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Abstract
This vignette provides some details about the parameter estimation procedures imple-

mented in the pks package.
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Doignon and Falmagne (1999) describe two probabilistic models frequently used in appli-
cations of knowledge structure theory: the basic local independence model (BLIM) and
the simple learning model (SLM). This vignette provides some details about the parame-
ter estimation procedures implemented in the pks package, which are an adaptation of the
expectation-maximization algorithm. Section 1 contains methods for the BLIM. The results
are taken from Heller and Wickelmaier (2013) and are repeated here (with intermediate steps)
in order to motivate the analogous derivations for the SLM in Section 2.

1. The basic local independence model

1.1. Likelihood and log-likelihood

Let ¢ € Q be an item, R € R = 29 be a response pattern, and K € K C 29 be a knowledge
state. Let N be the observed frequency of response pattern R. For the BLIM, the parameter
vector 8 = (3, n, ) consists of (vectors of) careless error, lucky guess, and state probabilities.
The (incomplete-data) likelihood of @ given all observed response patterns has the multinomial
form

L) = [[P@®N = [ (3 P(R, K))"™", (1)
R K

R

which is difficult to maximize because of the sum. Therefore, let Mg denote the unobservable
frequency of pattern R resulting from state K, where Nr = > Mprk. Then the complete-
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data likelihood can be written as

_ H H P(R, k)M 2)
—HH (R| K) - P(K))""~ (3)
Mgk M
=HH( o -6 I D0-m) @™ @
R K “qeK\R ¢€KNR geR\K g¢eRNK

and the log-likelihood becomes

:ZZMRK< Z log B, + Z log(1 — By) + Z log ng + Z log(l—nq)>
R K

q€K\R g€EKNR qER\K gERNK

—|—ZZMRK10g7TK. (5)
R K

1.2. Careless errors and lucky guesses

Let R4 and R denote the subset of response patterns that contain and do not contain g,
respectively. Similarly, let K, and K3 denote the subset of knowledge states that contain and
do not contain g, respectively. Then the partial derivative of the log-likelihood with respect
to By is

Tl T > ) (©)

R K “qeK\R ¢€KNR

M M
Sy oy My oy M @
ReERg KekK, 4 ReRq KeK, q
M M
_Z Z BRK 1_ ) l—Rg "1, (8)
R Kekq M4 q
where ¢ =1 if R € Ry, and ¢ = 0 else . Setting the derivative to zero yields
Mpr(1—14)(1 - B,) — MRkif3
R Kek, By(1 = By)
> > Mgi — Mrify — Mexi + MariB; — MaxiBy = 0 (10)
R Kek,
Z Z MRK 1—2 Z Z MRK/Bq (11)
R KeKy R Kekq
SN Mpx =8> Y Mrx  (12)
ReRq KeK, R KeKq

>, > Mrx

A RERq KE’Cq

o= S>> Mrx

R Kek,
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The partial derivative of the log-likelihood with respect to 7, is

Sy X ey ) 1

anq R K qGR\K 77q qERﬂK 1 - nq
-y Ly oy (15
ReRy Keky M Hemy KekgL ~
M
- Z Z 1 _RK (1 - )7 (16)
R Kek; 77f1 "lq
where, as above, ¢ = 1 if R € Ry, and 7 = 0 else. Setting the derivative to zero yields
303 Mpri(l —7q) = Mrr (1 —)i)g _ 0 (17)
R KEICq ﬁq(l - ﬁq)
> Y Mrxi— Mascifly — Mpxcily + Mascifly = 0 (18)
R KE’Cq
> Mgri=>_ Y Mgki, (19)
R KEK:q R KEK:q
> D Max=1g) Y, Mgk (20)
RERq KE’CQ R KEKLQ
S Y Mgk
R RER, KeKg
flg = : (21)
! > Mg
R KeKg

1.3. State probabilities

Including the constraint ), mx = 1 into the log-likelihood using the Lagrange multiplier A
leads to the function

f(ﬂ')\ ZZMRKlogTrKJr)\(ZTFKl) (22)
R K

to be maximized with respect to mx and A. Thus,

86(7r, )\) MRK

= A 23
o %: TK tA (23)
('% )\
(. Z T — 1. (24)
Setting (23) to zero and solving for 7y gives
M,
o —LR}\ RE (25)

Setting (24) to zero, substituting 7x by (25), and solving for A gives
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which, when substituted back into (25), leads to
. 2rMrk

K N (27)
1.4. Expectation maximization

The conditional expectation of the unobservable frequencies Mr is

E(Mgxk | Nr) = Ngr- P(K | R) (28)
P(R| K)P(K)
=Np ———————= 29
v T (29)
P(R| K)P(K

Yk P(R|K)P(K)’

where, in each iteration, P(R | K) and P(K) are calculated from the current values of
Bg> Tlg, and 7. These values are iteratively updated when substituting the Mgy by their
expectations in (13), (21), and (27).

1.5. Minimum-discrepancy maximum likelihood
Assuming that K is the underlying knowledge state for a response pattern R, the distance
d(R,K) =|(R\ K)U (K \ R)| (31)

contains the number of response errors in R. Minimizing the number of response errors, a
state is assigned to R if its distance takes on the smallest possible value,

1 if d(R, K) = ming d(R, K),
Z.RK:{ if d(R, K) = ming d(R, K) (32)

0 else.

Under this assumption of minimum discrepancy, the conditional probability P(K | R) is
estimated by ik /ig+, where iry = >y igrx. Consequently,

A A A ) N
P(R,K)=P(K |R)-P(R) = 1£ . °F (33)
TR+ N
This leads to the minimum-discrepancy estimators
. . ) N
ik =P(K) =Y P(RK) =Y .28 (34)
R 7 ire N
) D Z PRI S S
A R PRz K ReRg KeK ReR; Kek, it
b= PRa 1K) = = S =S p) T v v (55)
(Kq) Y. P(K) Sy BN,
Kekq R Kek, LR+
) DI PRI S S
R R PR, Ks RER, KeKg ReR, Kekg it
g = P(Rq | Kq) = P 7C == ~ 7 - : q@'RK : (36)
(Kq) Y. P(K) Sy BN,
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An estimator that combines minimum discrepancy and maximum likelihood is obtained by
augmenting the E step in (28) such that the conditional expectation can only be non-zero
under minimum discrepancy,

irk - P(K | R)

E(M Ngr) = Npg - .
WM | N0) = N0 5 e P R)

(37)

Substituting the Mpgg by this expectation in (13), (21), and (27) yields the minimum-
discrepancy maximum likelihood estimators.

2. The simple learning model

2.1. Likelihood and log-likelihood

The SLM constrains the state distribution P(K) by introducing item-specific solvability pa-
rameters g,. Thus, the parameter vector § = (3,7, g) consists of (vectors of) careless error,
lucky guess, and solvability probabilities. With the unobservable frequency Mgy as defined
above, the likelihood becomes

0) = [TII(P(R | K) - P(K))™"* (38)

R K M
=HHPR!KMRK-(ngH W) (39)
R K €K ¢eKO©
where
©={¢¢ K|KU{g} ek} (40)

is the set of items that can be learned from K, called the outer fringe of K. According to
the SLM, P(K) is the product of the probabilities of mastering all items in K, g4, and not
mastering any items accessible from K, 1 — g4. The log-likelihood then becomes

00) =Y Mgxlog P(R| K)
R K

+ZZMRK(Zloggq+ Zlog 1—gq> (41)

qeEK qeEK©
where P(R | K) is defined as for the BLIM in (4).

2.2. Careless errors and lucky guesses

The estimators for careless error 5 and lucky guess 1 parameters in the SLM are the same as
for the BLIM.
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2.3. Solvability parameters

The partial derivative of the log-likelihood with respect to g, is

oue) Mprx Mrx
dg _ZZ<Z g _Zl—g> “2)
a R K “qeK 74 geEKO a
M M
:ZZ RK*Z Z 1_RK (43)
R Kek, Ja R Kexo Y
Mgrxk . Mgk .
_ Z Z iy . (44)
R K Y ~ 9a
where
1 ifge K 1 ifqge K9
gt taeen L gL ge R (45)
0 ifg¢ K 0 ifg¢ K©

and ICfIQ is the subset of states whose outer fringe contains g. Setting the derivative to zero
yields

Mrri(1 = 9q) — MrKJ3q _ 0 46
D Nie—h 1o
> Y Mgri— Mprigq — Mrijjq =0 (47)
R K
Y Mrri=_Y 4y(Mgrki+ Mgkj) (48)
R K R K

SN Mri =gq <Z Mg+ > MRK) (49)

R Kek, R Kek, R KeKk9

> Mgk
4 = R KeK, . (50)
DY) Mex 4> Y Mk
R KeK, R KeKQ

2.4. Expectation maximization

The E step has the same form as for the BLIM. In each iteration, P(R | K) and P(K) are
calculated from the current values of 3y, 74, and gy.

2.5. Minimum-discrepancy maximum likelihood

The minimum-discrepancy estimators Bq and 7), are the same as for the BLIM. For the



solvability parameters,

g :p(quUCqUIC?):
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Pk, K, UKS) P

P(K,UKS) — P(K,UK?)

>3 P(REK

R Kek,
Z Y P(RK)+Y Y P(RK)
R Kek, R Kekg

Z
ZZ LR NR+Z > MK Ng
R Kek, R KeK9 iR+

(53)

Minimum-discrepancy maximum likelihood estimators for 5, n, and g are obtained from

augmenting the E step

as in (37).
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