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Abstract

This vignette provides some details about the parameter estimation procedures imple-
mented in the pks package.
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Doignon and Falmagne (1999) describe two probabilistic models frequently used in appli-
cations of knowledge structure theory: the basic local independence model (BLIM) and
the simple learning model (SLM). This vignette provides some details about the parame-
ter estimation procedures implemented in the pks package, which are an adaptation of the
expectation-maximization algorithm. Section 1 contains methods for the BLIM. The results
are taken from Heller and Wickelmaier (2013) and are repeated here (with intermediate steps)
in order to motivate the analogous derivations for the SLM in Section 2.

1. The basic local independence model

1.1. Likelihood and log-likelihood

Let q ∈ Q be an item, R ∈ R = 2Q be a response pattern, and K ∈ K ⊆ 2Q be a knowledge
state. Let NR be the observed frequency of response pattern R. For the BLIM, the parameter
vector θ = (β, η, π) consists of (vectors of) careless error, lucky guess, and state probabilities.
The (incomplete-data) likelihood of θ given all observed response patterns has the multinomial
form

L(θ) =
∏
R

P (R)NR =
∏
R

(∑
K

P (R,K)
)NR , (1)

which is difficult to maximize because of the sum. Therefore, letMRK denote the unobservable
frequency of pattern R resulting from state K, where NR =

∑
K MRK . Then the complete-
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data likelihood can be written as

L(θ) =
∏
R

∏
K

P (R,K)MRK (2)

=
∏
R

∏
K

(
P (R | K) · P (K)

)MRK (3)

=
∏
R

∏
K

( ∏
q∈K\R

βq

∏
q∈K∩R

(1− βq)
∏

q∈R\K

ηq

∏
q∈R̄∩K̄

(1− ηq)
)MRK

·
(
πK

)MRK (4)

and the log-likelihood becomes

`(θ) =
∑
R

∑
K

MRK

( ∑
q∈K\R

log βq +
∑

q∈K∩R

log(1− βq) +
∑

q∈R\K

log ηq +
∑

q∈R̄∩K̄

log(1− ηq)
)

+
∑
R

∑
K

MRK log πK . (5)

1.2. Careless errors and lucky guesses

Let Rq and Rq̄ denote the subset of response patterns that contain and do not contain q,
respectively. Similarly, let Kq and Kq̄ denote the subset of knowledge states that contain and
do not contain q, respectively. Then the partial derivative of the log-likelihood with respect
to βq is

∂`(θ)
∂βq

=
∑
R

∑
K

( ∑
q∈K\R

MRK

βq
−

∑
q∈K∩R

MRK

1− βq

)
(6)

=
∑

R∈Rq̄

∑
K∈Kq

MRK

βq
−
∑

R∈Rq

∑
K∈Kq

MRK

1− βq
(7)

=
∑
R

∑
K∈Kq

MRK

βq
· (1− i)− MRK

1− βq
· i, (8)

where i = 1 if R ∈ Rq, and i = 0 else . Setting the derivative to zero yields

∑
R

∑
K∈Kq

MRK(1− i)(1− β̂q)−MRKiβ̂q

β̂q(1− β̂q)
= 0 (9)

∑
R

∑
K∈Kq

MRK −MRK β̂q −MRKi+�����
MRKiβ̂q −�����

MRKiβ̂q = 0 (10)

∑
R

∑
K∈Kq

MRK(1− i) =
∑
R

∑
K∈Kq

MRK β̂q (11)

∑
R∈Rq̄

∑
K∈Kq

MRK = β̂q

∑
R

∑
K∈Kq

MRK (12)

β̂q =

∑
R∈Rq̄

∑
K∈Kq

MRK∑
R

∑
K∈Kq

MRK

. (13)
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The partial derivative of the log-likelihood with respect to ηq is

∂`(θ)
∂ηq

=
∑
R

∑
K

( ∑
q∈R\K

MRK

ηq
−

∑
q∈R̄∩K̄

MRK

1− ηq

)
(14)

=
∑

R∈Rq

∑
K∈Kq̄

MRK

ηq
−
∑

R∈Rq̄

∑
K∈Kq̄

MRK

1− ηq
(15)

=
∑
R

∑
K∈Kq̄

MRK

ηq
· i− MRK

1− ηq
· (1− i), (16)

where, as above, i = 1 if R ∈ Rq, and i = 0 else. Setting the derivative to zero yields
∑
R

∑
K∈Kq̄

MRKi(1− η̂q)−MRK(1− i)η̂q

η̂q(1− η̂q) = 0 (17)

∑
R

∑
K∈Kq̄

MRKi−�����MRKiη̂q −MRK η̂q +�����MRKiη̂q = 0 (18)

∑
R

∑
K∈Kq̄

MRKi =
∑
R

∑
K∈Kq̄

MRK η̂q (19)

∑
R∈Rq

∑
K∈Kq̄

MRK = η̂q

∑
R

∑
K∈Kq̄

MRK (20)

η̂q =

∑
R∈Rq

∑
K∈Kq̄

MRK∑
R

∑
K∈Kq̄

MRK

. (21)

1.3. State probabilities

Including the constraint
∑

K πK = 1 into the log-likelihood using the Lagrange multiplier λ
leads to the function

`(π, λ) =
∑
R

∑
K

MRK log πK + λ

(∑
K

πK − 1
)

(22)

to be maximized with respect to πK and λ. Thus,

∂`(π, λ)
∂πK

=
∑
R

MRK

πK
+ λ, (23)

∂`(π, λ)
∂λ

=
∑
K

πK − 1. (24)

Setting (23) to zero and solving for πK gives

πK = −
∑

R MRK

λ
. (25)

Setting (24) to zero, substituting πK by (25), and solving for λ gives

λ̂ = −
∑
R

∑
K

MRK = −N, (26)
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which, when substituted back into (25), leads to

π̂K =
∑

R MRK

N
. (27)

1.4. Expectation maximization
The conditional expectation of the unobservable frequencies MRK is

E(MRK | NR) = NR · P (K | R) (28)

= NR ·
P (R | K)P (K)

P (R) (29)

= NR ·
P (R | K)P (K)∑
K P (R | K)P (K) , (30)

where, in each iteration, P (R | K) and P (K) are calculated from the current values of
β̂q, η̂q, and π̂K . These values are iteratively updated when substituting the MRK by their
expectations in (13), (21), and (27).

1.5. Minimum-discrepancy maximum likelihood
Assuming that K is the underlying knowledge state for a response pattern R, the distance

d(R,K) = |(R \K) ∪ (K \R)| (31)

contains the number of response errors in R. Minimizing the number of response errors, a
state is assigned to R if its distance takes on the smallest possible value,

iRK =
{

1 if d(R,K) = minK d(R,K),
0 else.

(32)

Under this assumption of minimum discrepancy, the conditional probability P (K | R) is
estimated by iRK/iR+, where iR+ =

∑
K iRK . Consequently,

P̂ (R,K) = P̂ (K | R) · P̂ (R) = iRK

iR+
· NR

N
. (33)

This leads to the minimum-discrepancy estimators

π̂K = P̂ (K) =
∑
R

P̂ (R,K) =
∑
R

iRK

iR+
· NR

N
(34)

β̂q = P̂ (Rq̄ | Kq) = P̂ (Rq̄,Kq)
P̂ (Kq)

=

∑
R∈Rq̄

∑
K∈Kq

P̂ (R,K)

∑
K∈Kq

P̂ (K)
=

∑
R∈Rq̄

∑
K∈Kq

iRK

iR+
·NR

∑
R

∑
K∈Kq

iRK

iR+
·NR

(35)

η̂q = P̂ (Rq | Kq̄) = P̂ (Rq,Kq̄)
P̂ (Kq̄)

=

∑
R∈Rq

∑
K∈Kq̄

P̂ (R,K)

∑
K∈Kq̄

P̂ (K)
=

∑
R∈Rq

∑
K∈Kq̄

iRK

iR+
·NR

∑
R

∑
K∈Kq̄

iRK

iR+
·NR

. (36)
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An estimator that combines minimum discrepancy and maximum likelihood is obtained by
augmenting the E step in (28) such that the conditional expectation can only be non-zero
under minimum discrepancy,

E(MRK | NR) = NR ·
iRK · P (K | R)∑
K iRK · P (K | R) . (37)

Substituting the MRK by this expectation in (13), (21), and (27) yields the minimum-
discrepancy maximum likelihood estimators.

2. The simple learning model

2.1. Likelihood and log-likelihood

The SLM constrains the state distribution P (K) by introducing item-specific solvability pa-
rameters gq. Thus, the parameter vector θ = (β, η, g) consists of (vectors of) careless error,
lucky guess, and solvability probabilities. With the unobservable frequency MRK as defined
above, the likelihood becomes

L(θ) =
∏
R

∏
K

(
P (R | K) · P (K)

)MRK (38)

=
∏
R

∏
K

P (R | K)MRK ·
(∏

q∈K

gq

∏
q∈KO

(1− gq)
)MRK

, (39)

where

KO = {q /∈ K | K ∪ {q} ∈ K} (40)

is the set of items that can be learned from K, called the outer fringe of K. According to
the SLM, P (K) is the product of the probabilities of mastering all items in K, gq, and not
mastering any items accessible from K, 1− gq. The log-likelihood then becomes

`(θ) =
∑
R

∑
K

MRK logP (R | K)

+
∑
R

∑
K

MRK

(∑
q∈K

log gq +
∑

q∈KO

log(1− gq)
)
. (41)

where P (R | K) is defined as for the BLIM in (4).

2.2. Careless errors and lucky guesses

The estimators for careless error β and lucky guess η parameters in the SLM are the same as
for the BLIM.
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2.3. Solvability parameters

The partial derivative of the log-likelihood with respect to gq is

∂`(θ)
∂gq

=
∑
R

∑
K

(∑
q∈K

MRK

gq
−
∑

q∈KO

MRK

1− gq

)
(42)

=
∑
R

∑
K∈Kq

MRK

gq
−
∑
R

∑
K∈KO

q

MRK

1− gq
(43)

=
∑
R

∑
K

MRK

gq
· i− MRK

1− gq
· j, (44)

where

i =
{

1 if q ∈ K
0 if q /∈ K

, j =
{

1 if q ∈ KO

0 if q /∈ KO , (45)

and KO
q is the subset of states whose outer fringe contains q. Setting the derivative to zero

yields

∑
R

∑
K

MRKi(1− ĝq)−MRKjĝq

ĝq(1− ĝq) = 0 (46)∑
R

∑
K

MRKi−MRKiĝq −MRKjĝq = 0 (47)∑
R

∑
K

MRKi =
∑
R

∑
K

ĝq(MRKi+MRKj) (48)

∑
R

∑
K∈Kq

MRK = ĝq

(∑
R

∑
K∈Kq

MRK +
∑
R

∑
K∈KO

q

MRK

)
(49)

ĝq =

∑
R

∑
K∈Kq

MRK∑
R

∑
K∈Kq

MRK +
∑
R

∑
K∈KO

q

MRK

. (50)

2.4. Expectation maximization

The E step has the same form as for the BLIM. In each iteration, P (R | K) and P (K) are
calculated from the current values of β̂q, η̂q, and ĝq.

2.5. Minimum-discrepancy maximum likelihood

The minimum-discrepancy estimators β̂q and η̂q are the same as for the BLIM. For the
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solvability parameters,

ĝq = P̂ (Kq | Kq ∪ KO
q ) =

P̂ (Kq,Kq ∪ KO
q )

P̂ (Kq ∪ KO
q )

= P̂ (Kq)
P̂ (Kq ∪ KO

q )
(51)

=

∑
R

∑
K∈Kq

P̂ (R,K)

∑
R

∑
K∈Kq

P̂ (R,K) +
∑
R

∑
K∈KO

q

P̂ (R,K)
(52)

=

∑
R

∑
K∈Kq

iRK

iR+
·NR

∑
R

∑
K∈Kq

iRK

iR+
·NR +

∑
R

∑
K∈KO

q

iRK

iR+
·NR

. (53)

Minimum-discrepancy maximum likelihood estimators for β, η, and g are obtained from
augmenting the E step as in (37).
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