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portfolio-package Analysing equity portfolios

Description

Classes for analysing and implementing equity portfolios.

Details

Package: portfolio
Version: 0.4-5
Date: 2010-02-18
Depends: R (>= 2.4.0), methods, graphics, grid, lattice, nlme
License: GPL (>= 2)
LazyLoad: yes

Index:

assay Assay Research rankings as of 2004-12-31
contribution-class Class "contribution"
dow.jan.2005 DJIA for January, 2005
exposure-class Class "exposure"
global.2004 Security data of large global companies for

2004
map.market Create a Map of the Market
matchedPortfolio-class

Class "matchedPortfolio"
matchedPortfolioCollection-class

Class "matchedPortfolioCollection"
performance-class Class "performance"
portfolio-class Class "portfolio"
portfolio-package Analysing equity portfolios
portfolioBasic-class Class "portfolioBasic"
tradelist-class Class "tradelist"
trades-class Class "trades"
weight Calculate Position Weights
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Further information is available in the following vignettes:

matching_portfolio Matching Portfolios (source, pdf)
portfolio Using the portfolio package (source, pdf)
tradelist Using the tradelist class (source, pdf)

Author(s)

Jeff Enos <jeff@kanecap.com> and David Kane <dave@kanecap.com>, with contributions from
Daniel Gerlanc <daniel@gerlanc.com> and Kyle Campbell <Kyle.W.Campbell@williams.edu>

Maintainer: Jeff Enos <jeff@kanecap.com>

assay Assay Research rankings as of 2004-12-31

Description

A universe of the 5000 largest global stocks as of 2004-12-31, and a flag indicating whether a
security was ranked by Assay Research at that time.

Special thanks to Assay Research for granting us permission to release this data.

Usage

data(assay)

Format

A data frame with 5000 observations on the following 11 variables.

date A vector containing a single Date: 2004-12-31.

id A character vector of SEDOLs and CUSIPs.

symbol A character vector of symbols.

name A character vector of the names of the companies.

country A factor with levels AUS AUT BEL CHE DEU DNK ESP FIN FRA GBR HKG ITA JPN NLD NOR
NZL SGP SWE USA.

currency A factor with levels AUD CHF DKK EUR GBP HKD JPY NOK NZD SEK SGD USD.

price A numeric vector of prices.

sector A factor with levels Communications Conglomerates Cyclicals Energy Financials
Industrials Materials Staples Technology Utilities

sec An alternative sector specification. This factor has levels CND, CNS, COM, ENE, FIN, HTH, IND,
MAT, TEC and UTL.
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ind Industry specification. This factor has levels AERDF, AIRLN, AUTOP, AUTOS, BANKS, BEVGS,
BIOTC, BUILD, CHEMS, CNENG, CNFIN, CNMAT, COMEQ, COMPT, COMSS, CONGL, CPMKT, DICNS,
DISTR, DVFIN, DVTEL, ELEQI, ELEQT, ELUTL, ENEQS, FDPRD, FDRET, GSUTL, HEPSV, HEQSP,
HETEC, HOTEL, HSDUR, HSPRD, INSUR, INTSS, IPPET, ITCAT, ITCON, LEISR, LFSCI, LOGIS,
MACHN, MEDIA, METAL, MGFIN, MLRET, MLUTL, OFFIC, OILGS, PACKG, PAPER, PHARM, PRPRD,
REALE, REDEV, REITS, RRAIL, SEMIP, SEMIS, SHIPS, SMOKE, SOFTW, SPRET, TEXAP, TRADE,
TRINF, WIREL and WTUTL

liq A numeric vector of liquidities.

on.fl A logical vector indicating presence on the Assay Focus List as of 2004-12-31.

ret.0.1.m A numeric vector of one-month forward returns

ret.0.3.m A numeric vector of three-month forward returns

ret.0.6.m A numeric vector of one-month forward returns

ret.1.0.m A numeric vector of one-month prior returns

ret.6.0.m A numeric vector of six-month prior returns

ret.12.0.m A numeric vector of twelve-month prior returns

mn.dollar.volume.20.d A numeric vector of mean dollar volumes of the past 20 days

md.dollar.volume.120.d A numeric vector of median dollar volumes of the past 120 days

cap.usd A numeric vector of market capitalisation in USD.

cap A numeric vector of market capitalisation in local currency.

sales Annual gross sales of the company.

net.income Annual net income of the company.

common.equity Annual common equity of the company.

Examples

data(assay)

contribution-class Class "contribution"

Description

Portfolio contribution of numeric measures (intervals) and categories.

Objects from the Class

Objects can be created by calls of the form new("contribution", ...).

Slots

data: Object of class "list" containing contributions, as data.frame objects. The names of this
list correspond to the category variable names.



dow.jan.2005 5

Methods

plot signature(x = "contribution", y = "missing"): Plot this object.

show signature(object = "contribution"): show this object, briefly.

summary signature(object = "contribution"): display a summary of this object.

Author(s)

Jeff Enos <jeff@kanecap.com>

dow.jan.2005 DJIA for January, 2005

Description

Basic descriptive and market data for those securities in the DJIA as of the end of January, 2005.

Usage

data(dow.jan.2005)

Format

A data frame with 500 observations on the following 15 variables.

symbol a character vector

name a character vector

cap.bil a numeric vector

price a numeric vector

sector a factor with levels Communications Conglomerates Cyclicals Energy Financials
Industrials Materials Staples Technology Utilities

month.ret a numeric vector

Examples

data(dow.jan.2005)
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exposure-class Class "exposure"

Description

Portfolio exposures to numeric measures and categories.

Objects from the Class

Objects can be created by calls of the form new("exposure", ...).

Slots

data: Object of class "list" containing exposures, as data.frame objects. The names of this list
correspond to the exposure variable names. The special exposure "numeric" contains expo-
sures to all numeric variables.

Methods

plot signature(x = "exposure", y = "missing"): Plot this object.

show signature(object = "exposure"): show the object, briefly.

summary signature(object = "exposure"): display a summary of this object.

Author(s)

Jeff Enos <jeff@kanecap.com>

global.2004 Security data of large global companies for 2004

Description

Contains basic security, category, and return information for a selection of large companies for each
month of 2004. While 500 companies are included each month, the set of companies changes each
month.

Usage

data(global.2004)
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Format

A data frame with 6000 observations on the following 16 variables.

date a Date

id a character vector

symbol a character vector

name a character vector

country a factor with levels AUS AUT BEL CHE DEU DNK ESP FIN FRA GBR HKG ITA JPN NLD NOR SGP
SWE USA

currency a factor with levels AUD CHF DKK EUR GBP HKD JPY NOK SEK SGD USD

cap a numeric vector

cap.usd a numeric vector

cap.bil a numeric vector

price a numeric vector

price.usd a numeric vector

round.lot a numeric vector

sector a factor with levels Communications Conglomerates Cyclicals Energy Financials
Industrials Materials Staples Technology Utilities

liquidity a numeric vector

liq.w a numeric vector

volume a numeric vector

avg.volume a numeric vector

ret.0.1.m a numeric vector

Examples

data(global.2004)

map.market Create a Map of the Market

Description

Utility function for creating a "map of the market" visualization. Creates a treemap where rectan-
gular regions of different size, color, and groupings visualize the stocks in a portfolio.

Usage

map.market(id, area, group, color,
scale = NULL,
lab = c("group"=TRUE, "id"=FALSE),
main = "Map of the Market",
print = TRUE)
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Arguments

id A vector storing the labels to be used for each stock.

area A vector storing the values to be used to calculate the areas of rectangles.

group A vector specifying the group (i.e. country, sector, etc.) to which each stock
belongs.

color A vector storing the values to be used to calculate the color of rectangles.

scale An object of class numeric indicating the scale to be used in determining colors.

lab A logical vector of length 2 specifying whether group and stock labels should
be drawn. If the two values are the same, the second may be omitted.

main A title for the plot.

print An object of class logical indicating whether the map should be drawn.

Author(s)

Jeff Enos <jeff@kanecap.com>

Examples

data(dow.jan.2005)
map.market(id = dow.jan.2005$symbol,

area = dow.jan.2005$price,
group = dow.jan.2005$sector,
color = 100 * dow.jan.2005$month.ret)

matchedPortfolio-class

Class "matchedPortfolio"

Description

An object of the class "matchedPortfolio" that contains an object of class "portfolioBasic" and
a matrix of weights for portfolios that have been matched to the "portfolioBasic" according to
variables specified in a formula.

Objects from the Class

Objects can be created by calls of the form new("matchedPortfolio", ...).
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Slots

formula: an object of class formula specifying the treatment variable and the covariates on which
to match.

original: an object of class "portfolioBasic", the attributes of which will be used for matching.

matches: Object of class "matrix" with a column for each matched portfolio.

method: Object of class "character" specifying the matching method used to generate the matched
portfolio.

omitted.control: Object of class "numeric" containing the number of observations omitted
from the control.

omitted.treatment: Object of class "numeric" containing the number of observations omitted
from the treatment.

Methods

show signature(object = "matchedPortfolio"): prints basic information about the original
portfolio and its matches.

summary signature(object = "matchedPortfolio"): prints detailed information about the original
portfolio and its matches.

performance signature(object = "matchedPortfolio"): calculates the mean performance across
all matched portfolios.

exposure signature(object = "matchedPortfolio", exp.var = "character"): calculates the
exposure across each variable in exp.var.

contribution signature(object = "matchedPortfolio", contrib.var = "character"): cal-
culates the contribution across each variable in contrib.var.

plot signature(x = "matchedPortfolio", y = "missing"): graphs exposure and contribution.

Details

The matches matrix contains as many rows as there are stocks in the data slot of original and
as many columns as there are matched portfolios. The row labels of the matrix are the values of
original@data[["id.var"]] and each column is a matched portfolio. The cell values are the
weights of the stock in the portfolio.

Author(s)

Daniel Gerlanc <dgerlanc@gmail.com>

See Also

portfolioBasic-class

Examples

m.p <- new("matchedPortfolio")
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matchedPortfolioCollection-class

Class "matchedPortfolioCollection"

Description

A collection of objects of class matchedPortfolio.

Objects from the Class

Objects can be created by calls of the form new("matchedPortfolioCollection", ...).

Slots

data: Object of class "list" A list of objects of class matchedPortfolio.

Methods

No methods defined with class "matchedPortfolioCollection" in the signature.

Author(s)

Jeff Enos <jeff@kanecap.com>

performance-class Class "performance"

Description

Return, per-security return, and exposed portfolio object for one period.

Objects from the Class

Objects can be created by calls of the form new("performance", ...).

Slots

ret: Object of class "numeric" containing the total return for the period.

profit: Object of class "numeric" containing the profit for the period, as a monetary amount.

missing.price: Object of class "numeric" containing the number of missing prices encountered
during performance calculation.

missing.return: Object of class "numeric" containing the number of missing returns encoun-
tered during performance calculation.

ret.detail: Object of class "data.frame" containing the per-security return detail for the period.

t.plus.one: Object of class "portfolioBasic" containing the portfolio at the end of the period.
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Methods

plot signature(x = "performance", y = "missing"): Plot this object.

show signature(object = "performance"): show this object, briefly.

summary signature(object = "performance"): display a summary of this object.

Author(s)

Jeff Enos <jeff@kanecap.com>

portfolio-class Class "portfolio"

Description

Class "portfolio" extends class "portfolioBasic" to include price and share information. Price infor-
mation must be included in the supplementary "data" slot.

Objects from the Class

Objects can be created by calls of the form new("portfolio", ...).

Slots

equity: Object of class "numeric" containing the equity for this portfolio.e

file: Object of class "character" containing the file from which this portfolio was loaded, if
applicable.

price.var: Object of class "character" containing the name of the column in the "data" slot to
be used in share and weight calculations.

shares: Object of class "data.frame" containing a data frame of shares for each position. Must
have a unique column called "id".

name: Object of class "character" containing the name for this portfolio.

instant: Object of class "ANY" containing the instant to which the portfolio pertains.

data: Object of class "data.frame" containing supplementary information about the positions in
this portfolio. Must include a unique "id" column.

id.var: Object of class "character" containing the name of the column in the data slot to be
used as a unique identifier.

symbol.var: Object of class "character" containing the name of the column in the "data" slot to
be used as a descriptive symbol.

in.var: Object of class "character" containing the name of the column in the "data" slot to be
used as a rank vector in calls to create.

weight.var: Object of class "character" containing the name of the column in the "data" slot to
be used as weight overrides in calls to create.
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weight.style: Object of class "character" specifying how to calculate weights in this portfolio.
Valid entries are:

• "sides.separate": The default. Calculate weight of a position with respect to the total
market value of positions on the same side.

• "long.tmv": Calculate weight of a position with respect to the total market value of long
positions.

• "short.tmv": Calculate weight of a position with respect to the (positive) total market
value of short positions.

• "reference.equity": Calculate weight of a position relative to the reference equity in
the equity slot. The equity slot must contain a numeric vector of length 1 for this style.

ret.var: Object of class "character" containing the name of the column in the "data" slot to be
used as the return in calls to performance.

type: Object of class "character" containing the type of weight formation to use in calls to
create. May be one of "relative", "equal", "linear", "sigmoid", "centroid", or "complex".
Defaults to equal.

size: Object of class "characterOrNumeric" containing the size of the portfolio to use in calls
to create. May either contain the number of securities per side or one of "decile", "quintile",
"quartile", "tercile", or "demile". Defaults to quintile.

weights: Object of class "data.frame" containing the data frame of weights for this portfolio’s
positions. Must contain a unique column called "id".

Extends

Class "portfolioBasic", directly.

Methods

+ signature(e1 = "portfolio", e2 = "portfolio")

all.equal signature(target = "portfolio", current = "portfolio"): Compare two portfolio
objects for "near equality". Two portfolio objects are all.equal iff they are all.equal as
portfolioBasic objects, their shares slots contain exactly the same set of securities and
shares vectors that are all.equal.

calcShares signature(object = "portfolio"): calculate shares from price and weight informa-
tion, and store the results in the shares slot.

calcWeights signature(object = "portfolio"): calculate weights from share and price infor-
mation, and store the results in the weights slot.

create signature(object = "portfolio"): create a portfolio object in the same manner as portfolioBasic,
but also compute share amounts.

expandData signature(object = "portfolio"): ...

expose signature(object = "portfolio", trades = "trades"): ...

getYahooData signature(object = "portfolio", symbol.var = "character"): ...

performance signature(object = "portfolio"): ...

securityInfo signature(object = "portfolio", id = "character"): display information about
position id within this portfolio.
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getYahooData signature(object = "portfolio", symbol.var = "character"): Returns data
for P/E Ratio, Book Value, Market Cap, Price/Book, and Price/Sales.

updatePrices signature(object = "portfolio", id = "character", price = "numeric"): ...

Author(s)

Jeff Enos <jeff@kanecap.com>

portfolioBasic-class Class "portfolioBasic"

Description

An object of the lightweight class "portfolioBasic" contains a data frame of weights and a data
frame of supplementary information.

Objects from the Class

Objects can be created by calls of the form new("portfolioBasic", ...).

Slots

name: Object of class "character" containing the name of this portfolio.

instant: Object of class "ANY" containing an instant to which this portfolio pertains.

data: Object of class "data.frame" containing supplementary information about the positions in
this portfolio. Must include a unique column specified in the id.var slot.

id.var: Object of class "character" containing the name of the column in the data slot to be
used as a unique identifier.

symbol.var: Object of class "character" containing the name of the column in the data slot to
be used as a descriptive symbol.

in.var: Object of class "character" containing the name of the column in the data slot to be
used as a rank vector in calls to create.

weight.var: Object of class "character" containing the name of the column in the data slot to
be used as weight overrides in calls to create.

ret.var: Object of class "character" containing the name of the column in the data slot to be
used as the return in calls to performance.

type: Object of class "character" containing the type of weight formation to use in calls to
create. May be one of "relative", "equal", "linear", "sigmoid", "centroid", or "complex".
Defaults to equal.

size: Object of class "characterOrNumeric" containing the size of the portfolio to use in calls
to create. May either contain the number of securities per side or one of "decile", "quintile",
"quartile", "tercile", or "demile". Defaults to quintile.

weights: Object of class "data.frame" containing the data frame of weights for this portfolio’s
positions. Must contain a unique column called "id".
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Methods

+ signature(e1 = "portfolioBasic", e2 = "portfolioBasic")

all.equal signature(target = "portfolioBasic", current = "portfolioBasic"): Compare
two portfolioBasic objects for "near equality". Two portfolioBasic objects are all.equal
iff their weights slots contain exactly the same set of securities and weight vectors that are
all.equal.

balance signature(object = "portfolioBasic", in.var = "character"): balances the posi-
tions in portfolio object to be neutral to the categories specified by column in.var in the
data slot.

contribution signature(object = "portfolioBasic",contrib.var = "character"): returns
one data.frame with contribution analysis for each element of contrib.var. All results are
returned in a list.

create signature(object = "portfolioBasic"): use this object’s creation parameters (such as
in slots size and type) to create and return a new object of class portfolioBasic.

exposure signature(object = "portfolioBasic", exp.var = "character"): returns one data.frame
with exposure analysis for each element of contrib.var. All results are returned in a list.

matching signature(object = "portfolioBasic",covariates = "character": returns a matchedPortfolio
object containing n.matches matched portfolios. object is the portfolioBasic to be matched.
covariates is a character vector of the attributes on which to match.

performance signature(object = "portfolioBasic"): returns a list containing performance
results.

plot signature(x = "portfolioBasic", y = "missing"): Plot this object.

portfolioDiff signature(object = "portfolioBasic", x = "portfolioBasic"): computes the
difference, as a portfolioBasic object, between two portfolios.

scaleWeights signature(object = "portfolioBasic"): scale weights to the weights supplied
in the target parameter. To restrict the set of positions whose weights are scaled, use the
condition argument.

show signature(object = "portfolioBasic"): display this object, briefly.

summary signature(object = "portfolioBasic"): display descriptive information about this
portfolio.

initialize signature(object = "portfolioBasic"): initialize the portfolio by calling create.

mapMarket signature(object = "portfolioBasic"): create a map of the market plot of the
portfolio.

Matched portfolios

The matching method allows one to benchmark a portfolio against a similar portfolio formed from
other stocks in the universe. The universe consists of all the stocks in the data slot of original.

matching calculates a propensity score for each stock in the universe. covariates determines
which attributes are used to calculate the propensity score. covariates must refer to the names of
columns in the data slot of original.

Matching accepts an optional argument, method, which sets the algorithm for determining the best
match for each stock. There are 2 available algorithms, "greedy" and "sample". "greedy" is the
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default and generates 1 matched portfolio. "sample" randomly matches each stock in original
with one of the stocks in the universe. Although the matching is random, stocks in original are
most likely to be matched with stocks having similar propensity scores.

n.matches is another optional argument to matching which determines the number of matched
portfolios to generate. Requesting more than 1 matched portfolio. (n.matches > 1) while using
greedy is not allowed. When using sample, there is no bound on n.matches.

Author(s)

Jeff Enos <jeff@kanecap.com> with contributions from Daniel Gerlanc <dgerlanc@gmail.com>

Examples

data(dow.jan.2005)

p <- new("portfolioBasic",
id.var = "symbol",
in.var = "price",
sides = "long",
ret.var = "month.ret",
data = dow.jan.2005)

summary(p)

exposure(p, exp.var = c("price", "sector"))
performance(p)
contribution(p, contrib.var = c("cap.bil", "sector"))

p <- new("portfolioBasic",
id.var = "symbol",
in.var = "price",
type = "linear",
sides = c("long", "short"),
ret.var = "month.ret",
data = dow.jan.2005)

summary(p)

exposure(p, exp.var = c("price", "sector"))
performance(p)
contribution(p, contrib.var = c("cap.bil","sector"))

tradelist-class Class "tradelist"

Description

Note: This class is a rough first pass and will change drastically in future releases.

An object of the class "tradelist" containing a data frame of trades and a data frame of supplementary
information.
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Objects from the Class

Objects can be created by calls of the form new("tradelist", orig, target, ...).

Slots

type: Object of class "character" specifying the type of the tradelist. Must be "all" or "ranks".

id.var: Object of class "character" containing the name of the column in the data slot to be
used as a unique identifier.

price.var: Object of class "character" specifying the column in the data slot to be used as the
reference price. Defaults to price.usd.

candidates: Object of class "data.frame" containing one row for each candidate trade.

ranks: Object of class "data.frame" where candidate trades have been interleaved by trade type
(B,S,X,C) and assigned a unique rank, "rank.t".

chunks: Object of class "data.frame" that contains one row for each chunk, a smaller portion of
an order.

swaps: Object of class "data.frame" where buys and sells have been matched with other shorts
and covers of similar market value and desirability.

swaps.actual: Object of class "data.frame" where the least desirable chunks that would exceed
if "turnover" if ordered have been removed.

actual: Object of class "data.frame" where the chunks have been rolled up into one row/order
per security.

final: Object of class "trades" containing the most basic information on the set of trades in the
tradelist.

chunks.actual: Object of class "data.frame" where "swaps" have been turned back into chunks
and each chunk has its own row.

sorts: Object of class "optionalList" which may be interpreted as a list of key-value pairs. The
key is the name of the sort and must exist as a column in the "data" slot. The numeric value
expresses the relative weight of the sort.

rank.sorts: Object of class "list", where the names of the elements are the names of the sorts
defined in the "sorts" list and the elements are data frames, each of which contains a ranking
of the candidate trades created by applying an individual sort.

regions: Object of class "character"

chunk.usd: Object of class "numeric" that expresses the minimum unsigned market value in US
dollars of a chunk. Defaults to $10,000.

trade.usd.min: Object of class "numeric" that expresses the minimum unsigned market value
a trade must have in order to be placed. Trades of lower market value are removed from the
"candidates" data.frame and appended to the "restricted" data frame.

restrictions: Object of class "data.frame" with 1 row for each trade and three columns, "id",
"type", and "reason". "id" uniquely identifies the trade, "type" accepts a value of B, S, C, or
X (buy, sell, cover, or short), expressing the type of trade that is prohibited, and "reason" is a
label expressing why the restriction exists.

restricted: Object of class "data.frame" that contains one row for every trade for which a
restriction exists



tradelist-class 17

to.equity: Object of class "logical" expressing whether or not the algorithm should trade to-
wards the value of target.equity

turnover: Object of class "numeric" that expresses the maximum unsigned market value of all
trades effected in one session.

tca: Object of class "character" expressing whether or not to use trade cost adjustment.

rank.gain.min: Object of class "numeric" specifying the minimum amount of difference be-
tween two trades’ rank required in order for the pair to be considered as a swap.

target.equity: Object of class "numeric" expressing the unsigned market value of the target
portfolio.

mv.long.orig: Object of class "numeric" The market value of the long side of the original port-
folio.

mv.short.orig: Object of class "numeric" The unsigned market value of the short side of the
original portfolio

unrestricted: Object of class "logical" specifying whether any restrictions should be applied,
including checks for price and volume.

data: Object of class "data.frame" containing supplementary information about the "tradelist".
Must contain an "id" column, a "price.usd" column, a "volume" column, and a column named
after each element listed in "sorts".

verbose: Object of class "logical" controlling whether methods on this object should be verbose.
Defaults to FALSE.

Methods

actualCols signature(object = "tradelist"): Returns a vector with the following elements:
"id", "side", "shares", "mv", names(object@sorts), and "rank.t"

calcActual signature(object = "tradelist"): Rolls up the chunks calculated in calcChunksActual
into single orders and stores the result as a data frame in the "actual" slot.

calcCandidates signature(object = "tradelist", orig = "portfolio", target = "portfolio"):
Builds a data frame of candidate trades with one row per trade by determining which positions
have different numbers of shares in the original and target portfolios. Removes trades in the
"restrictions" data frame, trades with a market value below "trade.usd.min", and trades that
would cause a side change in one session, and appends these trades to the "restricted data
frame."

calcChunksActual signature(object = "tradelist"): Turns the swaps calculated in calcSwapsActual
back into chunks and stores the results in a data frame in the "actual.chunks" slot.

calcChunks signature(object = "tradelist"): Examines the data frame stored in the "ranks"
slot, breaks the candidate trades into chunks of size "chunk.usd" or smaller, and stores the
results in the "chunks" slot

calcSwapsActual signature(object = "tradelist"): Examines the data frame stored in the
"swaps" slot and removes swaps, which had they been processed as orders, would have ex-
ceeded the specified "turnover" of the tradelist. Stores the results as a data frame in the
"swaps.actual" slot.

calcSwaps signature(object = "tradelist"): Using the "chunks" data frame created by the
calcChunks method, pairs attractive chunks with other attractive chunks of similar market
value and stores the results as a data frame in the swaps slot.
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calcRanks signature(object = "tradelist"): Using information from the candidates data
frame, interleaves the trades and calculates an absolute rank for each trade, "rank.t". Stores
the results in the ranks slot

candidatesCols signature(object = "tradelist"): Returns a vector of class character con-
taining the following elements: "id", "orig", "target", "side", "shares", "mv"

chunksCols signature(object = "tradelist"): Returns a vector of class character contain-
ing the following elements: rankCols(object), "tca.rank", "chunk.shares", "chunk.mv", "chunk".

dummyChunks signature(object = "tradelist"): Creates a data frame of dummy chunks
for a given side and dollar amount (total.usd). The supplied dollar amount, together with the
tradelist object’s chunk size, determines the number of rows in the resulting data frame.

initialize signature(.Object = "tradelist"): Transparently calls calcCandidates, calcRanks,
calcChunks, calcSwaps, calcSwapsActual, calcChunksActual, calcActual to construct
the tradelist object.

ranksCols signature(object = "tradelist"): Returns a vector of class character containing
the following elements: "id", "orig", "target", "side", "shares", "mv", names(object@sorts),
"rank.t"

restrictedCols signature(object = "tradelist"): Returns a vector of class character con-
taining the following elements: candidatesCols(object), "reason".

securityInfo signature(object = "tradelist", id = "character"): Returns detailed informa-
tion regarding a security in the tradelist.

show signature(object = "tradelist"): Prints a detailed summary of tradelist attributes.

trimSide signature(object = "tradelist"): If the market value of the side passed as the "side"
parameter to this function is is greater than market value of the side as specified by the "value"
parameter, excises the least desirable trades on that side until the the market value of that side
is less than value. Returns a copy of the data frame stored in the "actual" slot with the trades
that meet the forementioned conditions removed.

Author(s)

Daniel Gerlanc <daniel@gerlanc.com>

trades-class Class "trades"

Description

An object of the class "trades" contains a data frame with columns "id", "side", and "shares" de-
scribing a simple list of trades to be performed.

Objects from the Class

Objects can be created by calls of the form new("trades", ...).

Slots

trades: Object of class "data.frame" with columns "id", "side", and "shares".



weight 19

Methods

No methods defined with class "trades" in the signature.

Author(s)

Kyle Campbell and Daniel Gerlanc

See Also

tradelist-class

Examples

df <- data.frame(id = c(1,2,3), side = c("B","X","C"), shares = c(10,20,30))

t <- new("trades", trades = df)

weight Calculate Position Weights

Description

Compute position weights of various types from an input variable.

Usage

weight(x, in.var, type, size, sides,
weight.var = NULL, verbose = FALSE)

Arguments

x A data.frame containing the columns in.var and weight.var (if necessary).

in.var Character vector specifying the column in x that contains a ranking from which
weights can be computed.

type Character vector specifying the method to use for weight creation. Can be one of
c("relative", "equal", "linear", "sigmoid", "centroid", "complex").

size Character or numeric vector specifying the number of desired non-na weights
per side in the result. Can either be a positive number or one of "all", "decile",
"quintile", "tercile", "demile").

sides Character vector specifying the sides for which to create weights. May be any
nonempty subset of "long", "short".

weight.var Numeric vector containing specifying the column in x that contains weight over-
rides. Overrides are applied after weights have been computed. Defaults to
NULL.

verbose Be verbose. Defaults to FALSE.
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Value

A numeric vector of weights the same length as x.

Author(s)

Jeff Enos <jeff@kanecap.com>

Examples

data <- data.frame(in.var = 1:50, weight.var = NA)
data$in.var <- as.numeric(data$in.var)

weight(data, in.var = "in.var", type = "linear", size = "quintile",
sides = c("long", "short"))

data$weight.var[25] <- -0.05
weight(data, in.var = "in.var", type = "linear", size = "quintile",

sides = c("long", "short"), weight.var = "weight.var")
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