilePG.

Description

Creates a K x K plot depicting a quantile periodogram. Optionally, a simulated copula spectral
density can be displayed. In each of the subplots either the real part (on and below the diagonal; i.
e., 71 < 7o) or the imaginary parts (above the diagonal; i. e., 71 > 79) of

¢ the quantile periodogram (black line),

* asimulated quantile spectral density (red line),

for the combination of levels 71 and 7> denoted on the left and bottom margin of the plot are

displayed.

Usage

## S4 method for signature 'QuantilePG,ANY'

plot(
X,
gsd,

ratio = 3/2,

widthlab = lcm(1),
xlab = expression(omega/2 * pi),

ylab = NULL,
type.scaling = c("individual”, "real-imaginary"”, "all"),
frequencies = x@frequencies[-which(x@frequencies == 0)],
levels = intersect(x@levels[[1]], x@levels[[2]])
)
Arguments
X The QuantilePG object to plot
gsd a QuantileSD object; will be plotted if not missing.
ratio quotient of width over height of the subplots; use this parameter to produce
landscape or portrait shaped plots.
widthlab width for the labels (left and bottom); default is 1cm(1), cf. layout.
xlab label that will be shown on the bottom of the plots; can be an expression (for
formulas), characters or NULL to force omission (to save space).
ylab label that will be shown on the left side of the plots; can be an expression (for

type.scaling

formulas), characters or NULL to force omission (to save space).

a method for scaling of the subplots; currently there are three options: "individual”
will scale each of the K*2 subplots to minimum and maximum of the values

in that plot, "real-imaginary"” will scale each of the subplots displaying real
parts and each of the subplots displaying imaginary parts to the minimum and
maximum of the values display in these subportion of plots. The option "all"
will scale the subplots to the minimum and maximum in all of the subplots.



76 plot-QuantileSD

frequencies a set of frequencies for which the values are to be plotted; default is all available
frequencies but O; if O is the only available frequency, then only 0 will be used.
levels a set of levels for which the values are to be plotted.
Details

Currently, only the plot for the first component is shown.

Value

Returns the plot described in the Description section.

plot-QuantileSD Plot the values of the QuantileSD.

Description

Creates a K x K plot depicting a quantile spectral density. In each of the subplots either the real part

(on and below the diagonal; i. e., 71 < T2) or the imaginary parts (above the diagonal; i. e., 71 > T2)
of

* the quantile spectral density (red line),

* the means of the quantile periodograms used in the simulation (black line),

for the combination of levels 7; and 7, denoted on the left and bottom margin of the plot are
displayed.

Usage
## S4 method for signature 'QuantileSD,ANY'
plot(
X,
ratio = 3/2,

widthlab = lcm(1),

xlab = expression(omega/2 * pi),

ylab = NULL,

frequencies = 2 * pi * (1:(floor(x@N/2)))/xE€N,
levels = getlLevels(x, 1)

)
Arguments
X The QuantileSD to plot
ratio quotient of width over height of the subplots; use this parameter to produce

landscape or portrait shaped plots.

widthlab width for the labels (left and bottom); default is 1cm(1), cf. layout.



plot-SmoothedPG 77

x1lab label that will be shown on the bottom of the plots; can be an expression (for
formulas), characters or NULL to force omission (to save space).
ylab label that will be shown on the left side of the plots; can be an expression (for
formulas), characters or NULL to force omission (to save space).
frequencies a set of frequencies for which the values are to be plotted.
levels a set of levels for which the values are to be plotted.
Details

Currently, only the plot for the first component is shown.

Value

Plots the simulated quantile spectral density for all frequencies and levels specified.

plot-SmoothedPG Plot the values of a SmoothedPG.

Description

Creates a K x K plot depicting a smoothed quantile periodogram. Optionally, the quantile peri-
odogram on which the smoothing was performed, a simulated quantile spectral density, and point-
wise confidence intervals can be displayed. In each of the subplots either the real part (on and below
the diagonal; i. e., 7y < 79) or the imaginary parts (above the diagonal; i. e., 7y > 73) of

* the smoothed quantile periodogram (blue line),

* the quanitle peridogram that was used for smoothing (gray line),

 asimulated quantile spectral density (red line),

 pointwise (asymptotic) confidence intervals (light gray area),

for the combination of levels 7; and 7, denoted on the left and bottom margin of the plot are
displayed.

Usage

## S4 method for signature 'SmoothedPG,ANY'

plot(
X!
plotPG = FALSE,
gsd,
ptw.CIs = 0.1,
type.CIs = c("naive.sd"”, "boot.sd"”, "boot.full"),
ratio = 3/2,

widthlab = lcm(1),
xlab = expression(omega/2 * pi),
ylab = NULL,



78 plot-SmoothedPG

type.scaling = c("individual”, "real-imaginary"”, "all"),
frequencies = x@frequencies,
levels = intersect(x@levels[[1]], x@levels[[2]])

)
Arguments

X The SmoothedPG object to plot

plotPG a flag indicating weater the QuantilePG object associated with the SmoothedPG
x is also to be plotted.

gsd a QuantileSD object; will be plotted if not missing.

ptw.CIs the confidence level for the confidence intervals to be displayed; must be a num-
ber from [0,1]; if null, then no confidence intervals will be plotted.

type.CIs indicates the method to be used for determining the confidence intervals; the
methods available are those provided by getPointwiseCIs-SmoothedPG.

ratio quotient of width over height of the subplots; use this parameter to produce
landscape or portrait shaped plots.

widthlab width for the labels (left and bottom); default is 1cm(1), cf. layout.

xlab label that will be shown on the bottom of the plots; can be an expression (for
formulas), characters or NULL to force omission (to save space).

ylab label that will be shown on the left side of the plots; can be an expression (for

formulas), characters or NULL to force omission (to save space).

type.scaling  amethod for scaling of the subplots; currently there are three options: "individual”
will scale each of the K*2 subplots to minimum and maximum of the values
in that plot, "real-imaginary"” will scale each of the subplots displaying real
parts and each of the subplots displaying imaginary parts to the minimum and
maximum of the values display in these subportion of plots. The option "all”
will scale the subplots to the minimum and maximum in all of the subplots.

frequencies a set of frequencies for which the values are to be plotted.
levels a set of levels for which the values are to be plotted.
Details

Currently, only the plot for the first component is shown.

Value

Returns the plot described in the Description section.



plot-SpecDistrWeight 79

plot-SpecDistrWeight  Plot the values of the SpecDistrWeight.

Description

Creates a plot visualizing the weights W, (w) [cf. SpecDistrWeight-class] that are used to esti-
mate the integrated quantile spectral density.

Usage

## S4 method for signature 'SpecDistrWeight,missing
plot(

X7

Y,

ylab = expression(W[n](omega)),

xlab = expression(omega),

main = x@descr,

Arguments
X The SpecDistrWeight to plot.
y missing arg from the generic; will be ignored.
ylab label for the y-axis; optional
x1lab label for the x-axis; optional
main titel (on top) of the plot; optional
optional parameters used for plotting
Details

In the plot the values at the frequencies 27 /128, j = —63, ..., 64 are shown.

Value

Plots the SpecDistrWeight.

Examples

plot(specDistrWeight(),
ylab=expression(W[n1(x)),
xlab=expression(x))



80 QRegEstimator-constructor

QRegEstimator-class Class for quantile regression-based estimates in the harmonic linear
model.

Description

QRegEstimator is an S4 class that implements the necessary calculations to determine the fre-
quency representation based on the weigthed L, -projection of a time series as described in Dette et.
al (2015). As a subclass to FregRep it inherits slots and methods defined there.

Details

For each frequency w from frequencies and level 7 from levels the statistic

n—1
b7 (w) := arg Jax Z pr(Yy —a — Re(b) cos(wt) — Im(b) sin(wt)),
’ t=0

is determined and stored to the array values.

The solution to the minimization problem is determined using the function rq from the quantreg
package.

All remarks made in the documentation of the super-class FregRep apply.

Slots
method method used for computing the quantile regression estimates. The choice is passed to gr;
see the documentation of quantreg for details.

parallel aflag that signalizes that parallelization mechanisms from the package snowfall may be
used.

References

Dette, H., Hallin, M., Kley, T. & Volgushev, S. (2015). Of Copulas, Quantiles, Ranks and Spectra:
an Lj-approach to spectral analysis. Bernoulli, 21(2), 781-831. [cf. http://arxiv.org/abs/
1111.7205]

QRegEstimator-constructor
Create an instance of the QRegEstimator class.

Description

The parameter type.boot can be set to choose a block bootstrapping procedure. If "none” is
chosen, a moving blocks bootstrap with 1=1ength(Y) and N=1ength(Y) would be done. Note that
in that case one would also chose B=0 which means that getPositions would never be called. If
B>0 then each bootstrap replication would be the undisturbed time series.


http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1111.7205

QRegEstimator-constructor 81

Usage

gRegEstimator(
Y,
frequencies
levels = 0.5
isRankBased
B =20,
1=0,
type.boot =
method = c(”

= 2 % pi/lenTS(Y) % @:(lenTS(Y) - 1),

’

= TRUE,

c("none”, "mbb"),
brll’ H.Fnll, Ilpfnll, Ilfncll’ ”lassoll’ "scadll)’

parallel = FALSE

Arguments

Y

frequencies

levels

isRankBased
B

1

type.boot

method

parallel

Value

A vector of real numbers containing the time series from which to determine
the quantile periodogram or a ts object or a zoo object.

A vector containing frequencies at which to determine the QRegEstimator.

A vector of length K containing the levels x at which the QRegEstimator is to
be determined.

If true the time series is first transformed to pseudo data [cf. FregRep].
number of bootstrap replications
(expected) length of blocks

A flag to choose a method for the block bootstrap; currently two options are
implemented: "none” and "mbb"” which means to do a moving blocks bootstrap
with B and 1 as specified.

method used for computing the quantile regression estimates. The choice is
passed to gr; see the documentation of quantreg for details.

a flag to allow performing parallel computations.

Returns an instance of QRegEstimator.

Examples

library(snowfall)

Y <- rnorm(100)

# Try 2000 and parallel computation will in fact be faster.

# Compute without using snowfall capabilities

system.time(

gRegEst1 <- gRegEstimator(Y, levels=seq(@.25,0.75,0.25), method="fn", parallel=FALSE)

)

# Set up snowfall
sfInit(parallel=TRUE, cpus=2, type="SOCK")



82 QuantilePG-class

sfLibrary(quantreg)
sfExportAll()

# Compare how much faster the computation is when done in parallel
system. time(

gRegEst2 <- gRegEstimator(Y, levels=seq(0.25,0.75,0.25), method="fn", parallel=TRUE)
)

sfStop()

# Compare results

V1 <- getValues(qRegEst1)

V2 <- getValues(gRegEst2)
sum(abs(V1-V2)) # Returns: [1] @

QSpecQuantity-class Class for a Quantile Spectral Estimator.

Description

QSpecQuantity is an S4 class that provides a common interface to objects that are of the functional
form f71:92(w; 1, x5), where j1, j2 are indices denoting components of a time series or process,
w is a frequency parameter and z;, xo are level parameters. For each combination of parameters a
complex number can be stored. Examples for objects of this kind currently include the quantile (i.
e., Laplace or copula) spectral density kernel [cf. QuantileSD for an implementation], an integrated
version of the quantile spectral density kernels [cf. IntegrQuantileSD for an implementation], and
estimators of it [cf. QuantilePG and SmoothedPG for implementations].

Slots

values The array holding the values f7192 (w; 1, x2).
frequencies The frequencies w for which the values are available.

levels A list of vectors containing the levels x; serving as argument for the estimator.

QuantilePG-class Class for a quantile (i. e., Laplace or copula) periodogram.

Description

QuantilePG is an S4 class that implements the necessary calculations to determine one of the
periodogram-like statistics defined in Dette et. al (2015) and Kley et. al (2016).



QuantilePG-class 83

Details

Performs all the calculations to determine a quantile periodogram from a FregRep object upon
initizalization (and on request stores the values for faster access). The two methods available for
the estimation are the ones implemented as subclasses of FregRep:

* the Fourier transformation of the clipped time series ({I{Y; < ¢}) [cf. ClippedFT], or

* the weighted L;-projection of (Y;) onto an harmonic basis [cf. QRegEstimator].

All remarks made in the documentation of the super-class QSpecQuantity apply.

Slots

fregRep a FreqRep object where the quantile periodogram will be based on.

References

Dette, H., Hallin, M., Kley, T. & Volgushev, S. (2015). Of Copulas, Quantiles, Ranks and Spectra:
an Lj-approach to spectral analysis. Bernoulli, 21(2), 781-831. [cf. http://arxiv.org/abs/
1111.7205]

Kley, T., Volgusheyv, S., Dette, H. & Hallin, M. (2016). Quantile Spectral Processes: Asymptotic
Analysis and Inference. Bernoulli, 22(3), 1770-1807. [cf. http://arxiv.org/abs/1401.8104]

Examples

HEHHHHHHHEHE A EHHHHHREEREH AR
## This script illustrates how to work with QuantilePG objects

## Simulate a time series Y1,...,Y128 from the QAR(1) process discussed in
## Dette et. al (2015).
Y <- ts1(64)

## For a defined set of quantile levels
levels <- ¢(0.25,0.5,0.75)

## the various quantile periodograms can be calculated calling quantilePG:

## For a copula periodogram as in Dette et. al (2015) the option 'type="qr"'
## has to be used:
system.time(

gPG.qgr <- quantilePG(Y, levels.1 = levels, type="qr"))

## For the CR-periodogram as in Kley et. al (2016) the option 'type="clipped”'
## has to be used. If bootstrap estimates are to be used the parameters
## type.boot, B and 1 need to be specified.
system.time(
gPG.cl <- quantilePG(Y, levels.1 = levels, type="clipped”,
type.boot="mbb", B=250, 1=2%5))

## The two previous calls also illustrate that computation of the CR-periodogram
## is much more efficient than the quantile-regression based copula periodogram.


http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1401.8104

84 QuantilePG-constructor

## Either periodogram can be plotted using the plot command
plot(gPG.cl)
plot(gPG.qr)

## Because the indicators are not centered it is often desired to exclude the
## frequency @; further more the frequencies (pi,2pi) are not wanted to be

## included in the plot, because f(w) = Conj(f(2 pi - w)).

## Using the plot command it is possible to select frequencies and levels for
## the diagram:

plot(gPG.cl, frequencies=2xpix(1:32)/64, levels=c(0.25))

## We can also plot the same plot together with a (simulated) quantile spectral
## density kernel
csd <- quantileSD(N=2"8, seed.init = 2581, type = "copula”,
ts = ts1, levels.1=c(0.25), R = 100)
plot(gPG.cl, gsd = csd, frequencies=2*xpi*(1:32)/64, levels=c(0.25))

## Calling the getValues method allows for comparing the two quantile
## periodograms; here in a diagram:
freq <- 2*xpi*(1:31)/32
V.cl <- getValues(gPG.cl, frequencies = freq, levels.1=c(0.25))
V.qr <- getValues(gPG.qr, frequencies = freq, levels.1=c(0.25))
plot(x = freq/(2*pi), Re(V.cl[,1,1,1]1), type="1",
ylab="real part -- quantile PGs"”, xlab=expression(omega/2*pi))
lines(x = freq/(2*pi), Re(V.qr[,1,1,1]), col="red")

## Now plot the imaginary parts of the quantile spectra for taul = 0.25
## and tau2 = 0.5
freq <- 2*xpi*(1:31)/32
V.cl <- getValues(gPG.cl, frequencies = freq, levels.1=c(0.25, 0.5))
V.gr <- getValues(gPG.qr, frequencies = freq, levels.1=c(0.25, 0.5))
plot(x = freq/(2*pi), Im(V.cl[,1,2,1]1), type="1",

ylab="imaginary part -- quantile PGs", xlab=expression(omega/2*pi))
lines(x = freq/(2*pi), Im(V.qr[(,1,2,1]), col="red")

QuantilePG-constructor
Create an instance of the QuantilePG class.

Description

The parameter type.boot can be set to choose a block bootstrapping procedure. If "none” is
chosen, a moving blocks bootstrap with 1=1ength(Y) and N=1ength(Y) would be done. Note that
in that case one would also chose B=0 which means that getPositions would never be called. If
B>0 then each bootstrap replication would be the undisturbed time series.

Usage

quantilePG(
Y,



QuantileSD-class

85

frequencies = 2 * pi/lenTS(Y) * @:(lenTS(Y) - 1),
levels.1 = 0.5,

levels.2 = levels.1,

isRankBased = TRUE,

type = c("clipped”, "qr"),

type.boot = c("none”, "mbb"),

B =0,
1=o,

method = c("br”, "fn", "pfn", "fnc", "lasso”, "scad"),
parallel = FALSE

Arguments

Y

frequencies

levels.1

levels.?2

isRankBased

type

type.boot

B
1
method

parallel

Value

A vector of real numbers containing the time series from which to determine
the quantile periodogram or a ts object or a zoo object.

A vector containing frequencies at which to determine the quantile periodogram.

A vector of length K1 containing the levels x1 at which the QuantilePG is to be
determined.

A vector of length K2 containing the levels x2.
If true the time series is first transformed to pseudo data [cf. FreqRep].

A flag to choose the type of the estimator. Can be either "clipped” or "qr".
In the first case ClippedFT is used as a frequency representation, in the second
case QRegEstimator is used.

A flag to choose a method for the block bootstrap; currently two options are
implemented: "none” and "mbb" which means to do a moving blocks bootstrap
with B and 1 as specified.

number of bootstrap replications
(expected) length of blocks

method used for computing the quantile regression estimates. The choice is
passed to gr; see the documentation of quantreg for details.

a flag to allow performing parallel computations, where possible.

Returns an instance of QuantilePG.

QuantileSD-class

Class for a simulated quantile (i. e., Laplace or copula) density kernel.

Description

QuantileSD is an S4 class that implements the necessary calculations to determine a numeric ap-
proximation to the quantile spectral density kernel of a model from which a time series of length N
can be sampled via a function call ts(N).



86 QuantileSD-class

Details

In the simulation a number of R independent quantile periodograms based on the clipped time series
are simulated. If type=="copula”, then the rank-based version is used. The sum and the sum of the
squared absolute value is stored to the slots sumPG and sumSqPG. After the simulation is completed
the mean and it’s standard error (of the simulated quantile periodograms) are determined and stored
to meanPG and stdError. Finally, the (copula) spectral density kernel is determined by smoothing
real and imaginary part of meanPG seperately for each combination of levels using smooth.spline.

Note that, all remarks made in the documentation of the super-class QSpecQuantity apply.

Slots

N a numeric specifying the number of equaly spaced Fourier frequencies from [0, 27) for which
the (copula) spectral density will be simulated; note that due to the simulation mechanism a
larger number will also yield a better approximation.

R the number of independent repetitions performed; note that due to the simulation mechanism a
larger number will also yield a better approximation; can be enlarged using increasePrecision-QuantileSD.

type can be either Laplace or copula; indicates whether the marginals are to be assumed uniform
[0, 1] distributed.

ts a function that allows to draw independent samples Yy, . ..,Y,,_; from the process for which
the (copula) spectral density kernel is to be simulated

seed.last used internally to store the state of the pseudo random number generator, so the preci-
sion can be increased by generating more pseudo random numbers that are independent from
the ones previously used.

sumPG an array used to store the sum of the simulated quantile periodograms

sumSqPG an array used to store the sum of the squared absolute values of the simulated quantile
periodograms

meanPG an array used to store the mean of the simulated quantile periodograms

stdError an array used to store the estimated standard error of the mean of the simulated quantile
periodograms

References

Dette, H., Hallin, M., Kley, T. & Volgushev, S. (2015). Of Copulas, Quantiles, Ranks and Spectra:
an Lq-approach to spectral analysis. Bernoulli, 21(2), 781-831. [cf. http://arxiv.org/abs/
1111.7205]

Kley, T., Volgusheyv, S., Dette, H. & Hallin, M. (2016). Quantile Spectral Processes: Asymptotic
Analysis and Inference. Bernoulli, 22(3), 1770-1807. [cf. http://arxiv.org/abs/1401.8104]

Barunik, J. & Kley, T. (2015). Quantile Cross-Spectral Measures of Dependence between Economic
Variables. [preprint available from the authors]

See Also

Examples for implementations of functions ts can be found at: ts-models.


http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1401.8104

QuantileSD-class

Examples

## This script can be used to create and store a QuantileSD object

## Not run:
## Parameters for the simulation:
R <- 50 # number of independent repetitions;
R should be much larger than this in practice!
N <- 28 number of Fourier frequencies in [0@,2pi)
ts <- tsi time series model

levels <- seq(0.1,0.9,0.1)
type <- "copula”
seed.init <- 2581

quantile levels
copula, not Laplace, spectral density kernel
seed for the pseudo random numbers

o o oH W

## Simulation takes place once the constructor is invoked
gsd <- quantileSD(N=N, seed.init = 2581, type = type,
ts = ts, levels.l=levels, R = R)

## The simulated copula spectral density kernel can be called via
V1 <- getValues(qgsd)

## It is also possible to fetch the result for only a few levels
levels.few <- ¢c(0.2,0.5,0.7)
V2 <- getValues(gsd, levels.l1=levels.few, levels.2=levels.few)

## If desired additional repetitions can be performed to yield a more precise
## simulation result by calling; here the number of independent runs is doubled.
gsd <- increasePrecision(gsd,R)

## Often the result will be stored for later usage.
save(gsd, file="QAR1.rdata")

## Take a brief look at the result of the simulation
plot(gsd, levels=levels.few)

## When plotting more than only few levels it may be a good idea to plot to
## another device; e. g., a pdf-file
K <- length(levels)
pdf ("QAR1.pdf", width=2xK, height=2*K)
plot(gsd)
dev.off()

## Now we analyse the multivariate process (eps_t, eps_{t-1}) from the
## introduction of Barunik&Kley (2015). It can be defined as
ts_mult <- function(n) {
eps <- rnorm(n+1)
return(matrix(c(eps[2: (n+1)]1, eps[1:n]), ncol=2))
3

## now we determine the quantile cross-spectral densities
gsd <- quantileSD(N=N, seed.init = 2581, type = type,
ts = ts_mult, levels.l=levels, R = R)



88

QuantileSD-constructor

## from which we can for example extract the quantile coherency
Coh <- getCoherency(gsd, freq = 2*xpix(0:64)/128)

## We now plot the real part of the quantile coherency for j1 =1, j2 = 2,
## taul = 0.3 and tau2 = 0.6
plot(x = 2*%pi*(@:64)/128, Re(Coh[,1,3,2,6]), type="1")

## End(Not

run)

QuantileSD-constructor

Create an instance of the QuantileSD class.

Description

Create an instance of the QuantileSD class.

Usage

quantileS
N =2"8
type =
ts = rn

D(

’

c("copula”, "Laplace"),

orm,

seed.init = runif(1),

levels.

1,

levels.2 = levels.1,

R=1,
quiet =

Arguments

N
type

ts

seed.init
levels.1

levels.?2

quiet

FALSE

the number of Fourier frequencies to be used.

can be either Laplace or copula; indicates whether the marginals are to be
assumed uniform [0, 1] distributed.

a function that has one argument n and, each time it is invoked, returns a new
time series from the model for which the copula spectral density kernel is to be
simulated.

an integer serving as an initial seed for the simulations.

A vector of length K1 containing the levels x1 at which the QuantileSD is to be
determined.

A vector of length K2 containing the levels x2 at which the QuantileSD is to be
determined.

an integer that determines the number of independent simulations; the larger this
number the more precise is the result.

Dont’t report progress to console when computing the R independent quantile
periodograms.



quantspec-defunct

Value

Returns an instance of QuantileSD.

See Also

For examples see QuantileSD

quantspec-defunct Defunct functions in package quantspec

Description

These functions have been declared defunct since Version 1.0-1.

Usage
ct(i1, i2, n)

LaplacePeriodogram(
X,
taus,
omegas = 1:(ceiling(length(X)/2) - 1),
fromRanks = TRUE,
showProgressBar = FALSE
)

plotLaplacePeriodogram(
LPG,
taus,
F = 1:1ength(LPG[, 11),
CL = 1:1length(taus),
hRange = FALSE,
hOffset = FALSE,
ylabel = expression({

{
hat (f)
In1{
list(taul1], taul[2])
}
}(omega)),
oma = c(2.5, 2.5, 2.5, 2.5),
mar = c(4.5, 4.5, 1, 0) + 0.1,
cex.lab = 1.5

)

smoothedLaplacePeriodogram(LPG, taus, W)



90

Arguments
i1
i2
n
X
taus
omegas

fromRanks

showProgressBar

LPG

F

CL
hRange
hoffset
ylabel
oma

mar
cex.lab
W

Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.

Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.
Parameter of DEFUNCT function.

SmoothedPG-class

SmoothedPG-class

Class for a smoothed quantile periodogram.

Description

SmoothedPG is an S4 class that implements the necessary calculations to determine a smoothed
version of one of the quantile periodograms defined in Dette et. al (2015), Kley et. al (2016) and
Barunik&Kley (2015).

Details

For a QuantilePG Q4192 (w, x1, 22) and a Weight W, (-) the smoothed version

is determined.

n—1
27
n

s=1

Z W, (w — 2ms/n)Q92 (21s /n, x1, x2)

The convolution required to determine the smoothed periodogram is implemented using convolve.



SmoothedPG-constructor 91

Slots

env An environment to allow for slots which need to be accessable in a call-by-reference manner:
sdNaive An array used for storage of the naively estimated standard deviations of the smoothed
periodogram.
sdNaive.freq a vector indicating for which frequencies sdNaive has been computed so far.
sdNaive.done a flag indicating whether sdNaive has been set yet.

sdBoot An array used for storage of the standard deviations of the smoothed periodogram,
estimated via bootstrap.

sdBoot.done a flag indicating whether sdBoot.naive has been set yet.
gPG the QuantilePG to be smoothed
weight the Weight to be used for smoothing

SmoothedPG-constructor
Create an instance of the SmoothedPG class.

Description

A SmoothedPG object can be created from either

e anumeric, ats, or a zoo object

* aQuantilePG object.

If a QuantilePG object is used for smoothing, only the weight, frequencies and levels.1 and
levels. 2 parameters are used; all others are ignored. In this case the default values for the levels
are the levels of the QuantilePG used for smoothing. Any subset of the levels available there can
be chosen.

Usage

smoothedPG(
object,
frequencies = 2 * pi/lenTS(object) * @:(lenTS(object) - 1),
levels.1 = 0.5,
levels.2 = levels.1,
isRankBased = TRUE,
type = c("clipped”, "qr"),
type.boot = c("none”, "mbb"),
method = c("br", "fn", "pfn"”, "fnc", "lasso”, "scad"),
parallel = FALSE,
B =0,
1 =1,
weight = kernelWeight()



Arguments

object

frequencies

levels.1

levels.?2

isRankBased

type

type.boot

method

parallel
B

1

weight

Details

SmoothedPG-constructor

a time series (numeric, ts, or zoo object) from which to determine the smoothed
periodogram; alternatively a QuantilePG object can be supplied.

A vector containing frequencies at which to determine the smoothed periodogram.

A vector of length K1 containing the levels x1 at which the SmoothedPG is to be
determined.

A vector of length K2 containing the levels x2.
If true the time series is first transformed to pseudo data [cf. FregRep].

A flag to choose the type of the estimator. Can be either "clipped” or "qr".
In the first case ClippedFT is used as a frequency representation, in the second
case QRegEstimator is used.

A flag to choose a method for the block bootstrap; currently two options are
implemented: "none” and "mbb" which means to do a moving blocks bootstrap
with B and 1 as specified.

method used for computing the quantile regression estimates. The choice is
passed to gr; see the documentation of quantreg for details.

a flag to allow performing parallel computations, where possible.
number of bootstrap replications

(expected) length of blocks

Object of type Weight to be used for smoothing.

The parameter type.boot can be set to choose a block bootstrapping procedure. If "none” is
chosen, a moving blocks bootstrap with 1=1ength(Y) and N=1ength(Y) would be done. Note that
in that case one would also chose B=0 which means that getPositions would never be called. If
B>0 then each bootstrap replication would be the undisturbed time series.

Value

Returns an instance of SmoothedPG.

Examples

Y <- rnorm(64)

levels.1 <- ¢(0.25,0.5,0.75)
weight <- kernelWeight (W=W0)

# Version 1a of the constructor -- for numerics:
sPG.ft <- smoothedPG(Y, levels.1 = levels.1, weight = weight, type="clipped")
sPG.gr <- smoothedPG(Y, levels.1 = levels.1, weight = weight, type="qr")

# Version 1b of the constructor -- for ts objects:
sPG.ft <- smoothedPG(wheatprices, levels.1 = c(0.05,0.5,0.95), weight = weight)

# Version 1c of the constructor -- for zoo objects:



SpecDistrWeight-class 93

sPG.ft <- smoothedPG(sp500, levels.1 = c(0.05,0.5,0.95), weight = weight)

# Version 2 of the constructor:

gPG.ft <- quantilePG(Y, levels.1 = levels.1, type="clipped")
sPG.ft <- smoothedPG(gPG.ft, weight = weight)

gPG.gr <- quantilePG(Y, levels.1 = levels.1, type="qr")
sPG.gr <- smoothedPG(gPG.qgr, weight = weight)

SpecDistrWeight-class Class for weights to estimate integrated spectral density kernels.

Description
SpecDistrWeight is an S4 class that implements a weighting function given by

Wh(a) := I{a < 0}

Details

At position k the value W,,(2w(k — 1)/n is stored [in a vector values nested inside env] for
k=1,...,T. The number length(values) of Fourier frequencies for which W,, will be evaluated
may be set on construction or updated when evoking the method getValues.

SpecDistrWeight-constructor
Create an instance of the SpecDistrWeight class.

Description

Create an instance of the SpecDistrWeight class.

Usage

specDistrWeight(descr = "Spectral Distribution Weights")

Arguments

descr a description for the weight object

Value

an instance of SpecDistrWeight.

Examples

wgt <- specDistrWeight()



94 ts-models

timeSeriesValidator Validates if Y is of an appropriate type and converts to a numeric.

Description
Checks whether Y is either
* numeric,

* a ts object, or

* azoo object.

If not, an error is returned. If it is one of the three the data is returned as a numeric.

Usage

timeSeriesValidator(Y)

Arguments

Y the time series to be validated.

Value

Returns the time series as a matrix.

Examples

Y <- timeSeriesValidator(sp500)

Y <- timeSeriesValidator(wheatprices)

Y <- timeSeriesValidator(rnorm(10))

## Not run: Y <- timeSeriesValidator(”Not a valid input”)

ts-models Functions to simulate from the time series models in Kley et. al (2016).

Description

Functions to simulate from the time series models in Kley et. al (2016).

Usage

ts1(n)
ts2(n)

ts3(n)



ts-models-AR1 95

Arguments

n length of the time series to be returned

Details

ts1 QAR(1) model from Dette et. al (2015).
ts2 AR(2) model from Li (2012):
ts3 ARCH(1) model from Lee and Subba Rao (2012):

References

Dette, H., Hallin, M., Kley, T. & Volgushev, S. (2015). Of Copulas, Quantiles, Ranks and Spectra:
an Lj-approach to spectral analysis. Bernoulli, 21(2), 781-831. [cf. http://arxiv.org/abs/
1111.7205]

Li, T.-H. (2012). Quantile Periodograms. Journal of the American Statistical Association, 107,
765-776.

Lee, J., & Subba Rao, S. (2012). The Quantile Spectral Density and Comparison based Tests for
Nonlinear Time Series. http://arxiv.org/abs/1112.2759.

Examples

# Plot sample paths:

plot(ts1(100), type="1")
plot(ts2(100), type="1")
plot(ts3(100), type="1")

ts-models-AR1 Simulation of an AR(1) time series.

Description

Returns a simulated time series (Y;) that fulfills the following equation:
Yi=aY_1 + e,

where a is a parameter and ¢, is independent white noise with marginal distribution specified by the
parameter innov.

Usage

AR1(n, a, overhead = 500, innov = rnorm)


http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1111.7205
http://arxiv.org/abs/1112.2759

96 ts-models-AR2

Arguments
n length of the time series to be returned
a parameter of the model
overhead an integer specifying the “warmup” period to reach an approximate stationary
start for the times series
innov a function that generates a random number each time innov (1) is called; used
to specify the distribution of the innovations; rnorm by default
Value

Returns an AR(1) time series with specified parameters.

Examples

plot(AR1(100, a=-0.7), type="1")

ts-models-AR2 Simulation of an AR(2) time series.

Description
Returns a simulated time series (Y;) that fulfills the following equation:
Yi=a1Yi1 +a2Yi_o + e,
where a; and ao are parameters and ¢; is independent white noise with marginal distribution speci-
fied by the parameter innov.
Usage

AR2(n, al, a2, overhead = 500, innov = rnorm)

Arguments
n length of the time series to be returned
al parameter
a2 parameter
overhead an integer specifying the “warmup” period to reach an approximate stationary
start for the times series
innov a function with one parameter n that yields n independent pseudo random num-
bers each time it is called.
Value

Return an AR(2) time series with specified parameters.

Examples

plot(AR2(100, al1=0, a2=0.5), type="1")



ts-models-ARCH]1 97

ts-models-ARCH1 Simulation of an ARCH(1) time series.

Description

Returns a simulated time series (Y;) that fulfills the following equation:
}/t:Zto-t7 Ut2 :CL0+G/1Y;2,1+€t

where ag and a; are parameters and ¢, is independent white noise with marginal distribution speci-
fied by the parameter innov.

Usage

ARCH1(n, a@, al, overhead = 500, innov = rnorm)

Arguments
n length of the time series to be returned
ao parameter
al parameter
overhead an integer specifying the “warmup” period to reach an approximate stationary
start for the times series
innov a function with one parameter n that yields n independent pseudo random num-
bers each time it is called.
Value

Return an ARCH(1) time series with specified parameters.

Examples

plot(ARCH1(100, a0=1/1.9, al1=0.9), type="1")

ts-models-QART Simulation of an QAR(1) time series.

Description

Returns a simulated time series (Y) that fulfills the following equation:
Yi = 601(Up)Yi—1 + 00(Us),

where 6, and 0, are parameters and U, is independent white noise with uniform [0, 1] marginal
distributions.



98 Weight-class

Usage

QAR1(
n,
th1 = function(u) {
1.9 * ((u - 0.5))

1,
overhead = 1000,
th@ = gnorm
)
Arguments
n length of the time series to be returned
th1 parameter function with one argument u defined on [0, 1]
overhead an integer specifying the “warmup” period to reach an approximate stationary
start for the times series
tho parameter function with one argument u defined on [0, 1]
Value

Returns an QAR(1) time series with specified parameters.

Examples

plot (QAR1(100), type="1")

Weight-class Interface Class to access different types of weighting functions.

Description
Weights is an S4 class that provides a common interface to implementations of a weighting function
Wi (w).

Details

Currently three implementations are available: (1) KernelWeight, (2) LagKernelWeight and (3)
SpecDistrWeight.

Slots

values an array containing the weights.

descr a description to be used in some plots.



Index

x Access-association-functions

getBootPos-FreqgRep, 22
getBootPos-LagOperator, 22
getFregRep-QuantilePG, 28
getLagOperator-LagEstimator, 30
getQuantilePG-QuantileSD, 38
getQuantilePG-SmoothedPG, 39

getQuantileSD-IntegrQuantileSD, 39

getWeight-LagEstimator, 55
getWeight-SmoothedPG, 56

* Access-functions

getB-FregRep, 21
getB-LagOperator, 21
getBw-KernelWeight, 23
getBw-LagKernelWeight, 23
getCoherency-QuantileSD, 24
getCoherency-SmoothedPG, 25

getCoherencySdNaive-SmoothedPG, 26

getDescr-Weight, 27
getFrequencies-FreqRep, 28
getFrequencies-QSpecQuantity, 29
getIsRankBased-FreqRep, 29
getIsRankBased-LagOperator, 30
getlevels-FreqgRep, 31
getlevels-LagOperator, 31
getlLevels-QSpecQuantity, 32
getMaxLag-LagOperator, 32
getMeanPG-QuantileSD, 33
getN-QuantileSD, 33
getParallel-QRegEstimator, 34
getPointwiseCIs-LagEstimator, 34
getPointwiseCIs-SmoothedPG, 36
getR-QuantileSD, 40
getSdBoot-LagEstimator, 40
getSdBoot-SmoothedPG, 41
getSdNaive-LagEstimator, 42
getSdNaive-SmoothedPG, 43
getStdError-QuantileSD, 44
getTs-QuantileSD, 45

99

getType-QuantileSD, 46
getValues-FreqRep, 46
getValues-IntegrQuantileSD, 47
getValues-KernelWeight, 48
getValues-LagEstimator, 49
getValues-LagKernelWeight, 50
getValues-LagOperator, 50
getValues-QuantilePG, 51
getValues-QuantileSD, 52
getValues-SmoothedPG, 53
getW-KernelWeight, 54
getW-LagKernelWeight, 55
getWnj-KernelWeight, 56

* Constructors

ClippedCov-constructor, 10
ClippedFT-constructor, 12
IntegrQuantileSD-constructor, 59
KernelWeight-constructor, 63
LagEstimator-constructor, 64
LagKernelWeight-constructor, 66
MovingBlocks-constructor, 68
QRegEstimator-constructor, 80
QuantilePG-constructor, 84
QuantileSD-constructor, 88
SmoothedPG-constructor, 91
SpecDistrWeight-constructor, 93

* Defunct

quantspec-defunct, 89

* S4-classes

BootPos-class, 9
ClippedCov-class, 10
ClippedFT-class, 11
FregRep-class, 15
IntegrQuantileSD-class, 58
KernelWeight-class, 62
LagEstimator-class, 64
LagKernelWeight-class, 65
LagOperator-class, 67
MovingBlocks-class, 68



100

QRegEstimator-class, 80
QSpecQuantity-class, 82
QuantilePG-class, 82
QuantileSD-class, 85
SmoothedPG-class, 90
SpecDistrWeight-class, 93
Weight-class, 98

x Validator-functions
frequenciesValidator, 17
lenTsS, 67
timeSeriesValidator, 94

* data
data-sp500, 14
data-wheatprices, 14

* internals
.computeCoherency, 8
.computeSdNaive, 9
is.wholenumber, 60

.computeCoherency, 8

.computeSdNaive, 9

AR1 (ts-models-ART1), 95
AR2 (ts-models-AR2), 96
ARCH1 (ts-models-ARCH1), 97

BootPos, 15, 16,22, 67, 68
BootPos (BootPos-class), 9
BootPos-class, 9

ClippedCov, 10, 67

ClippedCov (ClippedCov-class), 10

clippedCov (ClippedCov-constructor), 10

ClippedCov-class, 10

ClippedCov-constructor, 10

ClippedFT, 12, 15, 83, 85, 92

ClippedFT (ClippedFT-class), 11

clippedFT (ClippedFT-constructor), 12

ClippedFT-class, 11

ClippedFT-constructor, 12

closest.pos, 13, 26, 34, 36, 40-43, 47, 49,
51-53

convolve, 90

ct (quantspec-defunct), 89

data-sp500, 14
data-wheatprices, 14

fft, 11
FreqgRep, 11-13, 21, 22, 28, 29, 31, 57, 69, 80,
81,83,85,92

INDEX

FreqRep (FreqRep-class), 15
FregRep-class, 15
frequenciesValidator, 16, 17,47, 51

generics-accessors, 18
generics-associations, 19
generics-functions, 20
getB (generics-accessors), 18
getB,FreqRep-method (getB-FreqRep), 21
getB,LagOperator-method
(getB-LagOperator), 21
getB-FregRep, 21
getB-LagOperator, 21
getBootPos (generics-associations), 19
getBootPos, FreqRep-method
(getBootPos-FregRep), 22
getBootPos,LagOperator-method
(getBootPos-LagOperator), 22
getBootPos-FreqgRep, 22
getBootPos-LagOperator, 22
getBw (generics-accessors), 18
getBw,KernelWeight-method
(getBw-KernelWeight), 23
getBw, LagKernelWeight-method
(getBw-LagKernelWeight), 23
getBw-KernelWeight, 23
getBw-LagKernelWeight, 23
getCoherency (generics-accessors), 18
getCoherency,QuantileSD-method
(getCoherency-QuantileSD), 24
getCoherency, SmoothedPG-method
(getCoherency-SmoothedPG), 25
getCoherency-QuantileSD, 24
getCoherency-SmoothedPG, 8, 25
getCoherencySdNaive
(generics-accessors), 18
getCoherencySdNaive, SmoothedPG-method
(getCoherencySdNaive-SmoothedPG),
26
getCoherencySdNaive-SmoothedPG, 26
getDescr (generics-accessors), 18
getDescr,Weight-method
(getDescr-Weight), 27
getDescr-Weight, 27
getFregRep (generics-associations), 19
getFregRep,QuantilePG-method
(getFregRep-QuantilePG), 28
getFregRep-QuantilePG, 28
getFrequencies (generics-accessors), 18



INDEX

getFrequencies,FreqRep-method
(getFrequencies-FregRep), 28
getFrequencies,QSpecQuantity-method
(getFrequencies-QSpecQuantity),
29
getFrequencies-FreqRep, 28
getFrequencies-QSpecQuantity, 29
getIsRankBased (generics-accessors), 18
getIsRankBased, FreqRep-method
(getIsRankBased-FregRep), 29
getIsRankBased,LagOperator-method
(getIsRankBased-LagOperator),
30
getIsRankBased-FreqgRep, 29
getIsRankBased-LagOperator, 30
getlagOperator (generics-accessors), 18
getlLagOperator,LagEstimator-method
(getLagOperator-LagEstimator),
30
getLagOperator-LagEstimator, 30
getlevels (generics-accessors), 18
getlLevels,FreqRep-method
(getlLevels-FreqgRep), 31
getLevels,LagOperator-method
(getlLevels-LagOperator), 31
getLevels,QSpecQuantity-method
(getLevels-QSpecQuantity), 32
getlLevels-FreqRep, 31
getlLevels-LagOperator, 31
getlLevels-QSpecQuantity, 32
getMaxLag (generics-accessors), 18
getMaxLag, LagOperator-method
(getMaxLag-LagOperator), 32
getMaxLag-LagOperator, 32
getMeanPG (generics-accessors), 18
getMeanPG,QuantileSD-method
(getMeanPG-QuantileSD), 33
getMeanPG-QuantileSD, 33
getN (generics-accessors), 18
getN,QuantileSD-method
(getN-QuantileSD), 33
getN-QuantileSD, 33
getParallel (generics-accessors), 18
getParallel,QRegEstimator-method
(getParallel-QRegEstimator), 34
getParallel-QRegEstimator, 34
getPointwiseCIs (generics-accessors), 18
getPointwiseCIs,LagEstimator-method

101

(getPointwiseCIs-LagEstimator),
34
getPointwiseCIs, SmoothedPG-method
(getPointwiseCIs-SmoothedPG),
36
getPointwiseCIs-LagEstimator, 34
getPointwiseCIs-SmoothedPG, 36
getPositions (generics-functions), 20
getPositions,MovingBlocks-method
(getPositions-MovingBlocks), 37
getPositions-MovingBlocks, 37
getQuantilePG (generics-associations),
19
getQuantilePG,QuantileSD-method
(getQuantilePG-QuantileSD), 38
getQuantilePG, SmoothedPG-method
(getQuantilePG-SmoothedPG), 39
getQuantilePG-QuantileSD, 38
getQuantilePG-SmoothedPG, 39
getQuantileSD, 39
getQuantileSD (generics-associations),
19
getQuantileSD, IntegrQuantileSD-method
(getQuantileSD-IntegrQuantileSD),
39
getQuantileSD-IntegrQuantileSD, 39
getR (generics-accessors), 18
getR,QuantileSD-method
(getR-QuantileSD), 40
getR-QuantileSD, 40
getSdBoot, 37
getSdBoot (generics-accessors), 18
getSdBoot,LagEstimator-method
(getSdBoot-LagEstimator), 40
getSdBoot, SmoothedPG-method
(getSdBoot-SmoothedPG), 41
getSdBoot-LagEstimator, 40
getSdBoot-SmoothedPG, 41
getSdNaive, 35, 37
getSdNaive (generics-accessors), 18
getSdNaive,LagEstimator-method
(getSdNaive-LagEstimator), 42
getSdNaive, SmoothedPG-method
(getSdNaive-SmoothedPG), 43
getSdNaive-LagEstimator, 42
getSdNaive-SmoothedPG, 9, 43
getStdError (generics-accessors), 18
getStdError,QuantileSD-method



102

(getStdError-QuantileSD), 44
getStdError-QuantileSD, 44
getTs (generics-accessors), 18
getTs,QuantileSD-method
(getTs-QuantileSD), 45
getTs-QuantileSD, 45
getType (generics-accessors), 18
getType,QuantileSD-method
(getType-QuantileSD), 46
getType-QuantileSD, 46
getValues, 51
getValues (generics-accessors), 18
getValues, FreqRep-method
(getValues-FreqgRep), 46
getValues, IntegrQuantileSD-method
(getValues-IntegrQuantileSD),
47
getValues,KernelWeight-method
(getValues-KernelWeight), 48
getValues,lLagEstimator-method
(getValues-LagEstimator), 49
getValues,LagKernelWeight-method
(getValues-LagKernelWeight), 50
getValues,LagOperator-method
(getValues-LagOperator), 50
getValues,QuantilePG-method
(getValues-QuantilePG), 51
getValues,QuantileSD-method
(getValues-QuantileSD), 52
getValues, SmoothedPG-method
(getValues-SmoothedPG), 53
getValues, SpecDistrWeight-method
(getValues-SpecDistrWeight), 54
getValues-FreqRep, 46
getValues-IntegrQuantileSD, 47
getValues-KernelWeight, 48
getValues-LagEstimator, 49
getValues-LagKernelWeight, 50
getValues-LagOperator, 50
getValues-QuantilePG, 51
getValues-QuantileSD, 52
getValues-SmoothedPG, 53
getValues-SpecDistrWeight, 54
getW (generics-accessors), 18
getW,KernelWeight-method
(getW-KernelWeight), 54
getW, LagKernelWeight-method
(getW-LagKernelWeight), 55

INDEX

getW-KernelWeight, 54
getW-LagKernelWeight, 55
getWeight (generics-associations), 19
getWeight,LagEstimator-method
(getWeight-LagEstimator), 55
getWeight, SmoothedPG-method
(getWeight-SmoothedPG), 56
getWeight-LagEstimator, 55
getWeight-SmoothedPG, 56
getWnj (generics-accessors), 18
getWnj,KernelWeight-method
(getWnj-KernelWeight), 56
getWnj-KernelWeight, 56
getY (generics-accessors), 18
getY,FreqRep-method (getY-FreqRep), 57
getY-FreqRep, 57

increasePrecision (generics-functions),
20
increasePrecision,QuantileSD-method
(increasePrecision-QuantileSD),
57
increasePrecision-QuantileSD, 57
integer, 60
IntegrQuantileSD, 39, 48, 59, 60, 70, 82
IntegrQuantileSD
(IntegrQuantileSD-class), 58
integrQuantileSD
(IntegrQuantileSD-constructor),
59
IntegrQuantileSD-class, 58
IntegrQuantileSD-constructor, 59
is.wholenumber, 60

kernels, 61, 63, 66

KernelWeight, 63, 71, 98

KernelWeight (KernelWeight-class), 62

kernelWeight
(KernelWeight-constructor), 63

KernelWeight-class, 62

KernelWeight-constructor, 63

LagEstimator, 30, 41,43, 55, 72
LagEstimator (LagEstimator-class), 64
lagEstimator
(LagEstimator-constructor), 64
LagEstimator-class, 64
LagEstimator-constructor, 64
LagKernelWeight, 66, 73, 74, 98



INDEX

LagKernelWeight
(LagKernelWeight-class), 65

lagKernelWeight
(LagKernelWeight-constructor),
66

LagKernelWeight-class, 65

LagKernelWeight-constructor, 66

LagOperator, 10, 11, 21, 22, 30, 32, 64, 65, 74

LagOperator (LagOperator-class), 67

LagOperator-class, 67

LaplacePeriodogram (quantspec-defunct),
89

layout, 70, 72, 74-76, 78

lenTs, 67

MovingBlocks, 9, 68

MovingBlocks (MovingBlocks-class), 68

movingBlocks
(MovingBlocks-constructor), 68

MovingBlocks-class, 68

MovingBlocks-constructor, 68

mvfft, 11

plot,FreqRep,ANY-method (plot-FreqRep),
69
plot,IntegrQuantileSD, ANY-method
(plot-IntegrQuantileSD), 70
plot,KernelWeight,missing-method
(plot-KernelWeight), 71
plot,LagEstimator,ANY-method
(plot-LagEstimator), 72
plot,LagKernelWeight,missing-method
(plot-LagKernelWeight), 73
plot,LagOperator,ANY-method
(plot-LagOperator), 74
plot,QuantilePG,ANY-method
(plot-QuantilePG), 75
plot,QuantileSD,ANY-method
(plot-QuantileSD), 76
plot,SmoothedPG, ANY-method
(plot-SmoothedPG), 77
plot,SpecDistrWeight,missing-method
(plot-SpecDistrWeight), 79
plot-FregRep, 69
plot-IntegrQuantileSD, 70
plot-KernelWeight, 71
plot-LagEstimator, 72
plot-LagKernelWeight, 73
plot-LagOperator, 74

103

plot-QuantilePG, 75
plot-QuantileSD, 76
plot-SmoothedPG, 77
plot-SpecDistrWeight, 79
plotLaplacePeriodogram
(quantspec-defunct), 89

QAR1 (ts-models-QAR1), 97
QRegEstimator, 15, 34, 83, 85, 92
QRegEstimator (QRegEstimator-class), 80
gRegEstimator
(QRegEstimator-constructor), 80
QRegEstimator-class, 80
QRegEstimator-constructor, 80
QSpecQuantity, 58, 83, 86
QSpecQuantity (QSpecQuantity-class), 82
QSpecQuantity-class, 82
QuantilePG, 28, 38, 39, 57, 75, 82, 84, 90-92
QuantilePG (QuantilePG-class), 82
quantilePG (QuantilePG-constructor), 84
QuantilePG-class, 82
QuantilePG-constructor, 84
QuantileSD, 24, 38, 53, 57-59, 75, 76, 78, 82,
88, 89
QuantileSD (QuantileSD-class), 85
quantileSD (QuantileSD-constructor), 88
QuantileSD-class, 85
QuantileSD-constructor, 88
quantspec (quantspec-package), 4
quantspec-defunct, 89
quantspec-package, 4

rg, 80

smooth.spline, 86
smoothedLaplacePeriodogram
(quantspec-defunct), 89
SmoothedPG, 26, 27, 39, 42, 44, 56, 77, 78, 82
SmoothedPG (SmoothedPG-class), 90
smoothedPG (SmoothedPG-constructor), 91
SmoothedPG-class, 90
SmoothedPG-constructor, 91
sp500 (data-sp500), 14
SpecDistrWeight, 54, 79, 93, 98
SpecDistrWeight
(SpecDistrWeight-class), 93
specDistrWeight
(SpecDistrWeight-constructor),
93



104 INDEX

SpecDistrWeight-class, 93
SpecDistrWeight-constructor, 93

timeSeriesValidator, 67, 94
ts-models, 94
ts-models-AR1, 95
ts-models-AR2, 96
ts-models-ARCH1, 97
ts-models-QAR1, 97

ts1 (ts-models), 94

ts2 (ts-models), 94

ts3 (ts-models), 94

WO (kernels), 61

W1 (kernels), 61

W2 (kernels), 61

W3 (kernels), 61

WDaniell (kernels), 61

Weight, 55, 56, 62, 64, 65, 90-92
Weight (Weight-class), 98
Weight-class, 98

wheatprices (data-wheatprices), 14
WParzen (kernels), 61



	quantspec-package
	.computeCoherency
	.computeSdNaive
	BootPos-class
	ClippedCov-class
	ClippedCov-constructor
	ClippedFT-class
	ClippedFT-constructor
	closest.pos
	data-sp500
	data-wheatprices
	FreqRep-class
	frequenciesValidator
	generics-accessors
	generics-associations
	generics-functions
	getB-FreqRep
	getB-LagOperator
	getBootPos-FreqRep
	getBootPos-LagOperator
	getBw-KernelWeight
	getBw-LagKernelWeight
	getCoherency-QuantileSD
	getCoherency-SmoothedPG
	getCoherencySdNaive-SmoothedPG
	getDescr-Weight
	getFreqRep-QuantilePG
	getFrequencies-FreqRep
	getFrequencies-QSpecQuantity
	getIsRankBased-FreqRep
	getIsRankBased-LagOperator
	getLagOperator-LagEstimator
	getLevels-FreqRep
	getLevels-LagOperator
	getLevels-QSpecQuantity
	getMaxLag-LagOperator
	getMeanPG-QuantileSD
	getN-QuantileSD
	getParallel-QRegEstimator
	getPointwiseCIs-LagEstimator
	getPointwiseCIs-SmoothedPG
	getPositions-MovingBlocks
	getQuantilePG-QuantileSD
	getQuantilePG-SmoothedPG
	getQuantileSD-IntegrQuantileSD
	getR-QuantileSD
	getSdBoot-LagEstimator
	getSdBoot-SmoothedPG
	getSdNaive-LagEstimator
	getSdNaive-SmoothedPG
	getStdError-QuantileSD
	getTs-QuantileSD
	getType-QuantileSD
	getValues-FreqRep
	getValues-IntegrQuantileSD
	getValues-KernelWeight
	getValues-LagEstimator
	getValues-LagKernelWeight
	getValues-LagOperator
	getValues-QuantilePG
	getValues-QuantileSD
	getValues-SmoothedPG
	getValues-SpecDistrWeight
	getW-KernelWeight
	getW-LagKernelWeight
	getWeight-LagEstimator
	getWeight-SmoothedPG
	getWnj-KernelWeight
	getY-FreqRep
	increasePrecision-QuantileSD
	IntegrQuantileSD-class
	IntegrQuantileSD-constructor
	is.wholenumber
	kernels
	KernelWeight-class
	KernelWeight-constructor
	LagEstimator-class
	LagEstimator-constructor
	LagKernelWeight-class
	LagKernelWeight-constructor
	LagOperator-class
	lenTS
	MovingBlocks-class
	MovingBlocks-constructor
	plot-FreqRep
	plot-IntegrQuantileSD
	plot-KernelWeight
	plot-LagEstimator
	plot-LagKernelWeight
	plot-LagOperator
	plot-QuantilePG
	plot-QuantileSD
	plot-SmoothedPG
	plot-SpecDistrWeight
	QRegEstimator-class
	QRegEstimator-constructor
	QSpecQuantity-class
	QuantilePG-class
	QuantilePG-constructor
	QuantileSD-class
	QuantileSD-constructor
	quantspec-defunct
	SmoothedPG-class
	SmoothedPG-constructor
	SpecDistrWeight-class
	SpecDistrWeight-constructor
	timeSeriesValidator
	ts-models
	ts-models-AR1
	ts-models-AR2
	ts-models-ARCH1
	ts-models-QAR1
	Weight-class
	Index

