Package for learning and evaluating (subgroup) policies via doubly robust loss functions. Policy learning methods include doubly robust blip/conditional average treatment effect learning and sequential policy tree learning. Methods for (subgroup) policy evaluation include doubly robust cross-fitting and online estimation/sequential validation. See Nordland and Holst (2022) <doi:10.48550/arXiv.2212.02335> for documentation and references.
| Version: | 1.6.0 | 
| Depends: | R (≥ 4.1), SuperLearner | 
| Imports: | data.table (≥ 1.14.5), lava (≥ 1.7.2.1), future.apply, progressr, methods, policytree (≥ 1.2.0), survival, targeted (≥ 0.6), DynTxRegime | 
| Suggests: | DTRlearn2, glmnet (≥ 4.1-6), mets, mgcv, xgboost, knitr, ranger, rmarkdown, testthat (≥ 3.0), ggplot2 | 
| Published: | 2025-10-30 | 
| DOI: | 10.32614/CRAN.package.polle | 
| Author: | Andreas Nordland [aut, cre],
  Klaus Holst  | 
| Maintainer: | Andreas Nordland <andreasnordland at gmail.com> | 
| BugReports: | https://github.com/AndreasNordland/polle/issues | 
| License: | Apache License (≥ 2) | 
| NeedsCompilation: | no | 
| Citation: | polle citation info | 
| Materials: | NEWS | 
| CRAN checks: | polle results | 
| Reference manual: | polle.html , polle.pdf | 
| Vignettes: | 
optimal_subgroup (source, R code) policy_data (source, R code) policy_eval (source, R code) policy_learn (source, R code) right_censoring (source, R code)  | 
| Package source: | polle_1.6.0.tar.gz | 
| Windows binaries: | r-devel: polle_1.6.0.zip, r-release: polle_1.6.0.zip, r-oldrel: polle_1.6.0.zip | 
| macOS binaries: | r-release (arm64): polle_1.6.0.tgz, r-oldrel (arm64): polle_1.6.0.tgz, r-release (x86_64): polle_1.6.0.tgz, r-oldrel (x86_64): polle_1.6.0.tgz | 
| Old sources: | polle archive | 
| Reverse suggests: | targeted | 
Please use the canonical form https://CRAN.R-project.org/package=polle to link to this page.