
Package ‘pems.utils’
June 20, 2025

Title Portable Emissions (and Other Mobile) Measurement System
Utilities

Version 0.3.0.8

Date 2025-06-20

Description
Utility functions for the handling, analysis and visualisation of data from portable emissions
measurement systems ('PEMS') and other similar mobile activity monitoring devices. The package
includes a dedicated 'pems' data class that manages many of the quality control, unit handling and
data archiving issues that can hinder efforts to standardise 'PEMS' research.

Type Package

Author Karl Ropkins [aut, cre],
Adrian Felipe Ortega Calle [ctb]

Maintainer Karl Ropkins <karl.ropkins@gmail.com>

URL http://pems.r-forge.r-project.org/

Depends R (>= 2.10.0)

Imports lattice, loa (>= 0.3.1), methods, utils, grid, baseline,
ggplot2, rlang, tibble, dplyr

License GPL (>= 2)

LazyLoad yes

LazyData yes

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2025-06-20 21:30:02 UTC

Contents
pems.utils-package . 2
1.1.make.import.data . 4

1

http://pems.r-forge.r-project.org/

2 pems.utils-package

1.2.export.data . 9
2.1.pems.structure . 11
3.1.generic.pems.handlers . 14
3.2.generic.pems.element.handlers . 18
4.1.merge.data.pems . 20
4.2.referencing.pems.data . 24
4.3.time.handlers . 27
4.4.unit.handlers . 29
5.1.pems.plots . 33
6.1.common.calculations . 39
6.2.common.check.functions . 42
6.3.corrections . 46
6.4.analysis.summary.reports . 48
7.1.vsp.code . 51
7.2.emissions.calculations . 54
7.3.coldstart.code . 56
7.4.speed.em.code . 58
8.1.pems.tidyverse.tools . 60
9.1.example.data . 64
9.2.look-up.tables . 65

Index 66

pems.utils-package pems.utils

Description

The R package pems.utils contains a range of functions for the routine handling and analysis of data
collected by portable emissions measurement systems (PEMS) and other similar mobile monitoring
systems.

Details

Package: pems.utils
Type: Package
Version: 0.3.0.7
Date: 2024-12-28
License: GPL (>= 2)
LazyLoad: yes

The pems.utils functions have been arranged according to usage, as follows:

1. Getting data in and out of pems.utils.

1.1. Functions for making and importing datasets for use with pems.utils: pems, import2PEMS,
etc.

pems.utils-package 3

1.2. Exporting data from pems objects and R: export.data.

2. Data Structure and General Handling

2.1. The pems object structure: pems.structure, getPEMSElement, pemsData, etc.

3. Generic pems handling

3.1. pems objects, pems.generics.

3.2. pems.element objects, pems.element.generics.

4. Structure Handling

4.1. Merging pems objects: merge.pems, align, etc.

4.2. Referencing pems objects: referencing.pems.data, refRow, etc.

4.3. Time handling functions: regularize, etc.

4.4. Unit handler functions: getUnits, setUnits, convertUnits, etc.

5. pems Data Handling

5.1. Plots for pems objects: pems.plots, latticePlot, pemsPlot, etc.

6. Calculations

6.1. Common calculations: common.calculations, calcDistance, calcAccel, etc.

6.2. Common check... functions for the routine handling of function arguments/user inputs.

6.3. Other correction code

6.4. Analysing data in pems objects: summary.reports

7. Refernce datasets, examples, look-up tables, etc.

7.1. Example datasets: pems.1.

7.2. look-up tables: ref.unit.conversions, etc.

8. Specialist code

8.1. VSP calculations: calcVSP, etc.

8.2. Emissions calculations: calcEm, etc.

9. Other Code

9.1. Tidyverse related code... pems.tidyverse

Author(s)

Karl Ropkins Maintainer: Karl Ropkins <k.ropkins@its.leeds.ac.uk>

References

Functions in pems.utils make extensive use of code developed by others. In particular, I gratefully
acknowledge the huge contributions of the R Core Team and numerous contributors in developing
and maintaining R:

R Development Core Team (2011). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-
project.org/.

4 1.1.make.import.data

See Also

pems, import2PEMS

1.1.make.import.data making and importing data

Description

Various pems.utils functions to make and import data as pems objects.

Usage

#making pems objects

is.pems(x, full.test = TRUE, ...)

pems(x, units = NULL, constants = NULL, history = NULL,
...)

pems.element(x, name = NULL, units = NULL,
...)

#associated

isPEMS(...)
makePEMS(...)
makePEMSElement(...)
rebuildPEMS(x, ...)

S3 method for class 'data.frame'
as.pems(x, ...)

#importing data as pems objects

#general

import2PEMS(file.name = file.choose(), ...,
file.reader = read.delim,
output="pems")

importTAB2PEMS(..., file.reader = read.delim)

importCSV2PEMS(..., file.reader = read.csv)

#Horiba OBS

1.1.make.import.data 5

importOBS2PEMS(file.name = file.choose(),
pems = "Horiba OBS",
constants = NULL, history = NULL,
analytes = c("co", "co2", "nox", "hc"),
fuel = c("petrol", "diesel", "gasoline"), ...)

importOB12PEMS(file.name = file.choose(),
pems = "Horiba OBS",
constants = NULL, history = NULL,
analytes = c("co", "co2", "nox", "hc"),
fuel = c("petrol", "diesel", "gasoline"), ...)

#3DATX parSYNC

importParSYNC2PEMS(file.name = file.choose(),
reset.signals = TRUE,
history = NULL, constants = NULL,
pm.analyzer = "parSYNC", ...)

#3DATX CAGE
importCAGE2PEMS(..., calibrator = "CAGE")

#Sensors Inc SEMTECH

importSEMTECH2PEMS(file.name = file.choose(),
history = NULL, constants = NULL,
pems = "SEMTECH", ...)

#RoyalTek GPS

importRoyalTek2PEMS(file.name = file.choose(),
file.type = c("special", "txt", "nmea"),
vbox = "RoyalTEk", history = NULL,
constants = NULL, ...)

#KML files

importKML2PEMS(file.name = file.choose(), history = NULL,
constants = NULL, source = "Unknown", ...)

Arguments

x (A required object) For is.pems, any object to be tested as a pems object. For
pems, an object to be used as the starting point to make a pems object, so typi-
cally a data.frame or another pems object. For pems.element, an object to be
used as the starting point to make a pems.element. For rebuildPEMS, a pems

6 1.1.make.import.data

object to be rebuilt.
full.test (Logical) For is.pems, should the full pems test be applied and the pems struc-

ture confirmed?
... (Optional) Other arguments, handling varies. For is.pems these are ignored.

For pems these are added to the pems object unmodified. For import... func-
tions, these are passed on and added to the constants component of the pems
object. Note: This different handling is experimental and may be subject to
change in future.

units, constants, history
(Default pems arguments) These are arguments that are routinely generated for
pems objects. units holds unit ids for unit management, constants holds con-
stants that should used specifically with data in the pems object, and history
holds the pems object modification history.

name (Default pems.element argument) name (and units) are arguments that are rou-
tinely generated for pems.element objects.

file.name (file connection, etc.) For import... functions, the file/source to be imported.
Note: the default, file.name = file.choose(), automatically opens a file browser
if this argument is not supplied.

file.type, file.reader
Data reader parameters for some import... functions. file.type is the type of
file to be imported. Note: Some import... functions can handle more than one
file type, and file.type = "[option]" should be used to identify these. (Note:
file.type options are typically file type identifiers, such as the file extensions,
and a default 'special', which leaves the choice to the function. This way this
option can typically be ignored unless, e.g. the function does not recognise the
file type but the user knows it and wants to force the method.) file.reader
identifies the R method/function that should be used to read data from the sup-
plied file. For example, for importTAB2PEMS and importCSV2PEMS, by default,
these are the standard R read... functions read.delim and read.csv, respec-
tively.

output Where included in formal arguments, an option to control function output.
pems, vbox, pm.analyzer, calibrator, source

(Character vectors) For some import... functions, data source descriptions
may be automatically added to the pems object. pems and vbox are two ex-
amples, but others, such as vehicle and fuel descritpions can also be added in
a similar fashion. Note: These are for user-reference, so can say whatever you
want.

analytes (Character vector) For import... functions, the names of any pems elements to
be tagged as analyte concentrations. Note: If the PEMS unit reports concentra-
tions rather than emissions it is often useful to identify these at import to avoid
confusion, and to simplify later handling. So, if encountered, analyte names are
prefixed with the term 'conc.'.

fuel Some import... functions that handle exhaust monitoring system data may
assume fuel types when calibrating inputs or calculating constants. In such cases
the fuel argument is also included to identify which fuel was used.

reset.signals (Logical or Character vector) For importParSYNC2PEMS, should any raw signal
be reset? The default (TRUE) reverses the sign of opacity and ionization signals.

1.1.make.import.data 7

Details

is.pems tests if an object is/is not a pems object.

pems makes a pems object using supplied data and information.

pems.element makes a pems.element object using supplied data and information.

as.pems... functions attempt to convert a supplied object into a pems object. Currently, there is
only a data.frame method and (by default) a pems method.

isPEMS, makePEMS and makePEMSElement are historical code, retained for backward compatibility.

rebuildPEMS rebuilds pems object as a different build version.

Crude import... functions import simple file structures, and are useful for getting data quickly into
R:pems.utils. importTAB2PEMS imports tab delimited files and clipboard content. importCSV2PEMS
imports comma delimited files. Both assume a simple file structure (i.e. data series in columns with
names as headers), but require some time data management by the user. Note: These are wrappers
for import2PEMS.

Other import... import specific file types.

importOBS2PEMS imports standard Horiba OBS files and converts them to pems objects. See Notes
below.

importOB12PEMS imports .OB1 files and converts them to pems objects. OB1 files are generated by
a Visual Basic PEMS data handler used during the RETEMM project. Notes below.

importParSYNC2PEMS imports standard parSYNC files and converts them to pems objects. See
Notes below.

importCAGE2PEMS imports standard CAGE files and converts them to pems objects. See importParSYNC2PEMS
Notes below.

importSEMTECH2PEMS imports Sensors Inc. SEMTECH ECOSTAR files and converts them to pems
objects. See Notes below.

importRoyalTek2PEMS imports .txt and .nmea format Royal Tek GPS files and converts them to
pems objects. See Notes below.

importKML2PEMS imports .kml format KML files and converts them to pems objects. See Notes
below.

Value

is.pems return a logical, TRUE if the supplied object is pems class, otherwise FALSE. If the ar-
gument full.test = TRUE is also supplied, additional information about the object is returned as
comment(output).

pems and pems.element functions return pems and pems.element objects, respectively, made using
the supplied file and any additional information also supplied in the same call.

rebuildPEMS rebuilts the supplied pems object. The default rebuilds as the lastest build structure.

import... functions return a pems object, made using the supplied file and any additional informa-
tion also supplied in the same call.

8 1.1.make.import.data

Note

isPEMS, makePEMS and makePEMSElement were earlier functions that performed the same functions
as is.pems, pems and pems.elements, respectively. The the current versions of these functions are
wrappers for their replacements.

With the crude import... functions (import2PEMS, importTAB2PEMS, importCSV2PEMS) modifi-
cations are minimal. Unless any additional changes are requested in the import...(...) call, the
data is simply read in as a data.frame and converted to a pems object.

With importOBS2PEMS, OBS data is also modified as follows: data series names are simplified
and converted to lower case to simplify use in R; the data series time.stamp and local.time
are added (generated using the file time stamp, the row counter and the log.rate constant); data
series latitude and longitude are resigned according to set N/S and E/W values, if these are
present/valid; latitude and longitude units are also reset to 'd.degLat' and 'd.degLon'. Any
data series names in analytes is renamed 'conc.[analyte name]'. If not supplied in the importOBS2PEMS,
typical OBS constants are currently assumed. Several of these are based on emission source fuel.
Defaults for these are generated according to fuel (default 'petrol').

With importOB12PEMS, handling is similar to that with importOBS2PEMS.

With importParSYNC2PEMS, the parSYNC data modifications are as follows: parSYNC Date and
Time data-series are merged and converted into *POSIX as time.stamp; local.time is calculated
from this; the parSYNC data series Timestamp is retained as parsync.timestamp; by default units
are removed from data-series names, but retained as units(pems); (again by default) all names
are converted to lower case. The default option reset.signal = TRUE reverses the voltage reading
of opacity and ionization time-series (x = - x), if present. Alternatively, imports can be identified
specifically by name, e.g. reset.signal = "opacity" to just reset opacity. Typical OBS constants
are currently assumed, if not supplied. Several of these are based on emission source fuel. The
default assumption is that the fuel is 'petrol' unless fuel has been assigned.

With importCAGE2PEMS, handling is similar to that with importParSYNC2PEMS.

With importSEMTECH2PEMS, SEMTECH data is imported and modified as follows: data series
names are simplified and converted to lower case to simplify use in R; the data series time.stamp
and local.time are added (generated using the file time stamp). Defaults constants are assigned
according to fuel (default 'petrol'). This function in in-development and has so far only been
used with files from two sources, so handle with care, and time.format has varied so may need
resetting for some files.

With importRoyalTek2PEMS, the Royal Tek data modifications are currently being documented.

With importKML2PEMS, the function attempts to import and time.stamp, latitude, longtiude and
altitude data in the suppled KML file. This function in in-development and has so far only been
used with KML files from one source, so handle with care.

Author(s)

Karl Ropkins

References

References in preparation.

1.2.export.data 9

See Also

See ref.unit.conversions and convertUnits for general unit handling; merge.pems for pems
data merging and alignment.

Examples

###########
##example 1
###########

#make little pems

data <- data.frame(speed=1:10, emissions=1:10)
units <- c("m/s", "g/s")
pems <- pems(x = data, units=units, example="my record")

pems #the pems object
summary(pems) #summary of held data
pems$speed #the speed pems.element

#import data file as pems using import... functions

#For example, to import CSV file as pems object
Not run:
pems <- importCSV2PEMS()

End(Not run)

1.2.export.data exporting PEMS data

Description

Some functions for exporting data from R and pems.utils.

Usage

exportPEMS(pems, file = "tempfile", file.writer = write.table,
sep = "\t", ...)

exportPEMS2TAB(pems, file = "tempfile", file.writer = write.table,
sep = "\t", ...)

exportPEMS2TAB(pems, file = "tempfile", file.writer = write.table,
sep = "\t", ...)

#exportPEMS2Excel
#currently disabled

10 1.2.export.data

Arguments

pems (A required object) The object to export from R, typically a data.frame or pems
object.

file (Character) The name of the file to create when exporting data. This can be
'clipboard', to export to the clipboard assuming the clipboard buffers are not
exceeded.

file.writer, sep
(Various arguments) file.writer is the R function used to create the export
file. sep is the separator argument passed to file.writer.

... (Optional) Other arguments, handling varies. For exportPEMS2... functions,
these typically passed to exportPEMS or from there to the assigned file.writer.

Details

By default, exportPEMS2TAB and exportPEMS2CSV export the data component of a supplied pems
object, to tab-delimited .txt and comma-delimited .csv files, respectively. file sets the file name
(default tempfile).

These are typically used in form:

exportPEMS2...(pems, file, ...)

By default, they make the following associated modifications:

If file extensions are not included in file, they add .txt and .csv extensions to tab-delimited and
comma-delimited files, respectively. The argument tidy.file=FALSE can be used to disable this
modification.

Time stamps, if identified, are exported in "DD/MM/YYYY HH:MM:SS.x" format. Handling can
be altered using time.stamp, time.format and tz arguments like import2PEMS or disabled using
tidy.time.stamp=FALSE.

Data-series units can also be added to exported file column names in form name(units) by adding
the argument units="add.to.names".

Value

exportPEMS2...() functions generate export file from pems data.

Warning

Currently, exportPEMS... functions overwrite without warnings.

Note

exportPEMS2Excel is curently disabled.

These are very crude functions in the most part because they are rarely used. Suggestions for helpful
improvements would be very welcome.

Author(s)

Karl Ropkins

2.1.pems.structure 11

References

References in preparation.

See Also

See import2PEMS, etc. for importing data into pems.utils.

Examples

###########
##example 1
###########

#making a comma-delimited copy of pems.1

Not run:
exportPEMS2CSV(pems.1, "pems.example")
dir()

End(Not run)

2.1.pems.structure ’pems’ object structure

Description

This pages provides a brief outview description of the ’pems’ object structure. It also lists some
associated functions

Usage

getPEMSElement(x, pems = NULL, units = NULL, ...,
fun.name="getPEMSElement",
if.missing = "stop", if.null = if.missing,
track.name = TRUE, .x = enquo(x))

getPEMSData(pems=NULL, ..., fun.name = "getPEMSData",
if.missing = "stop", .pems = enquo(pems))

getPEMSConstants(pems=NULL, ...,
fun.name = "getPEMSConstants",
if.missing = "stop", .pems = enquo(pems))

pemsData(pems=NULL, ...,
fun.name = "pemsData", if.missing = "stop",
pems.name = deparse(substitute(pems)))

12 2.1.pems.structure

pemsConstants(pems=NULL, ...,
fun.name = "pemsConstants", if.missing = "stop",
pems.name = deparse(substitute(pems)))

pemsHistory(pems=NULL, ...,
fun.name = "pemsHistory", if.missing = "stop",
pems.name = deparse(substitute(pems)))

cpe(...)

Arguments

x (Required vector, typically pems.element) For getPEMSElement, the required
data element.

pems (pems object) If supplied, the pems object to search for x before checking the
parent environments and R workspace.

units (Optional) The units that x should be supplied in (handled by convertUnits).

... (Optional) Other Arguments.
fun.name, if.missing, if.null, track.name, pems.name, .x, .pems

(Various) Other options using for pems.utils house-keeping. See check... for
definitions, although generally these can be ignored by users. See Note below.

Details

The pems object is a managed data.frame. It has five main components: data, units, constants,
history and tags. data is the main data.frame. Each element (named data.frame column)
is a data-series of the original PEMS data. units are the associated unit definitions. constants
is a list of associated constants that are to be used with the pems object. (The preference order is
arguments given in a call then constants declared in the pems object then constant defaults held
by the pems.utils package.) history is a log of pems object modifications. tags are any other
components that the user wishes to add to a pems object as identifiers.

getPEMSElement gets a requested pem.element from pems if supplied or from the local workspace.

pemsData and getPEMSData get the data component of a supplied pems object.

pemsConstants and getPEMSConstants get all constants locally defined for the supplied pems
object.

pemsHistory gets the history of supplied pems object.

cpe combines pems.elements. It is intended as an alternative to c(pems.element, ...) while
that generic is in-development.

Value

getPEMSElement returns the requested element of a supplied pems object as a managed vector or
pems.element, if available. If missing, error handling is by checkIfMissing. See check... for
more details.)

pemsData returns the data component of a supplied pems object as a data.frame.

2.1.pems.structure 13

getPEMSData returns the data component of a supplied pems object as a data.frame.

pemsConstants returns the constants component of a supplied pems object as a list.

getPEMSConstants returns the constants component of a supplied pems object as a list.

pemsHistory returns the history component of a supplied pems object as a list.

cpe turns the concatenated form of supplied input.

Note

pems... functions are in development pems object handlers. They are intended for convenient ’front
of house’ use. As part of this role, their structure will evolve over time, so arguments and operations
may change based on user feedback. Those wishing to develop future-proof third party functions
should also consider check... functions when developing their code. See common.calculations
for some Examples.

getPEMS... functions are a revision of earlier pems... pems object handlers. They are intended to
replace pems... code in future package versions.

rlang and dplyr functions now do the heavy lifting for getPEMSElement.

Author(s)

Karl Ropkins

References

rlang and dplyr package functions now do the heavy lifting for getPEMSElement.

Lionel Henry and Hadley Wickham (2018). rlang: Functions for Base Types and Core R and
’Tidyverse’ Features. R package version 0.2.0. https://CRAN.R-project.org/package=rlang

Hadley Wickham, Romain Francois, Lionel Henry and Kirill Muller (2017). dplyr: A Grammar of
Data Manipulation. R package version 0.7.4. https://CRAN.R-project.org/package=dplyr

See Also

See Also: check... for check... function equivalents; pems.generics for pems object generic
functions.

Examples

###########
##example 1
###########

#basic usage

#using example data pems.1
#(supplied as part of pems.utils package)

#pems structure
pems.1

14 3.1.generic.pems.handlers

extracting the pems.1 element velocity
getPEMSElement(velocity, pems.1)

Not run:
#generic (SE) equivalents
pems.1$velocity
pems.1["velocity"]

End(Not run)

3.1.generic.pems.handlers

Generic handling of pems objects

Description

pems objects can be manipulated using generic functions like print, plot and summary in a similar
fashion to objects of other R classes.

Usage

S3 method for class 'pems'
as.data.frame(x,...)

S3 method for class 'pems'
dim(x, ...)

S3 method for class 'pems'
x$name, ...

S3 replacement method for class 'pems'
x$name, ... <- value

S3 method for class 'pems'
x[i, j, ..., force = FALSE, simplify = TRUE]

S3 replacement method for class 'pems'
x[i, j, ..., force = FALSE] <- value

S3 method for class 'pems'
x[[k, ...]]

S3 replacement method for class 'pems'
x[[k, ...]] <- value

S3 method for class 'pems'
with(data, expr, ...)

3.1.generic.pems.handlers 15

S3 method for class 'pems'
subset(x, ...)

S3 method for class 'pems'
names(x, ...)

S3 replacement method for class 'pems'
names(x, ...) <- value

S3 method for class 'pems'
print(x,..., rows=NULL, cols=NULL, width=NULL)

S3 method for class 'pems'
plot(x, id = NULL, ignore = "time.stamp", n = 3, ...)

S3 method for class 'pems'
head(x, n = 6, ...)

S3 method for class 'pems'
tail(x, n = 6, ...)

S3 method for class 'pems'
summary(object, ...)

S3 method for class 'pems'
na.omit(object, ...)

S3 method for class 'pems'
units(x)

S3 replacement method for class 'pems'
units(x) <- value

Arguments

x, object, data (An Object of pems class). For direct use with print, plot, summary, etc.
NOTE: Object naming (i.e., x or object) is determined in parent or base func-
tion in R, so naming can vary by method.

name Element name, which operates in a similar fashion to data.frame names, e.g.
pems$name extracts the element name from the pems object pems.

i, j Row and column (elements) indices, which operate as a stricter version of data.frame
indices. See Note below.

k Structural indices. See Note below.

expr (Expression) For with(pems), an expression to be evaluated inside the supplied
pems object.

16 3.1.generic.pems.handlers

value (vector, data.frame or pems) An object to be inserted into a pems object in e.g.
the form pems[i,j] <- value or pems$name <- value.

... Addition options, typically passed to associated default method(s).

force (Logical or character) Data element handling options. force provides various
options to forces data to fit it destination. This can either be set as a logi-
cal (TRUE/FALSE force/don’t force) or one or more character strings to spec-
ify particular types of forcing to try when e.g. fitting value into pems[i,j]:
'omit.err.cases', equivalent to TRUE, remove any unknown/unfound i or
j terms; 'na.pad.insert' expand the value to fit larger pems[i,j], plac-
ing NAs in any holes generated; 'na.pad.target' like previous but expanding
pems[i,j] to fit larger value; 'fill.insert' like 'na.pad.inert' but holes
are filled by wrapping the supplied value within elements and then by element.

simplify (Logical) simplify returns a pems.element rather than a pems object if possi-
ble.

id, ignore (local plot parameters). id identifies which data series to plot; ignore identifies
which data series to ignore when leaving the choice of id to the function; and, n
gives the maximum number of data series to plot when leaving the choice of id
to the function.

rows, cols, width
(numerics, optional). For print, if supplied, these reset the number of rows
and columns to table when printing a pems object, and character width to print
across.

n (various). For plot, sets the maximum number of data series to plot when leav-
ing the choice of id to the function. For head or tail, sets the number of rows.

Value

Generic functions provide appropriate (conventional) handling of objects of 'pems' class:

as.data.frame(pems) extracts the data.frame component of a pems object.

dim(pems) extracts the dimensions, row count and column count, respectively, of the data.frame
component of a pems object. The function also allows nrow(pems) and ncol(pems).

pems$name extracts the named element from a pems objects in a similar fashion to data.frame$name.
Likewise, pems$name <- value inserts value into a pems objects in a similar fashion to data.frame$name
<- value.

pems.object[i, j] extracts the [i,j] elements of the data held in a pems object. This is returned
as either a pems or pems.element object depending on the dimension of the extracted data and the
simplify setting.

pems.object[i, j]<- insert value into the [i,j] region of the supplied pems object. By default
this action is strict and mismatching pems[i, j] and value dimension produce an error, although
mismatching insertions may be forced using the force argument.

pems.object[[k]] extracts structural elements of a pems object: data, the data.frame; units
the unit table, etc.

with(pems.object, expression) evaluates the supplied expression using the elements of the
supplied pems.object.

subset(pems.object, expression) behaves like subset(data.frame, expression).

3.1.generic.pems.handlers 17

print(pems.object) provides a (to console) description of a pems object. This forshortens large
datasets in a similar fashion to a tibble.

plot(pems.object) generates a standard R plot using selected data series in a pems object.

names(pems.object) returns a vector of the names of data series held in a pems object when used
in the form names(pems) or resets names when used in the form names(pems) <- new.names.

na.omit(pems.object) returns the supplied pems object with all rows including NAs removed.

summary(pems.object) generates a summary report for data series held in a pems object.

units(pems.object) extracts the units from a supplied pems object when used in the form units(pems)
or sets/resets units when used in the form units(pems) <- new.units.

Note

The pems object is intended to be a stricter version of a standard R data.frame. Unless the user
specifically forces the operation, a pems[] or pems[]<- call is not allowed unless it fits exactly. So,
for example by default the call pems[,1]<-10 will not place 10 in every row of column one in the
same fashion as data.frame[,1]<-10.

The logic behind this is that columns (elements) of pems objects are time-series. So, users would
want to place these exactly and avoid any unintended wrapping. The force argument should be
used in cases where data padding or wrapping operations are required.

pems$name and pems$name<- are not are rigorously managed, so behave more like data.frame$name
and data.frame$name<- calls, although even these do wrap by default.

pems[[]] provides access to structural components of the pems object, e.g. pems[["data"]] ex-
tracts the data.frame component of the pems object, pems[["units"]] extracts the units com-
ponent, etc. See also pems.structure.

Author(s)

Karl Ropkins

References

generics in general:

H. Wickham. Advanced R. CRC Press, 2014.

(Not yet fully implemented within this package.)

Examples

##example 1
##basics pems handling

#extract a subset pems object from pems.1
a <- pems.1[1:4, 1:5]
a

#indices work like data.frame
#a[x] and a[,x] recovers element/column number x
#a[x,] recovers row number x

18 3.2.generic.pems.element.handlers

#a["name"] and a[,"name"] recovers element/column named "name"
#a[4:5, "name"] recovers rows 4 to 5 of element/column named "name"
#a[x,y] <- z inserts z into a at row x, element y
#etc

#insert 10 in at element 3, row 2
a[2,3] <- 10
a

#replace element conc.co2 with conc.co
a["conc.co2"] <- a$conc.co
a

#Note: by default pems objects subsetting and inserting is
#more rigorous than data.frame subsetting/insertion
#for example, a[1:2, "conc.hc"] <- 8 would generate error
#because the target, a[1:2], and insert, 8, dimensions do not
#match exactly: target 2 x 1; insert 1 x 1

#By default no wrapping is applied.

#the force argument allows the user to control how mismatching
#targets and insertions are handled

#na pad target for larger insert
a[1:2, "conc.hc", force="na.pad.target"] <- 1:5
a

#Note here when the target is padded existing enteries are NOT
#overwritten if they are not declared in a[], and the next
#previously unassigned cells are used for any extra cases in
#the insert.

#wrap insert to fill hole made by a[i,j]
a[1:2, "conc.hc", force="fill.insert"] <- 8
a

#pems$name <- value is equivalent to
#pems[name, force=c("na.pad.target", "na.pad.insert")]
a$new <- 1:4
a

3.2.generic.pems.element.handlers

Generic handling of pems.element objects

Description

pems elements objects can be manipulated using generic functions like print, plot and summary in
a similar fashion to objects of other R classes.

3.2.generic.pems.element.handlers 19

Usage

S3 method for class 'pems.element'
x[i, ..., force = TRUE, wrap = FALSE]

S3 replacement method for class 'pems.element'
x[i, ..., force = TRUE, wrap = FALSE] <- value

S3 method for class 'pems.element'
as.pems(x, ...)

S3 method for class 'pems.element'
print(x, ..., n = NULL, rows = NULL, width = NULL)

S3 method for class 'pems.element'
plot(x, y = NULL, xlab = NULL, ylab = NULL, ...)

S3 method for class 'pems.element'
units(x)

S3 replacement method for class 'pems.element'
units(x) <- value

S3 method for class 'pems.element'
summary(object, ...)

S3 method for class 'pems.element'
round(x, ...)

Arguments

x, object (An Object of pems.element class). For direct use with print, plot, summary,
etc. NOTE: Object naming (i.e., x or object) is determined in parent or base
function in R, so naming varies by method.

i Element indices, which operate in a similar fashion to vector indices.

... Addition options, typically passed to associated default method(s).

force, wrap (Logicals) Data element handling options: force forces data to fit it destination;
wrap expands data to fit its destination by wrapping the source pems.element.

value (Vector) For calls in pems.element[1] <- value or units(pems.element) <-
value, the value to be inserted.

n, rows, width (Numerics) For print(pems), number of elements, rows or screen width to
foreshorten print output to.

y, xlab, ylab (other plot arguments). As with the default plot method, y is an optional second
data verctor, typically numeric, and xlab and ylab are labels to use on x and y
axes.

20 4.1.merge.data.pems

Value

Generic functions provide appropriate (conventional) handling of objects of 'pems.elements'
class:

print(pems.element) provides a (to console) description of the supplied pems.element object.

plot(pems.element) generates a standard R plot of the supplied pems.element.

units(pems.element) extracts the units from the supplied pems.element.

Note

A dedicated round(pems.element) is required as a wrapper to round.Date and round.POSIXt
handling.

Author(s)

Karl Ropkins

Examples

#the velocity pems.element in pems.1
pems.1$velocity

4.1.merge.data.pems Merging data and pems objects

Description

Various pems.utils functions to merge data of different types.

Usage

#basic alignment
align(data1, data2, n = 0, ...)

#alignment based on correlation
cAlign(form, data1 = NULL, data2 = NULL, ...)

#alignment based on time.stamp
tAlign(form, data1, data2 = NULL, order=TRUE, ...)

#basic stacking
stackPEMS(..., key=key, ordered=TRUE)

#historical
findLinearOffset(x = NULL, y = NULL, ...)

4.1.merge.data.pems 21

Arguments

data1, data2 (pems or data.frame; optional for cAlign, required for other alignment func-
tions) pems objects or data.frames to be aligned.

n (numeric; required) An offset to be applied to data2 when aligning data1 and
data2. The default, n = 0, applies no offset and directly aligns the two supplied
data sets, first row to first row.

... (Any other arguments) For stackPEMS this is typically a series of pems objects to
be stacked. For other functions, this may be passed on but are typically ignored.
See Notes.

form (formula; required) A formula identifying the elements in the supplied data
sets to be used as references for the alignment. This typically takes the form,
e.g. cAlign(x~y, d1, d2) where d1$x and d2$y are the data series to be used
to correlation align the two data sets.

order (logical; optional) If TRUE the function orders the data.

key (character or NSE) For stackPEMS the name to key column that identifies the
data sources of elements in a stack of pems objects.

ordered (logical; default TRUE) For stackPEMS, when creating the source key should
the order pems objects were supplied be retained.

x, y (Required objects, various classes) For bindPEMS, two pems, data.frame, pems.elements
or vectors to be bound together. For findLinearOffset, two pems.elements
or vectors to be aligned.

Details

The align function accepts two pems objects, data.frame, etc, and returns a single dataset (as a
pems object) of the aligned data. An extra argument, n, may be supplied to offset the starting row
of the second data set relative to the first. It is intended to be used in the form:

aligned.data <- align(data1, data2) #aligned row 1-to-1

aligned.data <- align(data1, data2, 3) #row 3-to-1, etc

The cAlign function accepts a formula and up to two data sets and returns a single data set (as
a pems object) of correlation aligned data. This uses the best fit linear offset correlation for the
elements identifed in the formula term.

It is intended to be used in the form:

aligned.data <- cAlign(name1~name2, data1, data2)

The tAlign function accepts a formula and two data sets and returns a single data set (as a pems
object) of the time stamp aligned data. This is this done by matching entries in the elements identifed
in the formula term.

It is intended to be used in the form:

aligned.data <- tAlign(name1~name2, data1, data2)

The stackPEMS function stacks two or more pems objects and returns a single pems object. stackPEMS
stacks using dplyr function bind_rows so handles pems with column names that do not completely
intersect. However it also attempts to units match. It is intended to be used in the form:

stacked.data <- stackPEMS(data1, data2)

22 4.1.merge.data.pems

Historical functions:

findLinearOffset is historical code.

Value

align, cAlign, tAlign, etc all return a single object of pem class containing the aligned data from
data1 and data2.

findLinearOffset returns the best fit offset for y relative to x.

Note

These functions are under revision and need to be handled with care.

cAlign: By default cAlign generates an alignment plot and returns a pems object of aligned data.
But it also allows several hidden arguments to refine outputs, the logicals plot, offset and pems,
which turn off/on plot, offset and pems reporting individually, and output = c("plot", "offset",
"pems") or combinations thereof also provides a single argument alternative.

bindPEMS: The historical function bindPEMS has been superceded by align.

findLinearOffset: findLinearOffset is currently retained but will most likely be removed from
future versions of pems.utils.

The call cAlign(x~y, output = "offset") is equivalent to findLinearOffset(x, y).

Author(s)

Karl Ropkins

References

align uses the dplyr function full_join.

cAlign function uses the stats function ccf.

tAlign uses the dplyr function full_join.

See Also

See also: cbind for standard column binding in R; dplyr for full_join.

Examples

###########
##example 1
###########

##data vector alignment

#make two offset ranges
temp <- rnorm(500)
x <- temp[25:300]
y <- temp[10:200]

4.1.merge.data.pems 23

#plot pre-alignment data
plot(x, type="l"); lines(y, col="blue", lty=2)

#estimated offset
findLinearOffset(x,y)
#[1] -15

#applying linear offset
ans <- align(x, y, findLinearOffset(x,y))
names(ans) <- c("x", "y")

#plot post-alignment data
plot(ans$x, type="l"); lines(ans$y, col="blue", lty=2)

#shortcut using cAlign
Not run:
plot(x, type="l"); lines(y, col="blue", lty=2)
ans <- cAlign(x~y)
plot(ans$x, type="l"); lines(ans$y, col="blue", lty=2)

End(Not run)

###########
##example 2
###########

##aligning data sets
##(pems object example)

#make some offset data
p1 <- pems.1[101:200, 1:5]
p2 <- pems.1[103:350, 1:3]

#correlation alignment using ccf
ans <- cAlign(~conc.co, p1, p2)

#this aligns by comparing p1$conc.co and p2$conc.co
#and aligning at point of best linear regression fit

Not run:

#compare:

cAlign(~conc.co, p2, p1)
cAlign(conc.co2~conc.co, p1, p2)
#(aligns using p1$conc.co2 and p2$conc.co)
cAlign(conc.co2~conc.co, p1)
#(realigns just conc.co within p1 based on best fit
with conc.co2 and returns as output ans)

#time stamp alignment
tAlign(~time.stamp, p1, p2)

24 4.2.referencing.pems.data

#this aligns by pairing elements in p1$time.stamp
#and p2$time.stamp
#(if time stamps have different names
tAlign(time1~time2, p1, p2), the time stamp name
from p1 would be retained when merging p1$time1
and p2$time2, generating [output]$time1)

End(Not run)

###########
##example 3
###########

##stacking pems

#make some offset data
p1 <- pems.1[1:2, 1:4]
p2 <- pems.1[3, 2:4]
p3 <- pems.1[4:6, 1:3]

#stack
stackPEMS(p1, p2, p3, key=source)

4.2.referencing.pems.data

Data Referencing Functions.

Description

Various functions for grouping, subsetting, filtering and conditioning datasets.

Usage

refRow(ref = NULL, n = 4, breaks = NULL,
data = NULL, ..., labels = NULL,
fun.name = "refRow")

refX(ref = NULL, n = 4, breaks = NULL,
method = "percentile",
data = NULL, ..., labels = NULL,
fun.name = "refX")

refEngineOn(rpm = NULL, data = NULL,
threshold = 200, ..., labels = NULL,
fun.name = "refEngineOn")

4.2.referencing.pems.data 25

refDrivingMode(speed = NULL, accel = NULL,
time = NULL, data = NULL,
threshold.speed = 0.1,
threshold.accel = 0.1,
..., labels = NULL,
fun.name = "refDrivingMode")

Arguments

ref (Data series, typically vector) The reference data-series to consider when mak-
ing a vector of subset markers/indices. See Details.

n, breaks (numerics) With refRow and refX, n sets the number of equal intervals to at-
tempt to cut the data into. With refRow, breaks sets the rows at which to cut
the data at. With refX, breaks sets the values of ref to cut the data at. In both
cases, if both n and breaks are set, breaks is applied.

data (Optional data.frame or pems object) The data source if ref is supplied in
either a data.frame or pems object.

... (Optional) Other arguments, currently passed on to pems.utils management
functions.

labels (Vector, typically Character) a vector of labels to be assigned to the reference
regions.

fun.name (function managment argument) fun.name is the name of the parent function,
to be used in error messaging.

method (Various) For refX, the method to use when cutting data. If character vector,
'percentile' or 'range'. If function, it should be in form function(ref,
n), and return breaks.

rpm For refEngineOn, the input, assumed to be engine speed and expected to have
units of rpm.

threshold For refEngineOn, the signal threshold above which the vehicle engine is as-
sumed to be on.

speed, accel, time
For refDrivingMode, possible inputs. Strictly, refDrivingMode needs speed
and accel but can use speed and time to build accel.

threshold.speed, threshold.accel
For refDrivingMode, the speed and acceleration signal thresholds. Below these
thresholds the signals are assumed to be noise and the vehicle is not moving or
accelerating, respectively.

Details

ref... functions generate a vector of subset markers or indices based of the referencing method
applied and the length of ref. See Value regarding outputs.

refRow assigns reference regions based on row number. Because row depends on the length of
the ref element independent of values, this is a unique case where ref can be either a vector or

26 4.2.referencing.pems.data

a data set (pems, data.frame). It accepts n to set the number of cases to make or breaks to set
break-points at specific rows.

refX assigns reference regions based on the value of a supplied data-series.It accepts n to set the
number of cases to make or breaks to set the ref values to make break-points. If using n, method
used to assign cut method, e.g. 'percentile' or 'range'.

refEngineOn assigns reference regions based on engine operation status. It uses the input, which
it assumes is engine speed, and assumes reported engine speeds larger than the supplied threshold,
by default 200 rpm, indicate that the engine is on.

refDrivingMode assigns reference regions based on vehicle driving mode. It uses inputs, assumed
to be speed, accel and/or accel, and associated threshold to characterize activity as decel, idle,
cruise or accel.

Value

By default results are returned as pems.elements.

The reference vector generated by ref... functions can then be used to group, subset, filter or
condition data in pems objects.

refRow assigns reference according to row number, and, by default, reference labels show start
row and end row of the referenced case.

refX assigns reference according to value of supplied input, and, by default, reference labels show
lower value and higher value of the referenced case.

refEngineOn assigns reference according to engine operation status based on engine speed, and,
by default, reference labels are 'on' or 'off'.

refDrivingMode assigns reference according to vehicle driving mode, based on vehicle speed,
acceleration and associated thresholds, and, by default, reference labels are decel, idle, cruise
and accel.

Note

With refRow, If n is applied and the length of ref is not exactly divisible by n a best attempt is
made.

With refX, if breaks are at values that are duplicated, all same values are assigned to the same
(lower) value case, so e.g. 'percentile' may vary significantly if break-point values are highly
duplicated in ref

Author(s)

Karl Ropkins

References

References in preparation.

See Also

cut, etc. in the main R package.

4.3.time.handlers 27

Examples

###########
##example 1
###########

#basic usage

#working with a temporary pems

temp <- pems.1

#cut into equal subsets

temp$ref <- refRow(velocity, n= 5, data=temp)
pemsPlot(local.time, velocity, cond=ref, data=temp,

type="l", layout=c(1,5))

#cut at three points

temp <- pems.1
temp$ref <- refRow(velocity, breaks=c(180,410,700),

data=temp)

pemsPlot(local.time, velocity, cond=ref, data=temp,
type="l", layout=c(1,5))

4.3.time.handlers pems Data Time Handlers

Description

Time handlers are subset of pems.utils functions that work on or with time records (time.stamp
and local.time).

Usage

regularize(data, Hz=1, method=1, ...)

repairLocalTime(data, local.time, ref, ..., reset.count = TRUE,
fun.name = "repairLocalTime")

Arguments

data (Required, typically pems) The dataset to be worked with. For regularize, the
dataset to regularize (see below).

28 4.3.time.handlers

Hz (For regularize) (Required numeric) The time resolution to regularize the data
to in Hertz. So, the default, Hz=1 is one measurement (or row of data) per
second.

method (For regularize) (Required numeric) The regularization method to apply. The
default, method=1 uses approx to linearly interpolate regular time-series for all
supplied time-series. The alternative method=2 uses a bin-and-average strategy.

... (Optional) Other arguments, typically passed on.

local.time (For repairLocalTime) (Required pems.element) The local.time pems.element
to work been repaired.

ref, reset.count
(For repairLocalTime) (Other arguments) ref is a second source that local.time
can be inferred from in cases where local.time records are missing. If TRUE,
reset.count resets local.time so it starts at 0.

fun.name (character) (pems handler) argument used by pems.utils. These can typically
be ignored.

Details

regularize attempts to extrapolate a regular series, generated at the time resolution requested,
from the supplied data. Both methods can be used for the regularization of irregularly time-logged
data, but differ in their data handling. Method 1 estimates measurements at regular intervals by
linearly interpolating between the last valid point and the next valid point in supplied time-series. It
therefore hole-fills gaps in time-series and is perhaps best suited for use with sparser data-sets. It can
also be used to interolate time-series to higher time-resolutions, but should not be used aggressively,
e.g. to convert 1Hz data data to 10Hz. By contrast, method 2 uses data binning to aggregate all
supplied measurements (e.g. all measurements between -0.5 and +0.5 seconds of requested times
when returning 1 Hz data) and (mean) average these. It is better suited for use with higher resolution
time-series (e.g. gong from about 10Hz to 1Hz) and does not hole-fill empty time intervals. If you
want mean binning and hole-filling, apply method 2 then method 1, e.g.:

new.data <- regularize(regularize(my.data, method=2), method=1)

repairLocalTime attempts to repair an incomplete local.time record. For example, if you merge
two datasets with overlapping but different time ranges, one may not track the time range of the
other and this can generate incomplete time records. This function attempts to hole-fill such cases.

Value

regularize returns the supplied dataset (data) with time-series (time.stamp and local.time)
are regularized at the requestion time resolution, based on Hz value. It uses approx or data binning
to estimate associated changes for other data-series.

repairLocalTime returns a repaired local.time pem.element, typically the supplied local.time
with any holes (NAs) it can fill filled.

Note

All time handlers should be used with care.

4.4.unit.handlers 29

Author(s)

Karl Ropkins

References

regularize(..., method=1) uses approx:

Base R Stats package function based on Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
The New S Language. Wadsworth & Brooks/Cole.

A lot of leg-work testing regularize was done by then Leeds MSc Student Adrian Felipe Ortega
Calle.

See Also

approx regarding data regularization methods.

4.4.unit.handlers data unit handlers

Description

Various pems.utils functions for the management of data units.

Usage

getUnits(input = NULL, data = NULL, ...,
if.missing = c("stop", "warning", "return"))

setUnits(input = NULL, units = NULL, data = NULL, ...,
if.missing = c("stop", "warning", "return"),
output = c("input", "data.frame", "pems", "special"),
force = FALSE, overwrite = FALSE)

convertUnits(input = NULL, to = NULL, from = NULL, data = NULL, ...,
if.missing = c("stop", "warning", "return"),
output = c("input", "data.frame", "pems", "special"),
unit.conversions = NULL, force = FALSE, overwrite = FALSE)

#local unit.conversion method handling

addUnitConversion(to = NULL, from = NULL, conversion = NULL,
tag = "undocumented",
unit.conversions = ref.unit.conversions, ...,
overwrite = FALSE)

addUnitAlias(ref = NULL, alias = NULL,
unit.conversions = ref.unit.conversions, ...)

30 4.4.unit.handlers

listUnitConversions(unit.conversions = ref.unit.conversions, ...,
verbose = FALSE, to = NULL, from = NULL)

Arguments

input (vector, object or object element) An input, e.g. a vector of speed measurements.

data (data.frame, pems object) If supplied, the assumed source for an input. This can
currently be a standard data.frame or a 'pems' object. Note: if an input is
not found in data, the parent environment is then also checked before returning
an error message.

units, to, from, ref, alias, tag
(Character vectors). Unit ids. units sets the units of input in setUnits. to
sets the units to convert input to when using convertUnits. The additional
arguments from can be used to apply unit conversions to inputs with un-defined
or mismatched units, but requires the extra argument force = TRUE to confirm
action. When working with local unit conversions to and from should be used
to identify specific conversions, e.g. when using addUnitConversion to add
a new unit conversion method, and ref and alias should be used to identify
a current unit id and new alias, respectively, when using addUnitAlias. tag
is an optional more detailed conversion description, intended for use in method
documentation. (See Below for further details.)

... (Optional) Other arguments, currently ignored.

if.missing (Optional character vector) What the function should do if things do not go as
expected. Current options include: "stop" to stop the function with an error
message; "warning" to warn users that expected information was missing but
to continue running the parent code; or "return" to continue running the parent
code without any warnings.

output (Character vector) Output mode for function results. Options currently include:
special, input, data.frame, and pems. See force, overwrite and Values
below for further details.

force (Logical) Should a unit change to attempted even if checking indicates a mis-
match, e.g. an attempt to set the units of an input that already has units assigned.

overwrite (Logical) If ’same name’ cases are encountered when packing/repacking an
output into a data.frame or pems object, should the function overwrite the case
in the target data.frame or pems object with the modified input? (If FALSE, a
new element is generated with a unique name in the form [input.name].number.)

unit.conversions

(Optional list) If supplied, unit.conversions is a ’look up’ table for unit con-
version methods. By default, functions in pems.utils use the reference ref.unit.conversions,
but this can be copied to the workspace and updated to provide the user with a
means of updating and expanding the method set.

conversion (Numeric or function) When adding or updating a conversion method using
addUnitConversion, the conversion method. This can be a numeric, in which
case it is assumed to be a multiplication factor (and converted to a function in

4.4.unit.handlers 31

the form function(x) x * conversion) or a function to be applied directly to
an input.

verbose (Logical) For listUnitConversions. Should unit.conversions be reported
in detail? By default (verbose = FALSE) only unit conversion tags are reported.

Details

getUnits returns the units of an input.
setUnits sets/resets the units of an input.
convertUnits converts the units of an input.
addUnitConversion adds a conversion method to a local version of the unit conversion look-up
table. Methods should be supplied as to and from unit ids and an associated conversion. A tag can
also be supplied to provide a more detailed description of the conversion for use in documentation.
addUnitAlias adds an alias for an existing unit id in a local version of the unit conversion look-up
table. The existing unit id should be identified using ref and the new alias should be assinged using
alias. The alias is added to all to and from elements containing ref to allow users to work with
alternative unit abbreviations.
listUnitConversions lists the methods a supplied unit conversion look-up table. If to and/or
from arguments are also supplied, these are used to subsample relevant methods.

Value

getUnits returns the units of an input as a character vector if available, else it returns NULL.
setUnits sets the units of an input to a supplied value, units, if they have not already be set
or if force = TRUE. The result is returned as the modified input alone, the modified input as an
element in a data.frame, or the modifed input as an element in a pems object (depending on
output setting). If either a data.frame or pems object is supplied as data, this is used as the
target when repacking the output. (Note: output = "special" is a special case which allows the
function to select the output mode based on the type of data supplied.
convertUnits converts the units of an input. Typically, this is done by setting the required new
units, using to, and letting the function select a suitable conversion method. However, conversions
can be forced by setting from and force = TRUE to apply a specifc to/from method to an input
regardless of the actual units of input. As with setUnits, results can be output as input,
data.frame or pems objects.
addUnitConversion returns a supplied unit conversion look-up table (or in its absence the reference
ref.unit.conversions) subject to the requested addition or update. Note: modifications that
change exist information require the extra argument overwrite = TRUE as confirmation.
addUnitAlias returns a supplied unit conversion look-up table (or in its absence the reference
ref.unit.conversions) subject to the requested alias addition.
listUnitConversions returns summary descriptions of methods in the supplied unit conversion
look-up table (or in its absence the reference ref.unit.conversions). Additional arguments, to
and from, can be used to select unit conversions of particular relevance.

Note

This set of functions is intended to provide a flexible framework for the routine handling of data
units.

32 4.4.unit.handlers

Author(s)

Karl Ropkins

References

References in preparation

See Also

pems.element

Examples

###########
##example 1
###########

#work with data units

#getting units (where assigned)
getUnits(velocity, pems.1) #km/h

#setting units
a <- 1:10
a <- setUnits(a, "km/h") #add unit

#alternaltive
#using pems.element
#a <- pems.element(a, units="km/h", name = "a")

#changing units
convertUnits(a, "mi/h")

[1] 0.6213712 1.2427424 1.8641136 2.4854848 3.1068560 3.7282272 4.3495983
[8] 4.9709695 5.5923407 6.2137119
pems.element; [unnamed] [mi/h] [n = 10]

###########
##example 2
###########

#working with local unit conversions
#adding/updating unit conversion methods

#make a local reference
ref.list <- ref.unit.conversions

#add a miles/hour alias to mi/h
ref.list <- addUnitAlias("mi/h", "miles/hour", ref.list)

#add a new conversion
ref.list <- addUnitConversion(to = "silly", from = "km/h",

5.1.pems.plots 33

conversion = function(x) 12 + (21 * x),
tag = "kilometers/hour to some silly scale",
unit.conversions = ref.list)

#use these
convertUnits(a, "miles/hour", unit.conversions = ref.list)

[1] 0.6213712 1.2427424 1.8641136 2.4854848 3.1068560 3.7282272 4.3495983
[8] 4.9709695 5.5923407 6.2137119
units: "miles/hour" (as above but using your unit abbreviations)

convertUnits(a, "silly", unit.conversions = ref.list)

[1] 33 54 75 96 117 138 159 180 201 222
units: "silly" (well, you get what you ask for)

5.1.pems.plots Various plots for pems.utils

Description

Various plot functions and visualization tools for use with pems objects.

Usage

#pemsPlot

pemsPlot(x, y = NULL, z = NULL, groups = NULL,
cond = NULL, ..., data = NULL,
units = TRUE, multi.y = "special",
fun.name="pemsPlot")

#associated functions

pemsXYZCondUnitsHandler(x, y = NULL, z = NULL,
cond = NULL, groups = NULL, data = NULL,
units = TRUE, ...,
fun.name = "pemsXYZCondHandler")

preprocess.pemsPlot(lattice.like = lattice.like,
units = units, ...)

panel.pemsPlot(..., loa.settings = FALSE)

panel.routePath(..., loa.settings = FALSE)

#WatsonPlot

34 5.1.pems.plots

WatsonPlot(speed, accel = NULL, z = NULL, ...,
data = NULL, cond = NULL, units = TRUE,
plot.type = 2, fun.name="WatsonPlot")

#associated functions

preprocess.WatsonPlot(lattice.like = lattice.like, ...)

panel.WatsonBinPlot(..., ref.line = TRUE,
process.panel = NULL, plot.panel = NULL,
omit.stopped = FALSE, process = TRUE,
plot = TRUE, loa.settings = FALSE)

panel.WatsonContourPlot(...,
plot.panel=NULL, process = TRUE,
plot = TRUE, loa.settings = FALSE)

panel.WatsonSmoothContourPlot(...,
plot.panel=NULL, process = TRUE,
plot = TRUE, loa.settings = FALSE)

#old plots

latticePlot(x = NULL, data = NULL, plot = lattice::xyplot,
panel = NULL, ..., greyscale = FALSE,
fun.name = "latticePlot")

panel.PEMSXYPlot(..., grid=NULL)

XYZPlot(x = NULL, ..., data = NULL, statistic = NULL,
x.res = 10, y.res = 20, plot = lattice::levelplot,
fun.name = "XYZPlot")

Arguments

x, y, z, groups, cond
(Various) The main plot elements. x and y are typically plot coordinates. z is
any additional information that could be used , e.g. to modify points plotted at
(x,y) coordinates or generate a third axis for a surface plot. groups and cond
are plot grouping and conditioning terms that can be used to subset the supplied
data and/or generate multiple plot panels. See Below.
For new plots, these should be supplied individually, e.g. for pemsPlot:
pemsPlot(x, y, z, groups, cond)

For old plots, these must be formulae.
For latticePlot the basic formula structure is y ~ x | cond.
For XYZPlot the basic formula structure is z ~ y * x | cond. z is optional, but

5.1.pems.plots 35

when it is not supplied z it is treated as the bin count.
See Notes and Examples.

data (Optional data.frame or pems object) For most plots, the data source for plot
elements, e.g x, y, z, etc, if these are not supplied directly or accessible from the
current workspace.

units (Optional logical or list) for pemsPlot only, unit handling information. By
default, pems.utils adds any known units to plot labels and allows in-plot
unit management. Unit management is handled by convertUnits, and re-
quested conversions need to assigned to an axis. So, for example, the call
pemsPlot(..., x.to="m/s") would generate a plot with the x-axis in units of
m/s (assuming pems.utils knows the unit conversion and the x-axis data series
is in units that can be converted). All unit management and associated figure
labelling can disabled using units = FALSE, or unit suffixes can be removed but
unit management retained using units.add.to.labels = FALSE.

multi.y (character) pems.plots accepted multiple y data-series if passed using cpe, e.g.
y = cpe(a,b). multi.y sets how these are handled, options include 'groups',
'cond' and 'special' (the default), which selects groups if not used in plot
call else cond.

... (Optional) Other arguments, typically passed on. This includes, scheme which
sets the default coloring scheme for the plot. See Note below.

fun.name (Function management argument) pems.utils management settings, can typi-
cally be ignored by most users.

panel, plot.panel, process.panel
(Functions) These functions are used to generate the content of individual plot
panels. Typically, all in-panel data processing and plotting is carried out using
panel. However, these steps can be handled by separate functions if these are
supplied as plot.panel and process.panel.

lattice.like, plot, process, loa.settings
(Various) Plot management elements. These can typically be ignored by most
users, but allow plot developers to fine-tune plots. See Details below.

speed, accel (Various) For WatsonPlot, the x and y terms, speed and acceleration, respec-
tively.

ref.line (Logical or list) For WatsonPlot. This argument manages the speed = 0 refer-
ence added to WatsonPlots. It can be either a logical (TRUE/FALSE), to turn the
line on or off, or a list of parameters to set the properties of the line.

omit.stopped (Logical or character) For WatsonPlot, how to handle idling data: FALSE in-
clude in plot; TRUE or 'points' removes idle points before plotting; 'cell' or
'cells' removes any cells that include idling points before the data is binned.

plot.type (numeric) For WatsonPlot, pre-set plot types: 1 scatter plot; 2 bin plot; 3 con-
tour plot of binned data; 4 smoothed surface of binned data. See also statistic

greyscale (Logical) For older plots only, should the plot be greyscale by default? This
option resets the lattice color themes to greyscale while the plot is beging
generated. So: (1) This only effects the plot itself, not subsequent plots; and,
(2) any user resets overwrite this, e.g. latticePlot(..., greyscale=TRUE,
col="red") will place red symbols on an overwise greyscale plot. Newer plots
use the alternative plot(..., scheme = "greyscale").

36 5.1.pems.plots

grid (List) If supplied, a list of plot parameters to be used to control the appearance
of the grid component of the plot. See Below.

statistic (Function) when binning data with XYZPlot and WatsonPlot, the function to
use when evaluating the elements of each data bin. By default, length is used
if z is not supplied to generate a frequency plot and mean is used if z is supplied
to generate a bin average plot.

x.res, y.res (Numerics) when binning data with XYZPlot, the number of x- and y-axis bins
to generate.

Details

pems.utils includes conventional (generic) plot methods for pems and pems.element objects.
See plot.pems and plot.pems.element for further details.

However, it also includes a range of higher-level plotting functions developed for use with pems
data.

Early plots, e.g. latticePlot, only allowed plot arguments using the lattice formula format.
While this is flexible and very powerful system, some users preferred the more conventional plot(x,y,..)
call format. So, newer plots, e.g. pemsPlot, allow both conventional plot and lattice-style for-
mula calls.

pemsXYZCondUnitsHandler handles the pems information associated with the plots. This routine
is included as a discrete function within this package and others are welcome to use elsewhere for
similar purposes. edit(pemsPlot) to see it.

Newer plots use a combination of lattice and loa functions to provide a range of additional
plotting options, such as integrated panel and key management. See loa documentation for further
details.

preprocess... and panel... functions handle pre-plot and in-plot elements of plot generation.
These use the loa modification of the lattice plotting framework.

See Notes, Examples and extra documentation: pems.plots.

Value

By default, pemsPlot generates a bubble plot, so it plots (x,y) points, and by default color-grades
and size-scales them according to z if also supplied.

When supplied speed and accel data-series as x and y cases, the WatsonPlot generates various
forms of Watson’s classic speed/accel frequency distribution plot.

latticePlot and XYZPlot are general purpose ’xy’ and ’xyz’ data plotting functions.

fortify is intended for use by ggplot2 functions when users are plotting data in pems objects. See
Notes.

Warning

IMPORTANT: Conditioning is currently disabled on XYZPlot.

XYZPlot is a short-term replace for previous function quickPlot. It will most likely be replaced
when pems.utils.0.3 is released.

pemsPlot and WatsonPlot no longer accept formula x, y, z inputs.

http://pems.r-forge.r-project.org/pems.utils.plots.html

5.1.pems.plots 37

With all these functions I have tried to make the default plotting options as robust as possible.
However, it is not always possible to test all the plot combines that users might try. So, please let
me know if anything is not working nicely for you. Thanks.

Note

General:

Like most other plot functions in R, lattice functions use a number of common parameter terms.
For example, xlab and ylab reset the x and y labels of a graph; xlim and ylim to set the x- and
y-scales of a graph; col sets the color of a plot element; type sets the type (’p’ for points, ’l’ for
lines, etc); pch and cex set plot symbol type and size, respectively; and, lty and lwd set plot line
type and thickness, respectively; etc. These terms are passed onto and evaluated by all these plot
functions to provide standard plot control.

latticePlot:

The default plot option for latticePlot is xyplot.

panel options for latticePlot: Default panel.xyplot. The alternative panel, panel.PEMSXYPlot
supplied as part of this package, adds a grid layer to a standard xy panel. The extra code just allows
you to pass specific plot parameters to the grid panel using the argument grid. You can build almost
any plot layout using these and other panels in lattice and loa as building blocks.

XYZPlot:

The default plot option for latticePlot is levelplot.

pemsPlot:

pemsPlot and subsequent plot functions use an alternative convention. Here, plots include sepa-
rate process and plot steps. This option allows the plot to pass on share the results of in-panel
calculations with other panels and keys. The handling mechanism is part of the loa package.

The reason for latticePlot, etc:

latticePlot combines a number of lattice and latticeExtra function modifications I regularly
use when plotting data. So, it is basically a short cut to save having to write out a lot of code I
regularly use. I would encourage anyone to at the very least have a look at lattice.

I also hope those learning lattice, find these functions a helpful introduction and handy ’stop gap’
while they are getting to grips with the code behind trellis and panel structures.

Author(s)

Karl Ropkins

References

lattice:

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R. Springer, New York.
ISBN 978-0-387-75968-5

latticeExtra:

Deepayan Sarkar and Felix Andrews (2011). latticeExtra: Extra Graphical Utilities Based on Lat-
tice. R package version 0.6-18. http://CRAN.R-project.org/package=latticeExtra

38 5.1.pems.plots

lattice is one of number of really nice graphical tools in R. Others, like ggplot2 and iplot, help
you to very quickly explore your data. But, for me the trellis framework of lattice has always felt
the most flexible.

See Also

See lattice, latticeExtra, loa.

Examples

###########
##example 1
###########

Not run:
#plotting pems with other packages

#base
plot(pems.1)
plot(pems.1$velocity)

#with lattice
require(lattice)
xyplot(velocity~local.time, data = pems.1, type = "l")

#with ggplot2
require(ggplot2)
qplot(time.stamp, velocity, data=pems.1)
ggplot(pems.1, aes(x = time.stamp, y = velocity)) + geom_line()
#etc

End(Not run)

###########
##example 2
###########

#basic usage of latticePlot

latticePlot(velocity~local.time, data = pems.1, type = "l")

latticePlot(velocity~local.time, data = pems.1, col = "red",
pch = 20, panel = panel.PEMSXYPlot,
grid = list(col ="black", lty=2))

###########
##example 3
###########

#basic usage of XYZPlot

6.1.common.calculations 39

a <- calcAccel(velocity, local.time, data = pems.1, output="pems")

XYZPlot(~accel*velocity, data=a)

XYZPlot(~accel*velocity, data=a, plot = lattice::wireframe, shade=TRUE)

###########
##example 4
###########

#basic usage of pemsPlot

pemsPlot(local.time, velocity, data=pems.1, type="l")

###########
##example 5
###########

#basic usage of WatsonPlot

#Note: using 'a' generated in example 3
WatsonPlot(velocity, accel, data=a)

Not run:
#omit.stopped for different handling of idling data
WatsonPlot(velocity, accel, data=a, omit.stopped="points")
WatsonPlot(velocity, accel, data=a, omit.stopped="cells")

#plot.type for different plot methods
WatsonPlot(velocity, accel, data=a, plot.type=1)
WatsonPlot(velocity, accel, data=a, plot.type=2)
WatsonPlot(velocity, accel, data=a, plot.type=3)
WatsonPlot(velocity, accel, data=a, plot.type=4)

End(Not run)

6.1.common.calculations

Common calculations

Description

Various common calculations associated with PEMS data.

Usage

calcDistance(speed = NULL, time = NULL, data = NULL,

40 6.1.common.calculations

..., fun.name = "calcDistance")

calcSpeed(distance = NULL, time = NULL, data = NULL,
..., fun.name = "calcSpeed")

calcAccel(speed = NULL, time = NULL, data = NULL,
..., method = 2, fun.name = "calcAccel")

calcAcceleration(speed = NULL, time = NULL, data = NULL,
..., method = 2, fun.name = "calcAccel")

calcJerk(accel = NULL, time = NULL, data = NULL,
..., fun.name = "calcJerk")

#associated

calcChecks(fun.name = "calcChecks", ..., data = NULL,
if.missing = c("stop", "warning", "return"),
output = c("input", "data.frame", "pems", "special"),
unit.conversions = NULL, overwrite = FALSE)

calcPack(output = NULL, data = NULL, settings = NULL,
fun.name = "calcPack", this.call = NULL)

Arguments

speed, time, distance, accel
(Required data series typically vectors) The inputs to use when doing a calcula-
tion. These can typically be vectors or elements in either a data.frame or pems
object.

data (Optional data.frame or pems object) The data source if either a data.frame
or pems object is being used.

... (Optional) Other arguments, currently passed on to calcChecks.

fun.name (Optional character) The name of the parent function, to be used in error mes-
saging.

if.missing, output, unit.conversions, overwrite, settings, this.call
(Various) Along with data and fun.name, arguments used by calcCheck and
calcPack to manage error and unit handling and workhorse calc... opera-
tions. These are typically passed to the appropriate check... or ...Units
function for evaluation. See Details, Note and Examples below.

method (Character) Currently for calcAccel only. The method to use if options exist.

Details

With the exception of calcChecks and calcPack, calc... functions are common calculations.

calcDistance calculates distance (in m) using speed and time.

6.1.common.calculations 41

calcSpeed calculates speed (in m/s) using distance and time.

calcAccel calculates acceleration (in m/s/s) using speed and time.

calcJerk calculates jerk (rate of change of acceleration in m/s/s/s) using acceleration and time.

By default results are returned as pems.elements. Other options include returning as the supplied
data plus the results as either a data.frame or a pems object. See Note below.

Unit management is by convertUnits. See Note below.

The extra functions calcChecks and calcPack are add-ins that anyone can use to develop other
similiar functions. They are added at the start and end of standard calc... functions to provide an
option to use with third-party code. See Note.

Value

With the exception of calcChecks and calcPack, all calc... functions return either a pems.element
vector, data.frame or pems object, depending on output setting and data supplied.

Note

Unit handling in pems.utils is via checkUnits, getUnits, setUnits and convertUnits. Al-
lowed unit conversion methods have to be defined in ref.unit.conversions or a locally defined
alternative supplied by the user. See convertUnits for an example of how to locally work with
unit conversions.

calc.dist and calc.accel are alternatives to calcDistance and calcAccel.

The functions calcChecks and calcPack are currently under revision and likely to be replaced in
future versions of pems.utils.

Author(s)

Karl Ropkins

References

References in preparation.

See Also

calcVSP for VSP calculations. calcEm for emissions calculations.

Examples

###########
##example 1
###########

#basic usage

#calculated accel as pems.element

calcAccel(velocity, local.time, pems.1)

42 6.2.common.check.functions

#answer returned as suppied pems + calculated accel

calcAccel(velocity, local.time, pems.1, output = "pems")

#or, if you would rather...
Not run:
pems.1$accel <- calcAccel(velocity, local.time, pems.1)

End(Not run)

###########
#example 2
###########

#making wrappers for routine data processing

my.pems <- list(pems.1, pems.1)

sapply(my.pems, function(x)
calcAccel(velocity, local.time, data=x))

#ans = accel data series for each pems in my.pems list

[,1] [,2]
[1,] NA NA
[2,] 0.00000000 0.00000000
[3,] 0.05555556 0.05555556
[4,] 0.00000000 0.00000000
[5,] -0.02777778 -0.02777778
[6,] 0.05555556 0.05555556
....

#note:
#sapply if you can/want to simiplify outputs
#lapply if you want to keep output as a list of answers

6.2.common.check.functions

common check... functions

Description

Various pems.utils workhorse functions for input checking and routine data handling.

Usage

checkOption(option=NULL, allowed.options=NULL,
option.name = "option", allowed.options.name = "allowed.options",

6.2.common.check.functions 43

partial.match=TRUE, fun.name = "checkOption",
if.missing = c("stop", "warning", "return"),
output = c("option", "test.result"), ...)

checkPEMS(data = NULL, fun.name = "checkPEMS",
if.missing = c("return", "warning", "stop"),
output = c("pems", "data.frame", "test.result"),
...)

checkUnits(input = NULL, units = NULL, data = NULL,
input.name = NULL, fun.name = "checkUnits",
if.missing = c("stop", "warning", "return"),
output = c("special", "units", "input", "test.result"),
..., unit.conversions = NULL)

checkOutput(input = NULL, data = NULL,
input.name = NULL, fun.name = "checkOutput",
if.missing = c("stop", "warning", "return"),
output = c("pems", "data.frame", "input", "test.result"),
overwrite = FALSE, ...)

checkIfMissing(..., if.missing = c("stop", "warning", "return"),
reply = NULL, suggest = NULL, if.warning = NULL,
fun.name = NULL)

Arguments

input (vector, object or object element) An input to be tested or recovered for subse-
quent use by another function, e.g. a speed measurement from a pems object.

data (data.frame, pems object) If supplied, the assumed source for an input. This can
currently be a standard data.frame or a 'pems' object. Note: if an input is
not found in data, the parent environment is then also checked before returning
an error message.

input.name, option.name
(Optional character vectors) If a check... function is used as a workhorse by
another function, the name it is given in any associated error messaging. See
Note below.

fun.name (Optional character vector) If a check... function is used as a workhorse rou-
tine within another function, the name of that other function to be used in any
associated error messaging. See Note below.

if.missing (Optional character vector) How to handle an input, option, etc, if missing, not
supplied or NULL. Current options include: "stop" to stop the check... func-
tion and any parent function using it with an error message; "warning" to warn
users that expected information was missing but to continue running the parent
code; or "return" to continue running the parent code without any warnings.

output (Character vector) Output mode for check... function results. Options typi-
cally include the check type and "test.results". See Value below.

44 6.2.common.check.functions

... (Optional) Other arguments, currently ignored by all check... functions expect
checkIfMissing.

option, allowed.options, allowed.options.name
(Character vectors) For checkOption, option and allowed.options are the
supplied option, and the allowed options it should be one of, respectively, and
allowed.options.name if way these allowed options should be identified in
any associated error messaging. See Note below.

partial.match (Logical) For checkOption, should partial matching be used when comparing
option and allowed.options.

units (Character vector) For checkUnits, the units to return input in, if requested
(output = "input"). Note: The default, output = "special", is a special case
which allows checkUnits to return either the units if they are not set in the call
(equivalent to output = "units") or the input in the requested units if they are
set in the call (equivalent to output = "input").

unit.conversions

(List) For checkUnits, the conversion method source. See ref.unit.conversions
and convertUnits for further details.

overwrite (Logical) For checkOutput, when packing/repacking a data.frame or pems
object, should ’same name’ cases be overwritten? If FALSE and ’same names’
are encountered, e.g. when modifying an existing data.frame or pems element,
a new element if generated with a unique name in the form [name].[number].

reply, suggest, if.warning
(Character vectors) For checkIfMissing, when generating error or warning
messages, the main reply/problem description, any suggestions what users can
try to fix this, and the action taken by the function if just warning (e.g. setting
the missing value to NULL), respectively. All are options.

Details

The check... functions are intended as a means of future-proofing pems.utils data handling.
They provide routine error/warning messaging and consistent ’front-of-house’ handling of func-
tion arguments regardless of any underlying changes in the structure of the pems objects and/or
pems.utils code. This means third-party function developed using these functions should be
highly stable.

checkOption checks a supplied option against a set of allowed options, and then if present or
matchable returns the assigned option. It is intended as a workhorse for handling optional function
arguments.

checkPEMS checks a supplied data source and provides a short-cut for converting this to and from
data.frames and pems object classes. It is intended as a ’best-of-both-worlds’ mechanism, so users
can supply data in various different formats, but function developers only have to work with that
data in one (known) format.

checkUnits checks the units of a previously recovered input, and then, depending on the output
setting, returns either the units of the input or the input in the required units (assuming the
associated conversion is known).

checkOutput packs/repacks a previously recovered input. Depending on the output setting, this
can be as the (standalone) input, an element of a data.frame or an element of a pems object.

6.2.common.check.functions 45

checkIfMissing if a workhorse function for the if.missing argument. If any of the supplied ad-
ditional arguments are NULL, it stops, warns and continues or continues a parent function according
to the if.missing argument. If supplied, reply, suggest and if.warning arguments are used to
generate the associated error or warning message.

Value

All check... functions return a logical if output = "test.result", TRUE if the input, option,
etc., is suitable for use in that fashion or FALSE if not.

Otherwise,

checkOption return the option argument if valid (on the basis of if.missing) or an error, warning
and/or NULL (on the basis of if.missing) if not. If partial.match = TRUE and partial matching is
possible this is in the full form given in allowed.options regardless of the degree of abbreviation
used by the user.

checkPEMS returns the data argument if valid or an error, warning and/or NULL (on the basis of
if.missing) if not. Depending on output setting, the valid return is either a data.frame or pems
object.

checkUnits returns the units of the input argument if no other information is supplied and units
have previously been assigned to that input. If units are assigned in the call or output is forced
(output = "input"), the input is returned in the requested units. If this action is not possible
(e.g. pems.utils does not know the conversion), the function returns an error, a warning and the
unchanged input or the unchanged input alone depending on if.missing setting.

Depening on if.missing argument, checkIfMissing either stops all parent functions with an
error message, warns of a problem but allows parent functions to continue running, or allows parent
functions to continue without informing the user.

Note

The ...name arguments allow the check... functions to be used silently. If a parent function is
identified as fun.name and the check case (input, option, etc.) is identified with the associated
...name argument these are used in any associated error messaging.

Author(s)

Karl Ropkins

References

[TO DO]

See Also

See ref.unit.conversions and convertUnits for general unit handling.

46 6.3.corrections

6.3.corrections Corrections

Description

Corrections are a special subset of functions which by default write over the elements that they
recalculate.

Usage

correctInput(input = NULL, ..., data = NULL,
correction = NULL)

zeroNegatives(input = NULL, ..., data = NULL,
screen = FALSE)

correctBaseline(x, ..., data = NULL, output = "ans")

#associated

calcPack2(input, ..., settings = NULL, data = NULL)

Arguments

input (Required data series typically vectors) The input to use when makin a correc-
tion. This is typically a vector or element in either a data.frame or pems object.

x (For correctBaseline) (Required data series typically vectors) The input to
use when makin a correction. This is typically a vector or element in either a
data.frame or pems object.

... (Optional) Other arguments, typically passed on.

data (Optional data.frame or pems object) The data source if either a data.frame
or pems object is being used.

correction (For correctInput, required function) The correction operation to apply to
input. This is typically a function or function name (as character string).

screen (For zeroNegatives, logical) If the user intends screening the correction before
applying it, this should be set to TRUE.

output (character) Where options exists for the function output, the required output. For
correctBaseline, current options: 'ans' (the default) and 'diagnostic'.

settings (For calcPack2, list) Any arguments to be used as settings when handling
pems.elements. Unless developing functions, this can typically be ignored.

6.3.corrections 47

Details

correctInput is a general correction handlers. It accepts an input and a function, correction,
which it applies to input.

zeroNegatives resets any negative values in an input to zero.

correctBaseline attempts to correct the baseline of a supplied data (pems.element vector) time-
series. Baseline corrections are carried out using methods from the baseline package. See Below.

calcPack2 is an alternative version of calcPack. See associated help for details.

Value

With the exception of calcPack2, all the above functions generate input corrections.

correctBaseline returns the supplied data time-series (x) after applying the requested baseline
correction (see below).

Note

By default, corrections return results in the format of the input. So: If inputs are supplied as
vectors, the answer is returned as a vector; If inputs are supplied in a pems object, that pems object
is returned with the answer added in. This behaviour is enabled by the default output = "special".
Output type can be forced by declaring ouput in the function call. Options "input", "data.frame"
and "pems" return vectors, data.frames and pems objects, respectively.

Unlike other calculations, corrections automatically replace the associated input, unless prevented
(using overwrite = FALSE).

This function management is handled by calcChecks and calcPack. These are front and back end
calc... function add-ins that anyone can use as a ’minimal code’ means of integrating third-party
and pems.utils functions.

See calcChecks documentation for details.

correctBaseline is a recent transfer from sleeper.service. It uses baseline functions to pro-
vide ’best guess’ baseline corrections.

By default, it applies:

baseline(..., method="rollingBall", wm=50, ws=50)

Please Note the ’best guess’: As baseline corrections are based statistical estimates of likely base-
lines rather than actual measures of drift these should be treated as estimates.

Unit management is by convertUnits. See associated help documentation for details.

Author(s)

Karl Ropkins

References

baseline:

Kristian Hovde Liland and Bjorn-Helge Mevik (2015). baseline: Baseline Correction of Spectra. R
package version 1.2-1. https://CRAN.R-project.org/package=baseline

48 6.4.analysis.summary.reports

See Also

baseline regarding baseline corrections.

common.calculations, calcVSP or calcEm for calculation functions.

getElement (checkUnits, etc and convertUnits for data management.

Examples

###########
##example 1
###########

#basic usage

zeroNegatives(-10:10) #etc

6.4.analysis.summary.reports

Generating summary reports

Description

Various functions for generating summary reports for pems objects.

Usage

summaryReport(speed = NULL, time = NULL, accel = NULL,
distance = NULL, data = NULL, ...,
lod.speed = 0.1, lod.accel = 0.1,
fun.name = "summaryReport")

Arguments

speed, accel, time, distance
(Data series typically vectors) The inputs to use when doing a calculation. These
can typically be vectors or elements in either a data.frame or pems object if
supplied as data. See Details below regarding requirements.

data (Optional data.frame or pems object) The data source if either a data.frame
or pems object is being used.

... (Optional) Other arguments, currently passed on to calcChecks which in turn
provides access to pems.utils management arguments such as if.missing
and unit handlers such as unit.conversions.

6.4.analysis.summary.reports 49

lod.speed, lod.accel
(numerics) The limits of detection for speed and accel measurements, respec-
tively. [Note: if only one value is given for accel, the accel limits are assumed
to be c(-lod.accel, + lod.accel)].

fun.name (Optional character) The name of the parent function, to be used in error mes-
saging.

Details

summaryReport does not strictly require all the arguments speed, accel, time and distance as
inputs. It calculates as many of the missing cases as it can using the common.calculations before
halting an analysis or warning the user of any problems.

Unit management is by convertUnits. See Note below.

Value

summaryReport returns a one-row data.frame with twelve elements:

distance.travelled.km this total distance travelled (in km)

time.total.s the total time taken (in s)

avg.speed.km.h the mean speed as averaged across the total journey/dataset (in km/h)

avg.running.speed.km.h the mean speed while the vehicle was in motion (in km/h), assuming a
0.01 km/h accuracy for speed measurements.

time.idle.s and time.idle.pc, the time the vehicle was idling (in s and as a percentage, respec-
tively), also assuming a 0.01 km/h cutoff for speed measurements.

avg.accel.m.s.s the mean (positive component of) acceleration (in m/s/s), assuming a 0.1 m/s/s
cutoff for accel measurements.

time.accel.s and time.accel.pc, the time the vehicle was accelerating (in s and as a percentage,
respectively), also assuming a 0.1 m/s/s cutoff for accel measurements.

avg.decel.m.s.s the mean deceleration (negative component of acceleration in m/s/s), assuming
a -0.1 m/s/s cutoff for accel measurements.

time.decel.s and time.decel.pc, the time the vehicle was decelerating (in s and as a percentage,
respectively), also assuming a -0.1 m/s/s cutoff for accel measurements.

Warning

Currently, summaryReport outputs have units incorporated into their names because the outputs
themselves are unitless data.frames.

Note

Unit handling in pems.utils is via checkUnits, getUnits, setUnits and convertUnits. Al-
lowed unit conversion methods have to be defined in ref.unit.conversions or a locally defined
alternative supplied by the user. See convertUnits for an example of how to locally work with
unit conversions.

50 6.4.analysis.summary.reports

Author(s)

Karl Ropkins

References

References in preparation.

See Also

checkUnits and convertUnits for data management.

Examples

###########
##example 1
###########

#basic usage

summaryReport(velocity, local.time, data=pems.1)

distance.travelled.km time.total.s avg.speed.km.h avg.running.speed.km.h
1 6.186056 1000 22.2698 28.78538
time.idle.s time.idle.pc avg.accel.m.s.s time.accel.s time.accel.pc
1 40 4 0.7921279 271 27.1
avg.decel.m.s.s time.decel.s time.decel.pc
1 -0.9039449 238 23.8

#apply to multiple cases

my.pems <- list(pems.1, pems.1)

sapply(my.pems, function(x)
summaryReport(velocity, local.time, data = x))

[,1] [,2]
distance.travelled.km 6.186056 6.186056
time.total.s 1000 1000
avg.speed.km.h 22.2698 22.2698
avg.running.speed.km.h 28.78538 28.78538
time.idle.s 40 40
time.idle.pc 4 4
avg.accel.m.s.s 0.7921279 0.7921279
time.accel.s 271 271
time.accel.pc 27.1 27.1
avg.decel.m.s.s -0.9039449 -0.9039449
time.decel.s 238 238
time.decel.pc 23.8 23.8

7.1.vsp.code 51

7.1.vsp.code Vehicle Specific Power (VSP) related code

Description

Functions associated with VSP calculations.

Usage

#calculation

calcVSP(speed = NULL, accel = NULL, slope = NULL,
time = NULL, distance = NULL, data = NULL,
calc.method = calcVSP_JimenezPalacios,
..., fun.name = "calcVSP", this.call = NULL)

calcVSP_JimenezPalacios(speed = NULL, accel = NULL,
slope = NULL, vehicle.weight = NULL, vsp.a = NULL,
vsp.b = NULL, vsp.c = NULL, vsp.g = NULL, ...,
data = NULL,
fun.name = "calcVSP_JimenezPalacios",
this.call = NULL)

#VSP binning

refVSPBin(..., bin.method="ncsu.14")

refVSPBin_NCSU.14(vsp = NULL, data = NULL,
..., fun.name="refVSPBin_NSCU.14")

refVSPBin_MOVES.23(vsp = NULL, speed = NULL, data = NULL,
..., fun.name="refVSPBin_MOVES.23")

#vsp plotting

VSPPlot(vsp, em = NULL, ..., data = NULL, plot.type = 1,
fun.name="VSPPlot")

VSPBinPlot(vspbin, em = NULL, ..., data = NULL,
plot.type = 1, stat = NULL, fun.name="VSPBinPlot")

52 7.1.vsp.code

Arguments

speed, accel, slope, time, distance, vsp, vspbin, em
(Typically pems.element vectors) speed, accel, slope, time and distance are
possible inputs for VSP calculation. vsp and speed are possible inputs for VSP
binning methods. vsp, vspbin and em are x and y inputs for associated plots.
(See Notes about inputs and methods.)

data (Optional, typically pems) The data source for inputs.
calc.method, bin.method

(Required functions) calc.method is the function used to calculate VSP (de-
fault calcVSP_JimenezPalaciosCMEM). bin.method is the methods used when
binning VSP measurements. (See Notes.)

... (Optional) Other arguments, currently passed on as supplied to associated cal-
culation or binning method, or back to pemsPlot.

fun.name (Optional character) The name of the parent function, to be used in error mes-
saging.

this.call (Optional) Initial call, should generally be ignored. See common.calculations
for further details.

vehicle.weight, vsp.a, vsp.b, vsp.c, vsp.g
(Numerics) VSP constants. If not supplied, defaults are applied. See Below.

plot.type (Optional numeric) For VSPPlot and VSPBinPlot, the type of plot to generate.
For VSPPlot, 1 a conventional scatter plot; or 2 a box-and-whisker plot. For
VSPBinPlot, 1 a bar plot; or 2 a box-and-whisker plot.

stat (Function) For VSPBinPlot, the statistic to use when calculating bar scales for
plot.type 1. By default this is mean if em is supplied or count if not. NOTE:
stat is ignore when plot.type is used

Details

calcVSP... functions calculate VSP:

calcVSP is a wrapper function which allows users to supply different combinations of inputs. VSP
calculations typically require speed, acceleration and slope inputs. However, This wrapper allows
different input combinations, e.g.:

time and distance (time and distance -> speed, time and speed -> accel)

time and speed (time and speed -> accel)

speed and accel

This then passes on speed, accel and (if supplied) slope to the method defined by calc.method.
(This means other VSP functions run via calcVSP(..., calc.method = function) share this op-
tion without needed dedicated code.)

calcVSP_JimenezPalacios calculates VSP according to Jimenez Palacios methods. See Refer-
ences and Note below.

refVSPBin... functions generate a reference list of VSP bins:

refVSPBin is a wrapper that generates VSP Mode bins depending on method applied.

binVSP_NCSU.14 bins supplied vsp using the 14 bin method described in Frey et al 2002.

7.1.vsp.code 53

binVSP_MOVES.23 bins supplied vsp using that and speed and the 23 bin MOVES method (See
Note).

VSPPlot generates various plots of VSP (x-axis) and emission (y-axis) data.

VSPBinPlot generates various plots of VSP binned data.

Value

calcVSP by default uses the Jimenez Palacios method to calculate VSP in kW/metric ton.

refVSPBin generates a pems.element factor vector of VSP Mode bin assignments.

VSPPlot and VSPBinPlot generate plots as lattice objects.

Note

calcVSP... constants can be set/modified in the calculation call, e.g. calcVSP(..., vsp.a =
[new.value]). If not supplied, defaults are used. (See References.)

binVSP_MOVES.23 is in-development. Do not use without independent confirmation of values.

Unit handling in pems.utils is via checkUnits, getUnits, setUnits and convertUnits. See
common.calculations for details.

Author(s)

Karl Ropkins

References

calcVSP_JimenezPalacios uses methods described in:

Jimenez-Palacios, J.L. (1999) Understanding and Quantifying Motor Vehicle Emissions with Vehi-
cle Specific Power and TILDAS Remote Sensing. PhD Thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA.

vehicle.weight is the vehicle mass (in metric tons), and vsp.a, vsp.b, vsp.c and vsp.g are the
calculations constants for:

vsp = speed * (a * accel + (g * slope) + b) + (c * speed^3)

By default: a = 1.1, b = 0.132, c = 0.000302 and g = 0.132 (as of Jimenez-Palacios, 1999).

Method ONLY INTENDED FOR vehicles < 3.855 metric tons.

refVSPBin_NCSU.14 VSP binning as described in:

Frey, H.C., Unal, A., Chen, J., Li, S. and Xuan, C., 2002. Methodology for developing modal
emission rates for EPA’s multi-scale motor vehicle & equipment emission system. Ann Arbor,
Michigan: US Environmental Protection Agency. (EPA420-R-02-027)

See Also

See common.calculations (and checkUnits and convertUnits) for details of data management.

54 7.2.emissions.calculations

Examples

###########
##example 1
###########

#basic usage

vsp <- calcVSP(velocity, time = local.time, data = pems.1)
#where the returned object, vsp, is vsp values as pems.element

ncsu.14 <- refVSPBin(vsp)
#where the returned object, nscu.14, is the associated modal bin
assignments based on the Frey et al (2002) 14 bin method.

7.2.emissions.calculations

Emission calculations

Description

Functions associated with emissions calculations.

Usage

calcEm(conc = NULL, calc.method = calcEm_HoribaPitot,
analyte = NULL, ..., data = NULL, fun.name = "calcEm",
force = FALSE, this.call = NULL)

calcEm_HoribaPitot(conc = NULL, time = local.time, exflow = exh.flow.rate,
extemp = exh.temp, express = exh.press, analyte = NULL,
delay = NULL, mm = NULL, ..., force = force, data = NULL,
fun.name = "calcEm_HoribaPitot", this.call = NULL)

Arguments

conc (Data series, typically pems.element vector) Analyte/species concentrations, the
main input for calculating emissions. If conc is a concentration data series from
a standard pems source it should be named conc.[analyte] and pems.utils
will manage it accordingly. See below for further details.

time, exflow, extemp, express
(Data series, typically pems.element vectors) Other inputs used when calculat-
ing emissions. The combination depending on the calcuation method used (and
set by calc.method).

calc.method (Required function) The function to use to calculate emissions. (Default calcEm_HoribaPitot).
See below for further details.

7.2.emissions.calculations 55

analyte (Optional character vector) The analyte emissions are to be calculated for. If
supplied, this is used as a reference when assigning molecule weight and other
analyte properties if these are not provided as part of calculate call. If not sup-
plied, pems.utils attempts to recover these from available sources, e.g. data if
supplied as part of the calculation call or package references such as ref.chem.

... (Optional) Other arguments, currently passed on to function provided as calc.method
(default calcEm_HoribaPitot) and appropriate pems.utils functions.

data (Optional pems object) The data source for inputs.
fun.name, this.call, force

(Various pems management functions) fun.name (character vector) the name of
the parent function, to be used in error messaging. this.call the initial call
(can generally be ignored). force (Logical) Should calcEm and calc.method
ignore any error checking, e.g. units assignments, and do calculations anyway?

delay, mm (Optional numerics) Emissions calculation constants. delay is the time delay
between conc measurements and other timeseries. mm is the molecular mass of
the analyte. If supplied, these in-call values supercede any preset in e.g. package
look-up.tables.

Details

calcEm... functions calculate emissions.

calcEm is a wrapper function which is intended to provide a conventient front for emissions calcu-
lation methods. It accepts an input conc which it checks and passes on to calc.method, along with
other supplied arguments.

calcEm_HoribaPitot calculates emissions using methods described in the Horiba OBS Operators
Manual. In addition to conc, the function requires the time, and exhaust flow data series (measured
by the OBS Pitot flow meter). By default, the function assumes that these are default names that
are generated for these when standard OBS files are imported into R using the pems.utils import
function importOBS2PEMS. See References and Note below.

Value

calcEm_HoribaPitot (and calcEm by default) use Horiba Manual methods to calculate emissions
(in g/s).

Note

calcEm... constants can be set/modified in the calculation call, e.g. calcEm(..., delay = [new.value]).
If not supplied, these are first checked for in the associated pems object (if supplied), or set to default
values. See References. If analyte-related constants are to be added to a pems object, these should
be named in the format ’[type].[analyte]’, e.g. delay.co for the delay constant to be used for the
analyte CO.

Unit handling in pems.utils is via checkUnits, getUnits, setUnits and convertUnits. See
common.calculations for details.

Author(s)

Karl Ropkins

56 7.3.coldstart.code

References

calcEm_HoribaPitot uses methods described in:

The Horiba Operators Manual.

See Also

See common.calculations.

Examples

###########
##example 1
###########

#basic usage

em.co <- calcEm(conc.co, data = pems.1)

#where the returned object, em.co, is a pems.element

7.3.coldstart.code Cold Start Emissions related code

Description

Functions associated with Cold Start Emissions calculations.

Usage

#calculations

fitColdStart(em, time, engine.on = NULL,
data = NULL, method = 2, ...,
fun.name="fitColdStart")

#Cold Start Plots

coldStartPlot(time, em = NULL,
..., data = NULL, engine.on = NULL,
plot.type = 1, method = 2,
fun.name="coldStartPlot")

panel.coldStartPlot1(..., loa.settings = FALSE)
panel.coldStartPlot2(..., loa.settings = FALSE)

7.3.coldstart.code 57

Arguments

em, time (Typically pems.element vectors) em is the emissions data-series that the cold
start contribution should be estimated for; time is the associated time-series,
typically a local time measurement in seconds.

engine.on (Optimal, single Numeric) The time the emission source, e.g. monitored vehicle
engine, was started. If not supplied, this is assumed to be start of the supplied
em and time data-series. See also Notes.

data (Optional, typically pems) The data source for em and time.

method (Optinal, Numeric) The method to use when fitting and calculating the cold start
contribution: method 1 Single break point fit of accumulated emissions; method
2 modified break-point. If not supplied, method 2 is used by default.See also
Notes and References.

... (Optional) Other arguments, currently passed on as supplied to assoicated cal-
culation or plotting function, or passed back to pemsPlot.

fun.name (Optional character) The name of the parent function, to be used in error mes-
saging.

plot.type (Optional numeric) For coldStartPlot, the type of cold start plot to gener-
ate: 1 a conventional accumulation profile; or 2 an emission time-series. If not
supplied, plot type 1 is selected by default.

loa.settings (Logical) For coldStartPlot panel functions, a loa plot argument that can
typically be ignored by plot users.

Details

fitColdStart fits a cold start model to the supplied emissions and time-series data.

coldStartPlot generates a plot of the cold start model.

panel.coldStartPlot1 and panel.coldStartPlot1 are plot panels used by coldStartPlot when
generating plot.types 1 and 2, respectively.

Value

fitColdStart generates a cold start contribution report as a pems dataset.

coldStartPlot generates a cold start contribution report as a lattice plot.

Note

Regarding engine.on: This is specifically the time the engine is turned on rather than the row of
data set where this happens. In some cases, they are same, e.g. when the data is logged at a regular
1-Hz and data capture is complete.

Regarding method: Method 1 (break-point) and method 2 (modified break-point) are based on the
identification of a change point in the accumulated emissions profile.

[Doc further]

(See References.)

58 7.4.speed.em.code

Author(s)

Karl Ropkins

References

fitColdStart uses methods described in:

[Heeb]

[Ropkins cold start]

See Also

See common.calculations (and checkUnits and convertUnits) for details of data management.

Examples

###########
##example 1
###########

#basic usage

#to do/maybe not run... time to compile...

7.4.speed.em.code Speed Emissions related code

Description

Functions associated with Speed/Emissions terms.

Usage

#calculations

fitSpeedEm(em, time, speed, engine.on = NULL,
data = NULL, method = 1, min.speed = 5,
bin.size = NULL, ...,
fun.name="fitEmSpeed")

#speed/emissions Plots

speedEmPlot(speed, em = NULL, time = NULL,
..., data = NULL, engine.on = NULL,
min.speed = 5, bin.size = NULL,
plot.type = 1, method = 1,
fun.name="speedEmPlot")

7.4.speed.em.code 59

Arguments

em, time, speed (Typically pems.element vectors) em is the (g/s) emissions data-series; speed
and time are the associated speed profile and time-series.

engine.on (Optimal, single Numeric) The time the emission source, e.g. monitored vehicle
engine, was started. If not supplied, this is assumed to be start of the supplied
em and time data-series. See also Notes.

data (Optional, typically pems) The data source for em, speed and time.

method (Optinal, Numeric) The method to use when calculating and binning data: method
1 calculate g/km emissions and bin by row. See also bin.size, Notes and Ref-
erences.

min.speed (Optinal, Numeric) measurements when speeds were less than this value are
exluded, default value 5. See also Notes.

bin.size (Optinal, Numeric) The data binning scale to use. For method 1, this is the
number of rows of measurements to merge.

... (Optional) Other arguments, currently passed on as supplied to associated cal-
culation or plotting function, or back to pemsPlot.

fun.name (Optional character) The name of the parent function, to be used in error mes-
saging.

plot.type (Optional numeric) For speedEmPlot, the type of speed/emission plot to gener-
ate: 1 a conventional scatter plot; or 2 a box-and-whisker plot. If not supplied,
plot type 1 is selected by default.

Details

fitSpeedEm builds a speed and g/km emissions data sets for the supplied emissions, speed and
time-series data.

speedEmPlot generates a plot of one or more data set generated by fitSpeedEm.

Value

fitSpeedEm generates a speed/emissions contribution report as a pems dataset.

speedEmPlot generates a speed/emissions contribution report as a lattice plot.

Note

Regarding engine.on: This is specifically the time the engine is turned on rather than the row of
data set where this happens. In some cases, they are same, e.g. when the data is logged at a regular
1-Hz and data capture is complete.

Regarding method: Method 1 [Doc further].

[Doc further]

(See References.)

Author(s)

Karl Ropkins

60 8.1.pems.tidyverse.tools

References

fitColdStart uses methods described in:

[COPERT on speed/emission terms]

[Ropkins speed/emissions]

See Also

See common.calculations (and checkUnits and convertUnits) for details of data management.

Examples

###########
##example 1
###########

#basic usage

#to do/maybe not run... time to compile...

8.1.pems.tidyverse.tools

Functions to use tidyverse code with pems.utils outputs

Description

Various codes and methods.

Usage

#ggplot2

S3 method for class 'pems'
fortify(model, data, ...)

#dplyr (1) standard methods

S3 method for class 'pems'
select(.data, ...)
S3 method for class 'pems'
rename(.data, ...)
S3 method for class 'pems'
filter(.data, ...)
S3 method for class 'pems'
arrange(.data, ...)
S3 method for class 'pems'
slice(.data, ...)

8.1.pems.tidyverse.tools 61

S3 method for class 'pems'
mutate(.data, ..., units=NULL, warn=TRUE)
S3 method for class 'pems'
group_by(.data, ..., .add=FALSE)
S3 method for class 'pems'
groups(x)
S3 method for class 'pems'
ungroup(x, ...)
S3 method for class 'pems'
group_size(x)
S3 method for class 'pems'
n_groups(x)
S3 method for class 'pems'
summarise(.data, ...)
S3 method for class 'pems'
pull(.data, ...)

#dplyr (2) related underscore methods

S3 method for class 'pems'
select_(.data, ..., warn=TRUE)
S3 method for class 'pems'
rename_(.data, ..., warn=TRUE)
S3 method for class 'pems'
filter_(.data, ..., warn=TRUE)
S3 method for class 'pems'
arrange_(.data, ..., warn=TRUE)
S3 method for class 'pems'
slice_(.data, ..., warn=TRUE)
S3 method for class 'pems'
mutate_(.data, ..., units=NULL, warn=TRUE)
S3 method for class 'pems'
group_by_(.data, ..., .add=FALSE, warn=TRUE)
S3 method for class 'pems'
summarise_(.data, ..., warn=TRUE)

#dplyr (3) joining methods
S3 method for class 'pems'
inner_join(x, y, by = NULL, copy = FALSE, ...)
S3 method for class 'pems'
left_join(x, y, by = NULL, copy = FALSE, ...)
S3 method for class 'pems'
right_join(x, y, by = NULL, copy = FALSE, ...)
S3 method for class 'pems'
full_join(x, y, by = NULL, copy = FALSE, ...)
S3 method for class 'pems'
semi_join(x, y, by = NULL, copy = FALSE, ...)
S3 method for class 'pems'

62 8.1.pems.tidyverse.tools

anti_join(x, y, by = NULL, copy = FALSE, ...)

Arguments

model, data (pems.object) In fortify, the pems object to be used as a data source when
plotting using ggplot2 code. The method is rotuinely applied by ggplot2, so
users can typically ignore this. See below.

... (Optional) Other arguments, typically passed on to equivalent tidyverse function
or method.

.data (pems.object) For dplyr functions, the pems object to be used with, e.g. dplyr
code.

warn (Optional) Give warnings? For an underscore methods: a warning that an under-
score method was used (See Below). For mutate: if new elements are generated
without unit assignments.

units (Character) In mutate, the units to assign to new elements created by call. See
Below.

x, y (Various) For group... functions, x is the pems dataset to be grouped. For
...join functions, x and y are the two datasets (pems, data.frame, etc) to be
joined together.

.add (Optional) Argument used by group_by and related dplyr grouping functions.

by, copy (Various) For ...join functions, consistent with dplyr, by and copy are op-
tional arguments. See Below.

Details

fortify is used by ggplot2 functions when these are used to plot data in a pems dataset. Most
users will never have to use this directly.

The pems object methods select, rename, filter, arrange, slice, mutate, group_by and
summarise are similar to data.frame methods of the same names in dplyr, but (hopefully) they
also track units, etc, like a pems object. Work in progress. See below, especially Note.

Equivalent underscore methods (select_, etc) are also provided, although it should be noted that
they are probably going when dplyr drops these.

Data joining methods include inner_join, left_join, right_join, full_join, semi_join and
anti_join. Like above these are similar data.frame equivalents in dplyr, but (hopefully) also
track units, etc, like a pems object. Same ’work in progress’ caveat. See Note.

Value

select returns the requested part of the supplied pems object, e.g.: select(pems.1, velocity)
returns the velocity element of pems.1 as a single column pems.object, consistent with the data.frame
handling of select.data.frame.

rename returns the supplied pems object with the requested name change, e.g.: rename(pems.1,
speed=velocity) returns pems.1 with the velocity column renamed speed.

8.1.pems.tidyverse.tools 63

filter returns the supplied pems object after the requested filter operation has been applied, e.g.:
filter(pems.1, velocity>0.5) returns pems.1 after excluding all rows where the velocity value
was less than or equal to 0.5.

arrange returns the supplied pems object reordered based on order of values in an identified ele-
ment, e.g.: arrange(pems.1, velocity) returns pems.1 with its row reordered lowest to highest
velocity entry.

slice returns requested rows of the supplied pems object, e.g.: slice(pems.1, 1:10) returns rows
1 to 10 of pems.1 as a new pems object.

mutate returns the supplied pems object with extra elements calculated as requested, e.g.: mutate(pems.1,
new=velocity*2) returns the pems object with additional column, called new, which is twice the
values in the velocity column. The units of the new column can be set using the additional argument
units, e.g. mutate(pems.1, new=velocity*2, units="ick").

group_by returns a grouped_df object, which allowed by-group handling in subsequent dplyr
code.

summarise works like summarise(data.frame, ...) and allows dataset calculations, e.g. summarise(pems,
mean(velocity)) calculates the mean of the velocity of a supplied pems object. Units cannot be
tracked during such calls and outputs are returned as a tibble as with summarise.data.frame.

The ..._join joining methods, join two supplied datasets. The first, x, must be a pems to employ
..._join.pems but the second, y can be e.g. a data.frame, etc.

Warning

This currently work in progress - handle with care.

Note

Currently not sure what I think about tidyverse, but it is always interesting, and ideas like fortify
are nice.

The fortify method was developed by Hadley Wickham to simplify the integration of ggplot2
functions and special object classes.

It is a really nice idea for multiple reasons, the main one being that package users will probably
never have to worry about it. However, packaging it means you can use a pems object directly as
the data argument with ggplot2 code.

Author(s)

Karl Ropkins

References

Generics in general:

H. Wickham. Advanced R. CRC Press, 2014.

(Not yet fully implemented within this package.)

ggplot2:

H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.

64 9.1.example.data

(See Chapter 9, section 9.3, pages 169-175, for discussion of fortify)

dplyr:

Hadley Wickham, Romain Francois, Lionel Henry and Kirill Muller (2020). dplyr: A Grammar of
Data Manipulation. R package version 1.0.2. https://CRAN.R-project.org/package=dplyr

9.1.example.data example data for use with pems.utils

Description

Example data intended for use with functions in pems.utils.

Usage

pems.1

Format

pems.1 is a example pems object.

Details

pems.1 is supplied as part of the pems.utils package.

Note

None at present

Source

Reference in preparation

References

None at present

See Also

See examples in pems.structure.

9.2.look-up.tables 65

9.2.look-up.tables reference data for use with pems.utils

Description

Various reference and example datasets intended for use with functions in pems.utils.

Usage

ref.unit.conversions

ref.chem

ref.petrol

ref.diesel

pems.scheme

Format

ref.unit.conversions: Unit conversion methods stored as a list of lists. See Details.

ref.chem, ref.petrol, ref.diesel: Common chemical and fuel constants stored as lists.

pems.scheme: Default scheme for pems.utils plots.

Details

unit.conversions is basically a ’look-up’ for unit conversion methods. Each element of the list is
another list. These lists are each individual conversion methods comprising four elements: to and
from, character vectors given the unit ids and alias of the unit types that can be converted using the
method; conversion, a function for the associated conversion method; and (possibly) tag, a more
detailed description of the conversion intended for use in documentation.

Other ref... are sets of constants or reference information stored as lists. ref.chem contains
atomic weights of some elements and molecular weights of some species. ref.petrol and ref.diesel
contain default properties for typical fuels.

Note

ref.unit.conversions can be updated locally. See convertUnits, addUnitConversion, etc.

Examples

#basic structure
ref.unit.conversions[[1]]

Index

∗ datasets
9.1.example.data, 64
9.2.look-up.tables, 65

∗ methods
1.1.make.import.data, 4
1.2.export.data, 9
2.1.pems.structure, 11
3.1.generic.pems.handlers, 14
3.2.generic.pems.element.handlers,

18
4.1.merge.data.pems, 20
4.2.referencing.pems.data, 24
4.3.time.handlers, 27
4.4.unit.handlers, 29
5.1.pems.plots, 33
6.1.common.calculations, 39
6.2.common.check.functions, 42
6.3.corrections, 46
6.4.analysis.summary.reports, 48
7.1.vsp.code, 51
7.2.emissions.calculations, 54
7.3.coldstart.code, 56
7.4.speed.em.code, 58
8.1.pems.tidyverse.tools, 60

∗ package
pems.utils-package, 2

[(3.1.generic.pems.handlers), 14
[.pems.element

(3.2.generic.pems.element.handlers),
18

[<- (3.1.generic.pems.handlers), 14
[<-.pems.element

(3.2.generic.pems.element.handlers),
18

[[(3.1.generic.pems.handlers), 14
[[<- (3.1.generic.pems.handlers), 14
$ (3.1.generic.pems.handlers), 14
$<- (3.1.generic.pems.handlers), 14
1.1.make.import.data, 4

1.2.export.data, 9
2.1.pems.structure, 11
3.1.generic.pems.handlers, 14
3.2.generic.pems.element.handlers, 18
4.1.merge.data.pems, 20
4.2.referencing.pems.data, 24
4.3.time.handlers, 27
4.4.unit.handlers, 29
5.1.pems.plots, 33
6.1.common.calculations, 39
6.2.common.check.functions, 42
6.3.corrections, 46
6.4.analysis.summary.reports, 48
7.1.vsp.code, 51
7.2.emissions.calculations, 54
7.3.coldstart.code, 56
7.4.speed.em.code, 58
8.1.pems.tidyverse.tools, 60
9.1.example.data, 64
9.2.look-up.tables, 65

addUnitAlias (4.4.unit.handlers), 29
addUnitConversion, 65
addUnitConversion (4.4.unit.handlers),

29
align, 3
align (4.1.merge.data.pems), 20
anti_join (8.1.pems.tidyverse.tools), 60
approx, 29
arrange (8.1.pems.tidyverse.tools), 60
arrange_.pems

(8.1.pems.tidyverse.tools), 60
as.data.frame

(3.1.generic.pems.handlers), 14
as.pems (1.1.make.import.data), 4
as.pems.pems.element

(3.2.generic.pems.element.handlers),
18

baseline, 47, 48

66

INDEX 67

calcAccel, 3
calcAccel (6.1.common.calculations), 39
calcAcceleration

(6.1.common.calculations), 39
calcChecks, 47, 48
calcChecks (6.1.common.calculations), 39
calcDistance, 3
calcDistance (6.1.common.calculations),

39
calcEm, 3, 41, 48
calcEm (7.2.emissions.calculations), 54
calcEm_HoribaPitot

(7.2.emissions.calculations),
54

calcJerk (6.1.common.calculations), 39
calcPack, 47
calcPack (6.1.common.calculations), 39
calcPack2 (6.3.corrections), 46
calcSpeed (6.1.common.calculations), 39
calcVSP, 3, 41, 48
calcVSP (7.1.vsp.code), 51
calcVSP_JimenezPalacios (7.1.vsp.code),

51
cAlign (4.1.merge.data.pems), 20
cbind, 22
check..., 3, 12, 13
check... (6.2.common.check.functions),

42
checkIfMissing

(6.2.common.check.functions),
42

checkOption
(6.2.common.check.functions),
42

checkOutput
(6.2.common.check.functions),
42

checkPEMS (6.2.common.check.functions),
42

checkUnits, 41, 48–50, 53, 55, 58, 60
checkUnits

(6.2.common.check.functions),
42

coldstart (7.3.coldstart.code), 56
coldStartPlot (7.3.coldstart.code), 56
common.calculations, 3, 13, 48, 49, 52, 53,

55, 56, 58, 60
common.calculations

(6.1.common.calculations), 39
convertUnits, 3, 9, 12, 41, 44, 45, 47–50, 53,

55, 58, 60, 65
convertUnits (4.4.unit.handlers), 29
correctBaseline (6.3.corrections), 46
correctInput (6.3.corrections), 46
corrections (6.3.corrections), 46
cpe (2.1.pems.structure), 11
cut, 26

dim (3.1.generic.pems.handlers), 14
dplyr, 22

em (7.2.emissions.calculations), 54
emissions (7.2.emissions.calculations),

54
example.data (9.1.example.data), 64
export.data, 3
export.data (1.2.export.data), 9
exportPEMS (1.2.export.data), 9
exportPEMS2CSV (1.2.export.data), 9
exportPEMS2TAB (1.2.export.data), 9

filter (8.1.pems.tidyverse.tools), 60
filter_.pems

(8.1.pems.tidyverse.tools), 60
findLinearOffset (4.1.merge.data.pems),

20
fitColdStart (7.3.coldstart.code), 56
fitSpeedEm (7.4.speed.em.code), 58
fortify (8.1.pems.tidyverse.tools), 60
full_join, 22
full_join (8.1.pems.tidyverse.tools), 60

generic.pems.element.handlers
(3.2.generic.pems.element.handlers),
18

generic.pems.handlers
(3.1.generic.pems.handlers), 14

getElement, 48
getPEMSConstants (2.1.pems.structure),

11
getPEMSData (2.1.pems.structure), 11
getPEMSElement, 3
getPEMSElement (2.1.pems.structure), 11
getUnits, 3, 41, 49, 53, 55
getUnits (4.4.unit.handlers), 29
group_by (8.1.pems.tidyverse.tools), 60
group_by_.pems

(8.1.pems.tidyverse.tools), 60

68 INDEX

group_size (8.1.pems.tidyverse.tools),
60

groups (8.1.pems.tidyverse.tools), 60

head (3.1.generic.pems.handlers), 14

import2PEMS, 2, 4, 10, 11
import2PEMS (1.1.make.import.data), 4
importCAGE2PEMS (1.1.make.import.data),

4
importCSV2PEMS (1.1.make.import.data), 4
importKML2PEMS (1.1.make.import.data), 4
importOB12PEMS (1.1.make.import.data), 4
importOBS2PEMS, 55
importOBS2PEMS (1.1.make.import.data), 4
importParSYNC2PEMS

(1.1.make.import.data), 4
importRoyalTek2PEMS

(1.1.make.import.data), 4
importSEMTECH2PEMS

(1.1.make.import.data), 4
importTAB2PEMS (1.1.make.import.data), 4
inner_join (8.1.pems.tidyverse.tools),

60
is.pems (1.1.make.import.data), 4
isPEMS (1.1.make.import.data), 4

lattice, 36–38
latticePlot, 3
latticePlot (5.1.pems.plots), 33
left_join (8.1.pems.tidyverse.tools), 60
listUnitConversions

(4.4.unit.handlers), 29
loa, 36–38
look-up.tables (9.2.look-up.tables), 65

makePEMS (1.1.make.import.data), 4
makePEMSElement (1.1.make.import.data),

4
merge.pems, 3, 9
merge.pems (4.1.merge.data.pems), 20
mutate (8.1.pems.tidyverse.tools), 60
mutate_.pems

(8.1.pems.tidyverse.tools), 60

n_groups (8.1.pems.tidyverse.tools), 60
na.omit (3.1.generic.pems.handlers), 14
names (3.1.generic.pems.handlers), 14
names<- (3.1.generic.pems.handlers), 14

panel.coldStartPlot1
(7.3.coldstart.code), 56

panel.coldStartPlot2
(7.3.coldstart.code), 56

panel.pemsPlot (5.1.pems.plots), 33
panel.PEMSXYPlot (5.1.pems.plots), 33
panel.routePath (5.1.pems.plots), 33
panel.WatsonBinPlot (5.1.pems.plots), 33
panel.WatsonContourPlot

(5.1.pems.plots), 33
panel.WatsonSmoothContourPlot

(5.1.pems.plots), 33
pems, 2, 4
pems (1.1.make.import.data), 4
pems.1, 3
pems.1 (9.1.example.data), 64
pems.element, 26, 32
pems.element.generics, 3
pems.element.generics

(3.2.generic.pems.element.handlers),
18

pems.generics, 3, 13
pems.generics

(3.1.generic.pems.handlers), 14
pems.plots, 3
pems.plots (5.1.pems.plots), 33
pems.scheme (9.2.look-up.tables), 65
pems.structure, 3, 17, 64
pems.structure (2.1.pems.structure), 11
pems.tidyverse, 3
pems.tidyverse

(8.1.pems.tidyverse.tools), 60
pems.units (4.4.unit.handlers), 29
pems.utils (pems.utils-package), 2
pems.utils-package, 2
pemsConstants (2.1.pems.structure), 11
pemsData, 3
pemsData (2.1.pems.structure), 11
pemsHistory (2.1.pems.structure), 11
pemsin (2.1.pems.structure), 11
pemsin2 (2.1.pems.structure), 11
pemsPlot, 3
pemsPlot (5.1.pems.plots), 33
pemsXYZCondUnitsHandler

(5.1.pems.plots), 33
plot, 19
plot

(3.2.generic.pems.element.handlers),

INDEX 69

18
plot.pems, 36
plot.pems (3.1.generic.pems.handlers),

14
plot.pems.element, 36
preprocess.pemsPlot (5.1.pems.plots), 33
preprocess.WatsonPlot (5.1.pems.plots),

33
print (3.1.generic.pems.handlers), 14
print.pems.element

(3.2.generic.pems.element.handlers),
18

pull (8.1.pems.tidyverse.tools), 60

read.csv, 6
read.delim, 6
rebuildPEMS (1.1.make.import.data), 4
ref.chem, 55
ref.chem (9.2.look-up.tables), 65
ref.diesel (9.2.look-up.tables), 65
ref.petrol (9.2.look-up.tables), 65
ref.unit.conversions, 3, 9, 30, 41, 44, 45,

49
ref.unit.conversions

(9.2.look-up.tables), 65
refDrivingMode

(4.2.referencing.pems.data), 24
refEngineOn

(4.2.referencing.pems.data), 24
referencing.pems.data, 3
referencing.pems.data

(4.2.referencing.pems.data), 24
refRow, 3
refRow (4.2.referencing.pems.data), 24
refVSPBin (7.1.vsp.code), 51
refVSPBin_MOVES.23 (7.1.vsp.code), 51
refVSPBin_NCSU.14 (7.1.vsp.code), 51
refX (4.2.referencing.pems.data), 24
regularize, 3
regularize (4.3.time.handlers), 27
rename (8.1.pems.tidyverse.tools), 60
rename_.pems

(8.1.pems.tidyverse.tools), 60
repairLocalTime (4.3.time.handlers), 27
right_join (8.1.pems.tidyverse.tools),

60
round

(3.2.generic.pems.element.handlers),
18

select (8.1.pems.tidyverse.tools), 60
select_.pems

(8.1.pems.tidyverse.tools), 60
semi_join (8.1.pems.tidyverse.tools), 60
setUnits, 3, 41, 49, 53, 55
setUnits (4.4.unit.handlers), 29
slice (8.1.pems.tidyverse.tools), 60
slice_.pems (8.1.pems.tidyverse.tools),

60
speed.em (7.4.speed.em.code), 58
speedEmPlot (7.4.speed.em.code), 58
stackPEMS (4.1.merge.data.pems), 20
subset (3.1.generic.pems.handlers), 14
summarise (8.1.pems.tidyverse.tools), 60
summarise_.pems

(8.1.pems.tidyverse.tools), 60
summary

(3.2.generic.pems.element.handlers),
18

summary.pems
(3.1.generic.pems.handlers), 14

summary.reports, 3
summary.reports

(6.4.analysis.summary.reports),
48

summaryReport
(6.4.analysis.summary.reports),
48

tail (3.1.generic.pems.handlers), 14
tAlign (4.1.merge.data.pems), 20
time.handlers (4.3.time.handlers), 27

ungroup (8.1.pems.tidyverse.tools), 60
units (3.1.generic.pems.handlers), 14
units.pems.element

(3.2.generic.pems.element.handlers),
18

units<- (3.1.generic.pems.handlers), 14
units<-.pems.element

(3.2.generic.pems.element.handlers),
18

vsp (7.1.vsp.code), 51
VSPBinPlot (7.1.vsp.code), 51
VSPPlot (7.1.vsp.code), 51

WatsonPlot (5.1.pems.plots), 33
with (3.1.generic.pems.handlers), 14

70 INDEX

XYZPlot (5.1.pems.plots), 33

zeroNegatives (6.3.corrections), 46

	pems.utils-package
	1.1.make.import.data
	1.2.export.data
	2.1.pems.structure
	3.1.generic.pems.handlers
	3.2.generic.pems.element.handlers
	4.1.merge.data.pems
	4.2.referencing.pems.data
	4.3.time.handlers
	4.4.unit.handlers
	5.1.pems.plots
	6.1.common.calculations
	6.2.common.check.functions
	6.3.corrections
	6.4.analysis.summary.reports
	7.1.vsp.code
	7.2.emissions.calculations
	7.3.coldstart.code
	7.4.speed.em.code
	8.1.pems.tidyverse.tools
	9.1.example.data
	9.2.look-up.tables
	Index

