## ----load package, warning=FALSE, message=FALSE------------------------------- library(quadcleanR) library(dplyr) library(tidyr) library(shiny) library(knitr) library(kableExtra) data("softcoral_LQuads") ## ----head and tail, results='hide'-------------------------------------------- tail(softcoral_LQuads) ## ----head and tail cleaner md output, message = FALSE, echo = FALSE, results='asis'---- knitr::kable(tail(softcoral_LQuads), align = 'c') %>% kable_styling("striped", full_width = F) %>% scroll_box(width = "100%") ## ----confirmed annotation status---------------------------------------------- LQuad_confirmed <- softcoral_LQuads %>% filter(Annotation.status == "Confirmed") %>% select(-c(Image.ID, Points, Annotation.status)) ## ----separating ID------------------------------------------------------------ LQuad_separated <- separate(LQuad_confirmed, Image.name, sep="_", into=c("Field.Season", "Site","Quadrat")) ## ----remove jpg and T19------------------------------------------------------- LQuad_nojpg <- rm_chr(LQuad_separated, c(".jpg", ".jpeg")) LQuad_site40 <- change_values(LQuad_nojpg, "Site", "siteT19", "site40") LQuad_noDEEP_site8.5 <- keep_rm(LQuad_site40, c("DEEP", "site8.5"), select = "row", exact = FALSE, colname = "Site", keep = FALSE) LQuad_noMPQ <- keep_rm(LQuad_noDEEP_site8.5, c("MPQ"), select = "row", exact = FALSE, colname = "Quadrat", keep = FALSE) ## ----view levels-------------------------------------------------------------- unique(LQuad_noMPQ$Field.Season) unique(LQuad_noMPQ$Site) ## ----add labelset, message=FALSE, results='hide'------------------------------ data("coral_labelset") head(coral_labelset) ## ----add labelset cleaner md output, message = FALSE, echo = FALSE, results='asis'---- knitr::kable(head(coral_labelset), align = 'c')%>% kable_styling("striped", full_width = F) %>% scroll_box(width = "100%") ## ----change colnames---------------------------------------------------------- LQuad_colnames <- change_names(LQuad_noMPQ, coral_labelset, "short_name", "full_name") names(LQuad_colnames)[1:16] ## ----usable points------------------------------------------------------------ LQuad_colnames <- mutate_at(LQuad_colnames, c(4:134), as.numeric) LQuad_usable <- usable_obs(LQuad_colnames, c("Shadow", "Transect_hardware", "Unclear"), max = TRUE, cutoff = 10) LQuad_removed <- usable_obs(LQuad_colnames, c("Shadow", "Transect_hardware", "Unclear"), max = TRUE, cutoff = 10, above_cutoff = TRUE) ## ----prop cover calc---------------------------------------------------------- LQuad_cover <- cover_calc(LQuad_usable, names(LQuad_usable[,4:131]), prop = TRUE) ## ----long format-------------------------------------------------------------- LQuad_long <- LQuad_cover %>% select(-c(unusable)) %>% pivot_longer(cols = names(LQuad_cover[,4:131]), names_to = "Tag_Name", values_to = "prop_cover") ## ----A categorizing bleaching------------------------------------------------- A_LQuad_Bleach <- categorize(LQuad_long, "Tag_Name", values = c("Bleach"), name = "Bleached", binary = TRUE, exact = FALSE) ## ----A categorizing taxonomy-------------------------------------------------- A_LQuad_Taxa <- categorize(A_LQuad_Bleach, "Tag_Name", values = coral_labelset$full_name, name = "Taxonomic_Name", binary = FALSE, categories = coral_labelset$taxonomic_name) ## ----B summarising taxonomy, results='hide'----------------------------------- B_LQuad_taxonomy <- A_LQuad_Taxa %>% group_by(Field.Season, Site, Quadrat, Taxonomic_Name) %>% summarise(prop_cover = sum(prop_cover)) ## ----C summing columns-------------------------------------------------------- current_names <- colnames(LQuad_cover[,4:131]) new_names <- coral_labelset[match(current_names, coral_labelset$full_name),]$taxonomic_name LQuad_wide_summed <- sum_cols(LQuad_cover, from = current_names, to = new_names) ## ----add more data------------------------------------------------------------ B_LQuad_LH_FG <- add_data(B_LQuad_taxonomy, coral_labelset, cols = c("functional_group", "life_history"), data_id = "Taxonomic_Name", add_id = "taxonomic_name", number = 5) data("environmental_data") B_LQuad_enviro <- add_data(B_LQuad_LH_FG, environmental_data, cols = c("HD_Cat", "HD_Cont", "NPP", "WE", "Region", "WaveEnergy"), data_id = "Site", add_id = "Site", number = 4) ## ----final characterization and subset---------------------------------------- B_LQuad_timeblock <- categorize(B_LQuad_enviro, column = "Field.Season", values = unique(B_LQuad_enviro$Field.Season), name = "TimeBlock", binary = FALSE, exact = TRUE, categories = c(rep("Before", times = 4), rep("During", times = 3), rep("After", times = 4))) final_cleaned <- keep_rm(B_LQuad_timeblock, values = "Soft_coral", select = "row", colname = "functional_group") ## ----sample sizes, results = 'hide'------------------------------------------- sample_size(final_cleaned, dim_1 = "Site", dim_2 = "Field.Season", count = "Quadrat") ## ----sample sizes cleaner md output, message = FALSE, echo = FALSE, results='asis'---- knitr::kable(sample_size(final_cleaned, dim_1 = "Site", dim_2 = "Field.Season", count = "Quadrat"), align = 'c')%>% kable_styling("striped", full_width = F) %>% scroll_box(width = "100%") ## ----shiny app from git, eval = FALSE----------------------------------------- # # runGitHub("quadcleanR", username = "DominiqueMaucieri", subdir = "inst/shiny/example", ref = "main") # ## ----shiny app, eval= FALSE--------------------------------------------------- # # visualize_app(data = final_cleaned, xaxis = colnames(final_cleaned[,1:13]), yaxis = "prop_cover") #