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Abstract

pdynmc is an R-package for GMM estimation of linear dynamic panel data models
that are based on nonlinear moment conditions as proposed by Ahn and Schmidt (1995).
In addition, we allow for iterated GMM in light of recent developments in its theory.
This paper provides a description of the variety of options regarding instrument type,
covariate type, estimation methodology, and general configuration. All functionality is
demonstrated through the most popular firm-level dataset in panel data econometrics
(Arellano and Bond 1991) and we relate to other software and packages.
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ment conditions, R.

1. Introduction

The formulation of the linear dynamic panel data model accounts for dynamics and un-
observed individual-specific heterogeneity simultaneously. Due to the presence of unob-
served individual-specific heterogeneity and lagged dependent variables, applying ordinary
least squares including individual-specific dummy variables is inconsistent (see, e.g., Hsiao
2014).

A suitable alternative for obtaining parameter estimates in linear dynamic panel data models
is deriving moment conditions (or population orthogonality conditions) from the model as-
sumptions. The moment conditions may be linear (Anderson and Hsiao 1982; Holtz-Eakin,
Newey, and Rosen 1988; Arellano and Bover 1995) or quadratic (Ahn and Schmidt 1995)
in parameters and determine the natural instruments available for estimation. Usually, the
number of moment conditions exceeds the number of parameters and the moment conditions
need to be aggregated appropriately. This can be achieved by the generalized method of mo-
ments (GMM), where (weighted) linear combinations of the moment conditions are employed
to obtain parameter estimates.

Theoretical results and evidence from Monte Carlo simulations in the literature suggest that
incorporating the quadratic moment conditions proposed by Ahn and Schmidt (1995) may
prove valuable for particular data generating processes (DGPs). A relevant example in prac-
tice is when the DGP exhibits high persistence and the linear moment conditions fail to
identify the model parameters. In this situation, the quadratic moment conditions may still
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provide identification (Bun and Kleibergen 2019; Bun and Sarafidis 2015; Gørgens, Han, and
Xue 2019), and they are immediate by-products of imposing only the so-called standard as-
sumptions (henceforth SA). Furthermore, we have also been working on other theoretical and
practical aspects related to these quadratic moment conditions (Pua, Fritsch, and Schnurbus
2019a,b). These SA are the basis of the Arellano and Bond (1991) estimator, arguably the
most popular default routine in dynamic panel data estimation.

Since the moment conditions employed in GMM estimation of linear dynamic panel data
models are derived from model assumptions, a basic understanding of these assumptions is
vital for setting up a plausible estimation routine. The methodological part of this paper
briefly reviews the assumptions implied when using particular moment conditions in estima-
tion. As a result, we add to the exposition in the plm vignette, where one of its functions
pgmm is used to estimate linear dynamic panel data models as well. For further reading on
the methodology, we suggest Fritsch (2019) and the book-length treatment in Croissant and
Millo (2018).

2. Main contributions

Even though quadratic moment conditions were proposed more than 20 years ago, standard
estimation routines are generally not available across statistical software. To the best of our
knowledge, there is currently only the implementation provided by (Kripfganz 2019), called
xtdpdgmm, for the commercial statistical software Stata (StataCorp 2015) that is explicitly
designed to incorporate nonlinear moment conditions into GMM estimation. Furthermore,
the current implementation in Stata requires version 13 or higher.

Our package pdynmc provides an implementation of GMM estimation of linear dynamic panel
data models based on Holtz-Eakin et al. (1988), Arellano and Bover (1995), and Ahn and
Schmidt (1995) moment conditions in the open source statistical software R (R Core Team
2019). In contrast to routines in the existing packages plm (Croissant and Millo 2008), and
panelvar (Sigmund and Ferstl 2019), we allow the inclusion of quadratic moment conditions
into the analysis. Nevertheless, the package panelvar allows the user to perform lag selection
based on information criteria and structural analysis based on impulse response functions,
while the package plm provides a variety of functions for the estimation of static and dynamic
linear panel models, along with some random effects estimators and a number of different
specification tests. Yet another package that tries to exploit the panel data structure by
generalized estimating equations is panelr (Long 2019).

Furthermore, just like the function pgmm in the plm package, pdynmc allows the computation
of one-step and two-step closed form GMM estimators and standard specification testing such
as overidentifying restrictions tests, serial correlation tests, and Wald tests. These features
are shared by other packages implemented in Gauss, Ox (Doornik, Arellano, and Bond 2012),
R, and Stata.

More importantly, our contributed package already includes iterated GMM estimation as a
default. Recent work by Hansen and Lee (2019) have shown the merits of the iterated GMM
estimator and develop the theory under potential misspecification of moment conditions.
Unfortunately, we have not incorporated their theory into the package but would eventually
incorporate the theory to enable other researchers to use our package for simulation studies.
For the moment, this feature is still ”bleeding-edge” for the general audience. Furthermore,
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having iterated GMM for dynamic panels available may help in further work to extend results
found in, for example, Hwang and Sun (2018).

Regrettably, pdynmc is not as fast as xtdpdgmm. Some alternative R codes that have substan-
tial speed improvements are available from Phillips and Han (2019) but lack the functionality
of a full package. As a check of the current functionality of pdynmc, we estimated the model
they used as a DGP for their simulations. We simulated only one realization of their DGP,
which is a linear AR(1) dynamic panel model with one exogenous covariate with 1000 cross-
sectional units, 40 time periods. We were able to estimate the model for one realization of
their DGP in 1.5 to 2 minutes. In contrast, pgmm fails to even start. Although our compu-
tational time does not match Phillips and Han (2019), we believe this is a good start and will
continue working on speed improvements of pdynmc in future releases of the package.

The structure of the paper is as follows. Section 3 briefly sketches the linear dynamic panel
data model, states the underlying assumptions frequently used in the literature, and describes
the moment conditions arising from the model assumptions. Section 4 covers GMM estimation
of linear dynamic panel data models and illustrates the minimization criterion, and estima-
tion in one, two, or multiple steps. Section 5 outlines the computation of standard errors,
specification testing and overidentifying restrictions testing, and the testing of general linear
hypotheses. Section 6 illustrates the estimation of linear dynamic panel data models with
pdynmc for the data set of Arellano and Bond (1991) on adjustments of employment of firms
located in the United Kingdom. Section 7 concludes and sketches functionality we plan to
add to future releases of the package.

3. Linear dynamic panel data model

3.1. Model and standard assumptions

For a given dataset with cross section dimension n and time series dimension T , consider a
typical linear dynamic panel data model of the following form:

yi,t = αyi,t−1 + βxi,t + ui,t, i = 1, . . . , n; t = 2, . . . , T, (1)

ui,t = ηi + εi,t. (2)

Here yi,t and yi,t−1 denote the dependent variable and its lag, α is the lag parameter, and xi,t
is a single covariate with corresponding slope coefficient β. The second equation shows that
the model allows for a composite error term ui,t which can be separated into an unobserved
individual-specific effect ηi and an idiosyncratic remainder component εi,t.

Combining the Equations (1) and (2) yields the single equation form of the model

yi,t = αyi,t−1 + βxi,t + ηi + εi,t, i = 1, . . . , n; t = 2, . . . , T. (3)

For illustration purposes in this section, we only include one lag of the dependent variable,
one covariate, and omit unobserved time-specific effects for simplicity of exposition and no-
tational convenience. Extending the representation is straightforward and pdynmc can also
accommodate AR(p) models. The initial time period is denoted by t = 1.
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In the linear dynamic panel data literature, researchers have focsued on the following standard
assumptions, henceforth SA, (see Ahn and Schmidt 1995):

The data are independently distributed only across i, (4)

E(ηi) = 0, i = 1, ..., n,

E(εi,t) = 0, i = 1, ..., n; t = 2, ..., T,

E(εi,t · ηi) = 0, i = 1, ..., n; t = 2, ..., T,

E(εi,t · εi,s) = 0, i = 1, ..., n; t 6= s,

E(yi,1 · εi,t) = 0, i = 1, ..., n; t = 2, ..., T,

n→∞, while T is fixed, such that
T

n
→ 0.

We will assume that the SA holds for the rest of the paper. Next, we discuss how these SA
help in the estimation of the parameters of the linear dynamic panel data model.

3.2. Moment conditions from standard assumptions

The unobserved individual-specific effects ηi may be eliminated from Equation (3) by taking
first differences, i.e.,

∆yi,t = α∆yi,t−1 + β∆xi,t + ∆εi,t, i = 1, . . . , n; t = 2, . . . , T. (5)

Because the first difference of the lagged dependent variable ∆yi,t−1 = yi,t−1 − yi,t−2 and
the first difference of the idiosyncratic remainder component ∆εi,t = εi,t − εi,t−1 are not
orthogonal, using least squares to estimate Equation (5) produces inconsistent estimators.
The SA stated in Equation (4) provide a remedy.

In particular, Holtz-Eakin et al. (1988) (henceforth HNR) propose linear (in parameters)
moment conditions

E(yi,s ·∆ui,t) = 0, t = 3, . . . , T ; s = 1, . . . , t− 2. (6)

Equation (6) provides 0.5(T−1)(T−2) moment conditions. Similar moment conditions can be
derived from the covariate xi,t, depending on its exogeneity classification. Endogenous, prede-
termined, and (strictly) exogenous covariates provide the following linear moment conditions,
respectively:

E(xi,s ·∆ui,t) = 0, t = 3, . . . , T, where (7)

s = 1, . . . , t− 2, for x endogenous,

s = 1, . . . , t− 1, for x predetermined,

s = 1, . . . , T, for x strictly exogenous.

Ahn and Schmidt (1995) (henceforth AS) introduced the following T − 3 additional moment
conditions, which are also implied by SA in Equation (4):

E(ui,t ·∆ui,t−1) = 0, t = 4, . . . , T. (8)

Rewriting the equation and expressing the moment conditions in terms of parameters and
observables reveals that the AS moment conditions are quadratic in parameters.
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Parameter estimates can be obtained by stacking together the sample analogues of the pre-
viously discussed moment conditions. As a result, we have m sample moment conditions
M = 1

n

∑n
i=1 Mi. Now, suppose xit is a predetermined covariate and we want to use all the

corresponding HNR moment conditions in (6) and (7), and the AS moment conditions in
(8). Now, consider the following moment conditions on the left panel and the corresponding
vector of individual moment condition contributions on the right panel Mi to be available for
estimation:



E(yi,1 · ∆ui,3)
E(yi,1 · ∆ui,4)
E(yi,2 · ∆ui,4)
E(yi,1 · ∆ui,5)

...
E(yi,3 · ∆ui,5)

...
E(yi,T−2 · ∆ui,T )

E(xi,1 · ∆ui,3)
E(xi,2 · ∆ui,3)
E(xi,1 · ∆ui,4)

...
E(xi,3 · ∆ui,4)

...
E(xi,T−1 · ∆ui,T )

E(ui,4 · ∆ui,3)
...

E(ui,T · ∆ui,T−1)


︸ ︷︷ ︸

m×1

=



0
0

...

0

0

...

0

0
...
0



, Mi︸︷︷︸
m×1

=



yi,1 · ∆̃ui,3

yi,1 · ∆̃ui,4

yi,2 · ∆̃ui,4

yi,1 · ∆̃ui,5

...

yi,3 · ∆̃ui,5

...

yi,T−2 · ∆̃ui,T

xi,1 · ∆̃ui,3

xi,2 · ∆̃ui,3

xi,1 · ∆̃ui,4

...

xi,3 · ∆̃ui,4

...

xi,T−1 · ∆̃ui,T

ũi,4 · ∆̃ui,3

...

ũi,T · ∆̃ui,T−1



. (9)

The dashed lines separate the three different sets of moment conditions. Note that we also
distinguish the unobservable ui,t and ∆ui,t from what can be computed from the data, namely

ũi,t and ∆̃ui,t, in both panels of (9) for emphasis. Further consider decomposing the individual
moment condition contributions (seen in the right panel of (9)) into M i = Z ′i · s̃i, where Z ′i
denotes the transpose of a matrix that does not depend on parameter estimates, while the
column vector s̃i does. From the right panel of (9), we have:
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Z′i =



yi,1 0 · · · 0 0 · · · 0
0 yi,1

yi,2
0

...
...

...
...

...

0
yi,1

...
0 0 yi,T−2 0 · · · 0

xi,1 0 · · · 0 0 · · · 0
xi,2 0
0 xi,1

xi,2

xi,3

0
...

...
...

...
...

0
xi,1

...
0 0 xi,T−1 0 · · · 0

0 · · · 0 1 0 · · · 0
...

...
...

. . .
...
0

0 · · · 0 0 · · · 0 1


︸ ︷︷ ︸

m×(2T−5)

, s̃i =



∆̃ui,3

∆̃ui,4

...

∆̃ui,T

ũi,4 · ∆̃ui,3

ũi,5 · ∆̃ui,4

...

ũi,T · ∆̃ui,T−1


︸ ︷︷ ︸

(2T−5)×1

.

3.3. Moment conditions from extended assumptions

Another set of moment conditions beyond those implied by SA that is popular in theoretical
and applied research are those conditions that may be derived from the assumption that

E(∆yi,t · ηi) = 0, i = 1, . . . , n. (10)

This expression requires that the dependent variable and the unobserved individual-specific
effects are constantly correlated over time for each individual. Deviations from the assumption
are required to be unsystematic over both, the cross section and the time series dimension (see
Section 6.5 in Arellano 2003, which also provides an empirically relevant example). Blundell,
Bond, and Windmeijer (2001) state that if ∆yi,t and ηi are uncorrelated, then it places restric-
tions on the relationship between ∆xi,t and ηi. The latter is problematic from the perspective
of the SA because researchers prefer not to restrict a priori the relationship between xi,t and
ηi – which is the essence of the fixed-effects approach in dynamic panel data settings.

The assumption in (10) has been called ‘constant correlated effects’ by Bun and Sarafidis
(2015), effect stationarity by (Kiviet 2007a), or mean stationarity by (Arellano 2003). From
this assumption, we can derive T−2 additional Arellano and Bover (1995) (henceforth ABov):

E(∆yi,t−1 · ui,t) = 0, t = 3, . . . , T. (11)
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By rewriting these moment conditions, it can be shown that the ABov moment conditions
encompass the nonlinear AS moment conditions and render the latter redundant for estimation
(for a derivation see Fritsch 2019).

Additional ABov moment conditions can be derived from the covariate xi,t, depending on the
nature of the xi,t:

E(∆xi,v · ui,t) = 0, where

v = t− 1; t = 3, . . . T, for x endogenous,

v = t; t = 2, . . . , T, for x strictly exogenous or x predetermined.

Notice that no additional ABov moment conditions arise if xi,t is strictly exogenous. When
using the HNR and ABov moment conditions to estimate the linear dynamic panel data model
in Equation (3) with a predetermined explanatory variable, M i is as follows:

Z′i =



yi,1 0 · · · 0 0 · · · 0 0 · · · 0
0 yi,1

yi,2
... 0

...
...

...
...

...

0
yi,1

...
0 · · · 0 yi,T−2 0 · · · 0 0 · · · 0

xi,1 0 · · · 0 0 · · · 0 0 · · · 0
xi,2 0
0 xi,1

xi,2

xi,3

... 0
...

...
...

...
...

0
xi,1

...
0 · · · 0 xi,T−1 0 · · · 0 0 · · · 0

0 · · · 0 ∆yi,2 0 · · · 0 0 · · · 0
...

... 0 ∆yi,3
...

...
...

...
. . . 0

0 · · · 0 0 · · · 0 ∆yi,T−1 0 · · · 0

0 · · · 0 0 · · · 0 ∆xi,2 0 · · · 0

0 ∆xi,3

...
...

...
...

...
...

. . . 0
0 · · · 0 0 · · · 0 0 · · · 0 ∆xi,T


︸ ︷︷ ︸

m×(3T−5)

,

s̃′i = (∆̃ui,3, ∆̃ui,4, · · · , ∆̃ui,T ũi,3, ũi,4, · · · , ũi,T , ũi,2, ũi,3, · · · , ũi,T )︸ ︷︷ ︸
1×(3T−5)

.
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4. GMM estimation

4.1. Minimization criterion

For a given sample, GMM estimation minimizes the aggregated squared distance of the sample
moment conditions from zero and can be represented as

L2
W = M

′ ·W ·M . (12)

The index of the L2
W -norm expresses that the norm depends on the weighting matrix W and

the superscript indicates that the norm is a quadratic form. The m×m weighting matrix W
guides the aggregation of the m sample moment conditions.

Stacking the Z ′i for all cross sectional observations horizontally yields Z ′ = (Z ′1, . . . ,Z
′
n) and

concatenating the column vectors s̃i yields the vector s̃. From the notation developed in
Section 3, where the sample moment conditions are decomposed into a vector s̃ that depends
on the parameter estimates and a matrix Z that does not. Plugging these two terms into
Equation (12) gives:

L2
W =

1

n2
· s̃′Z ·W ·Z ′s̃.

Minimizing L2
W yields a GMM estimator θ̃ which depends on a choice ofW . When estimating

the linear dynamic panel data model in Equation (3) by GMM based on linear moment
conditions only, numerical optimization is not required because closed form linear estimators
are available and are programmed in pdynmc. In this situation, the closed form results are
computed and stored along with the optimization results.

When nonlinear moment conditions are used, nonlinear optimization techniques are required
to obtain coefficient estimates. By default, GMM estimation by pdynmc is based on numer-
ical optimization. To initialize the optimization procedure, starting values are drawn for all
parameter estimates from a uniform distribution over the interval [−1, 1].

For the optimization procedure, we rely on the R-package optimx (Nash and Varadhan 2011;
Nash 2014). All optimization routines implemented in optimx are available in pdynmc. Based
on our experience, the Variable Metric method (Fletcher 1970; Nash 1990) seems to work
satisfactorily in the estimation of linear dynamic panel data models. The Variable Metric
method is named BFGS in optimx and serves as the default procedure in pdynmc. In contrast,
the numerical optimization of the GMM objective function used in xtdpdgmm is based on a
Gauss-Newton technique.

4.2. One-step, two-step, and iterated GMM estimation

In practice, GMM estimation is frequently carried out iteratively. In order to start the
estimation process, an initial estimate of the weighting matrix Ŵ is required. Obviously,
plugging in different weighting matrices into Equation (12) yields varying objective function
values and different estimates for the model parameters.

Different proposals for the initial weighting matrix – with varying degrees of asymptotic
efficiency – exist in the literature (see Blundell et al. 2001) for the various types of moment
conditions which can be employed in the estimation of the linear dynamic panel data model



Markus Fritsch, Andrew Adrian Pua, Joachim Schnurbus 9

in Equation (3). Common examples involve identity or tridiagonal matrices. Generally,
the proposed weighting matrices are based on the expected variances and covariances of the
moment conditions and are derived from the underlying model assumptions. The optimal W
is proportional (up to a multiplicative constant) to the inverse of the covariance matrix of the
moment conditions (see, e.g., Arellano 2003).

A popular proposal for the initial weighting matrix Ŵ 1 of the one-step GMM estimator
(GMM1S) is

Ŵ 1 =

(
1

n
·Z ′HZ

)−1

. (13)

The structure of the matrix H varies depending on the types of moment conditions employed
in estimation. When only the HNR moment conditions are used, Arellano and Bond (1991)
propose to set the matrix to

HHNR =



2 −1 0 0 . . . 0
−1 2 −1 0

0 −1
. . .

. . .
. . .

...
...

. . .
. . . 0

2 −1
0 . . . 0 −1 2


.

The tridiagonal matrix HHNR accounts for the serial correlation in the idiosyncratic remain-
der components induced after taking first differences of Equation (3) to eliminate ηi.

When using only the ABov moment conditions in estimation, a choice forH often encountered
in practice is the identity matrix with T − 2 diagonal elements, i.e. HABov = IT−2. For the
AS moment conditions, HAS = IT−2 (see, e.g., Blundell et al. 2001; Kripfganz 2019) is the
default choice. Finally, when two different sets of moment conditions are employed, a general
representation of H is

H =

(
A B
B′ C

)
,

where the matrices A, B, and C are chosen depending on the particular moment conditions
employed in GMM estimation.

When only linear moment conditions are used, we can obtain a closed form for GMM1S θ̂1

as:

θ̂1 = (X ′ZŴ 1Z
′X)−1X ′ZŴ 1Z

′y. (14)

The matrix X contains all the first differences of the right-hand side variables, along with the
corresponding levels depending on the set of moment conditions used. Similarly, y contains
all the first differences of the left-hand side variables, along with the corresponding levels.

An estimate for the weighting matrix Ŵ 2 of the two-step GMM estimator (GMM2S) is

Ŵ 2 =

(
1

n
·Z ′ŝ1ŝ

′
1Z

)−1

, (15)
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where ŝ1 denotes the residuals from one-step estimation. In order to calculate the two-step
coefficient estimates θ̂2, Ŵ 1 needs to be replaced by the estimated two-step weighting matrix
Ŵ 2:

θ̂2 = (X ′ZŴ 2Z
′X)−1X ′ZŴ 2Z

′y. (16)

We can continue by obtaining residuals from two-step estimation, computing the third-step
weighting matrix using those residuals, and obtaining the third-step GMM estimator. If we
update the residuals until either the change in coefficient estimates from one estimation step to
the next does not exceed a certain pre-specified threshold ztol or after a pre-specified number
of maximum iterations hiter, then the result is an iterated GMM estimator.

5. Standard errors and inference

5.1. Standard errors

Asymptotic one-step standard errors for the estimated coefficients can be obtained by taking
the square root of the main diagonal elements of the estimated one-step variance covariance
matrix

Ω̂(θ̂1) = n · (X ′ZŴ 1Z
′X)−1σ̂2

1, with σ̂2
1 = ŝ′1ŝ1 ·

1

N − p
. (17)

In the formula, N is the number of observations available for estimation (i.e., n times T minus
the number of missing observations), p denotes the number of estimated coefficients, and ŝ1

are residuals from GMM1S (see Doornik et al. 2012). As stated in Windmeijer (2005), robust
one-step standard errors are available from

Ω̂r(θ̂1) = n·(X ′ZŴ 1Z
′X)−1X ′ZŴ 1Ŵ

−1

2 Ŵ 1Z
′X(X ′ZŴ 1Z

′X)−1, (18)

while asymptotic two-step standard errors can be computed from

Ω̂(θ̂2) = n · (X ′ZŴ 2Z
′X)−1. (19)

Since asymptotic two-step GMM standard errors for the estimated coefficients exhibit a down-
ward bias in small samples, they can, however, be substantially lower than one-step GMM
standard errors (see, e.g., Arellano and Bond 1991). Windmeijer (2005) relates the bias to the
dependence of the two-step weighting matrix on parameter estimates (the one-step estimates)
and proposes an analytic correction of the two-step standard errors based on a first order
Taylor-series expansion:

Ω̂c(θ̂2) =Ω̂(θ̂2) +D
θ̂2,Ŵ 2

Ω̂(θ̂2) + Ω̂(θ̂2)D′
θ̂2,Ŵ 2

(20)

+D
θ̂2,Ŵ 2

Ω̂r(θ̂1)D′
θ̂2,Ŵ 2

,

Notice that the first term is the estimated uncorrected two-step variance covariance matrix
of the coefficient estimates. The computation of the correction D

θ̂2,Ŵ 2
is involved when

multiple parameters are estimated. For a single parameter, it equals

D
θ̂2,Ŵ 2

= − 1

n
· Ω̂(θ̂2)X ′ZŴ 2

∂Ŵ
−1

(θ)

∂θ

∣∣∣∣∣
θ=θ̂1

Ŵ 2Z
′ŝ2.
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The vector ŝ2 denotes the two-step residuals and the first derivative of the weighting matrix
for two-step GMM estimation evaluated at θ̂1 can be calculated from

∂Ŵ
−1

(θ)

∂θ

∣∣∣∣∣
θ=θ̂1

= − 1

n
·Z ′(Xŝ′1 + ŝ1X

′)Z.

5.2. Specification testing

Arellano and Bond (1991) suggest a test for second order serial correlation in the idiosyncratic
remainder components. The test is generalized to higher orders j by Arellano (2003) and
can be used as a specification test in the estimation of linear dynamic panel data models.
The reasoning is that, although, first order serial correlation is present in the idiosyncratic
remainder components for GMM estimation based on first-differenced equations, no higher-
order autocorrelation beyond the first-order should prevail. The serial correlation test of
Arellano and Bond (1991) boils down to checking if the deviation of the covariance of the
residuals of period t with the residuals of period t−j from zero is large enough to indicate that
j-th order serial correlation might be present in the idiosyncratic remainder components. The
null hypothesis of the test is that there is no serial correlation in the εi,t. The corresponding
test statistics are defined as

Tmj =
r̂j
σ̂r̂j

, with Tmj

a∼ N (0, 1),

where σ̂r̂j is the standard error of the j-th order autocovariance of the residuals r̂j . For the
linear dynamic panel data model specified in Equation (3), this autocovariance of the residuals
is the sample equivalent to

rj =
1

T − 3− j
·

T∑
t=4+j

rt,j , with rt,j = E(∆si,t∆si,t−j),

the average j-th order autocovariance of the idiosyncratic remainder components (see Arellano
2003). As detailed by Arellano and Bond (1991) and Doornik et al. (2012), the corresponding
scaled autocovariance of the residuals can be calculated by

r̂t,j =
1√
n
· ŝ′t ŝt−j ,

where ŝt and ŝt−j are column vectors which may contain the residuals from one-step, two-step,
or iterated GMM estimation for all cross sectional units at the respective time period; the
index at ŝt−j indicates that the corresponding residuals are lagged j time periods. According
to Arellano and Bond (1991), the estimated variance of the j-th order autocovariance of the
residuals is available from

σ̂2
r̂j

=
1

n
·ŝ′t−j Ω̂(ŝ)ŝt−j − 2 · ŝ′t−j X(X ′ZŴZ ′X)−1X ′ZŴZ ′Ω̂(ŝ)ŝt−j +

ŝ′t−j XΩ̂(θ̂)X ′ŝt−j .

Note that the vectors of residuals ŝt, ŝt−j and the matrices Ŵ , Ω̂(ŝ), and Ω̂(θ̂) depend on
the actual estimation step and the latter two matrices also depend on the estimated type of
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variance covariance matrix (i.e., robust or asymptotic for one-step estimation; Windmeijer-
corrected or asymptotic for two-step estimation).

5.3. Overidentifying restrictions testing

When the system of equations from which the model parameters are estimated by GMM is
overidentified (i.e., when the number of moment conditions exceeds the number of parameters
to be estimated), it is possible to assess the validity of the overidentifying restrictions by
the Sargan test (Sargan 1958). The presumed null hypothesis is that the overidentifying
restrictions are valid. According to Arellano and Bond (1991) and Doornik et al. (2012), the
test statistic of the Sargan test can be computed from

TS = n · ŝ′1ZŴ 1Z
′ŝ1 · σ̂−2

1 , with TS
a∼ χ2(m− p).

Under suitable conditions, which ensure asymptotic normality of the GMM estimator and
the additional assumption of conditional homoscedasticity, the test statistic is asymptotically
χ2-distributed with m − p degrees of freedom; m equals the number of moment conditions
employed in estimation (see, e.g., Hayashi 2000).

An alternative test statistic, where a finite fourth moments assumption is imposed instead of
conditional homoscedasticity, is the J-test (Hansen 1982). The J-test statistic results from

replacing Ŵ 1 in the above formula by Ŵ 2, the one-step residuals by the two-step residuals,

TJ = n · ŝ′2ZŴ 2Z
′ŝ2, with TJ

a∼ χ2(m− p).

The idea underlying the test statistics TS and TJ is, that when the moment conditions are
valid, the sample analogues of these conditions should be close to zero. A large value of the
test statistic indicates that some of the moment conditions may be invalid, that some of the
model assumptions may be incorrect, or both (see, e.g., Hayashi 2000).

These two tests also allow us to check the validity of nested subsets of moment conditions.
These tests are referred to as ‘difference-in-Hansen’/‘difference-in-Sargan’ tests (see, e.g.,
Roodman 2009), ‘incremental Hansen’/‘incremental Sargan’ tests (see, e.g., Arellano 2003), or
C-statistics (see, e.g., Hayashi 2000). The test statistic is obtained by first estimating the null
model with a restricted set of moment conditions and the full model with more moment con-
ditions than in the null model. Then, one computes either TS or TJ for both models, and then
take the difference of these two test statistics. This difference is asymptotically χ2-distributed
with degrees of freedom equal to the difference in the number of moment conditions under
the full model and the null model (see Hayashi 2000).

5.4. Testing linear hypotheses

The Wald test is one possibility to test general linear hypotheses of the form H0 : Rθ = r,
where the matrix R is a c × p matrix, which selects the elements of the p × 1 vector of
population parameters θ required to express the left-hand side of the c equations of the null
hypothesis (i.e., the restrictions under the null) and the vector r is a c× 1 vector that states
the right-hand side of the equations. The Wald statistic can be obtained from

TW = n · (Rθ̂ − r)′
(
R Ω̂(θ̂) R′

)−1
(Rθ̂ − r), with TW

a∼ χ2(c).
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Note that the covariance matrix Ω̂(θ̂) and the estimator θ depend on the actual estimation
step and the former depends on the type of covariance matrix (i.e., robust or asymptotic for
one-step estimation; Windmeijer-corrected or asymptotic for two-step estimation). As usual,
a large value of the Wald statistic casts doubt on the null hypothesis.

Tests of three different standard null hypotheses are currently available in pdynmc: (a) all
coefficients corresponding to the lagged-dependent and covariates are zero jointly, (b) all
coefficients corresponding to the time dummies are zero jointly, or both (a) and (b).

6. Sample session

The functionality of pdynmc is illustrated by replicating some of the empirical results in
Arellano and Bond (1991). Additionally, we show how to incorporate the linear AB and
the nonlinear AS moment conditions into the analysis. We explain all arguments which
need to be set to reproduce the results and point out some alternative options. We also
draw comparisons between pdynmc, the Stata implementations xtabond2 (Roodman 2018),
xtdpdgmm (Kripfganz 2019), and the pgmm (Croissant, Millo, and Tappe 2019) function in
the R-package plm – where we are aware of differences between the implementations.

The data set employed in Arellano and Bond (1991) is an unbalanced panel of n = 140 firms
located in the UK observed over T = 9 time periods and is available from R package plm:

data(EmplUK, package = "plm")

dat <- EmplUK

dat[,c(4:7)] <- log(dat[,c(4:7)])

names(dat[,c(4:7)]) <- c("n", "w", "k", "ys")

The authors investigate employment equations and consider the dynamic specification

ni,t =α1ni,t−1 + α2ni,t−2+ (21)

β1wi,t + β2wi,t−1 + β3ki,t + β4ki,t−1 + β5ki,t−2 + β6ysi,t + β7ysi,t−1 + β8ysi,t−2+

γ3d3 + · · ·+ γTdT + ηi + εi,t, i = 1, ..., n; t = 3, ..., T.

In the equation, i denotes the firm and t is the time series dimension. The natural logarithm of
employment n is explained by its first two lags and the further explanatory variables natural
logarithm of wage w, natural logarithm of capital k, natural logarithm of output ys, and
their lags of order up to one (for w) or two (for k and ys). The variables d3, . . . , dT are time
dummies with corresponding coefficients γ3, . . . , γT ; the unobserved individual-specific effect
is represented by η, and ε is an idiosyncratic remainder component. The goal is to estimate
the lag parameters α1 and α2 and the coefficients of the further explanatory variables βj , with
j = 1, . . . , 8, while controlling for (unobserved) time effects and accounting for unobserved
individual-specific heterogeneity.

6.1. GMM estimation with HNR moment conditions

When reproducing the results in Table 4 on p.290 of Arellano and Bond (1991) with pdynmc,
the model structure underlying Equation (21) can be specified by:

m1 <- pdynmc(
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dat = dat, varname.i = "firm", varname.t = "year",

use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,

include.y = TRUE, varname.y = "emp", lagTerms.y = 2,

fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,

varname.reg.fur = c("wage", "capital", "output"),

lagTerms.reg.fur = c(1,2,2),

include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",

w.mat = "iid.err", std.err = "corrected",

estimation = "onestep", opt.meth = "none")

The first arguments relate to the data set (dat), the cross-section identifier (varname.i),
and time series dimension (varname.t). Next, the moment conditions are defined – here,
only moment conditions from equations in differences are used. The moment conditions are
derived for the dependent variable (varname.y), and for the corresponding number of lags
of the dependent variable to be included as explanatory variables (lagTerms.y). Further
explanatory variables aside from the lags of the dependent variable (fur.con) are included in
the equations in differences, not in the equations in levels (compare fur.con.diff = TRUE,

fur.con.lev = FALSE), their variable names are stated in (varname.reg.fur), their lag
structure is specified in (lagTerms.reg.fur). Note that the first element of the vector denot-
ing the lag structure corresponds to the first element of the vector with the variable names,
the second element to the second, and so on. Also note that all names given in the vectors
that refer to variables in the data set need to have the same names as in the data set. The
time dummies are included by (include.dum) into the equations in differences not in the
equations in levels (dum.diff = TRUE, dum.lev = FALSE), the dummy indicator variable is
(varname.dum). Note that time dummies can be constructed from one or multiple variables
by pdynmc by simply passing a scalar or vector with the respective variable names in the data
to varname.dum. Specifying the matrix H in Equation (13), which governs the structure of
the one-step weighting matrix, and carrying out one-step estimation can be achieved by the
commands in the last two codelines. Choosing the option iid.err uses the matrix HHNR

proposed by Arellano and Bond (1991). Alternatively, an identity matrix can be employed
for H by the option identity. Code std.err = "corrected" yields robust standard errors
for one-step estimation (in case of a two-step estimation, the correction of Windmeijer 2005
was employed by this argument).

One-step, two-step, and iterated GMM are carried out by numerical optimization of the GMM
objective function given in Equation (12). Since a closed form solution exists for the estimator
when employing only linear moment conditions, numerical optimization is not required and
can be switched off by setting opt.meth = "none".

The standard output can be accessed via summary(m1) and could be found in panel (a) of
Table 1. These reproduce the coefficient estimates in Table 4, column (a1) on p.290 of Arellano
and Bond (1991), when one specifies all arguments as stated in this section.

Changing the argument estimation to twostep yields the two-step GMM coefficient esti-
mates (the pdynmc-output object is assigned to m2) from Table 4, column (a2) on p.290 of
Arellano and Bond (1991). These results may be found in panel (b) of Table 1.

Note that the standard errors presented in column (b) of Table 1 are based on the Windmeijer-
correction and deviate from the conventional standard errors reported in Arellano and Bond
(1991). The standard errors from the original analysis can be reproduced by setting std.err
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= "unadjusted".
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Table 1: Estimates in the spirit of Table 4 in Arellano and Bond (1991)
(a) (b) (c) (d) (e)

Estimate Std.Err.rob Estimate Std.Err.rob Estimate Std.Err.rob Estimate Std.Err.rob Estimate Std.Err.rob
L1.n 0.68623*** 0.14459 0.62871** 0.19341 1.10335*** 0.05002 1.08852*** 0.07476 1.16847*** 0.06239
L2.n -0.08536 0.05602 -0.06519 0.04505 -0.10423* 0.04652 -0.05953 0.07776 -0.19362*** 0.05663
w -0.60782*** 0.17821 -0.52576*** 0.15461 -0.44828** 0.14872 -0.53856*** 0.11410 -0.21777 0.12304
L1.w 0.39262* 0.16799 0.31129 0.20300 0.42262** 0.15564 0.52214*** 0.11837 0.17753 0.12743
k 0.35685*** 0.05902 0.27836*** 0.07280 0.29027*** 0.04999 0.34252*** 0.05727 0.22181*** 0.04912
L1.k -0.05800 0.07318 0.01410 0.09246 -0.15286* 0.06704 -0.21398** 0.06679 -0.07124 0.06904
L2.k -0.01995 0.03271 -0.04025 0.04327 -0.13719*** 0.04127 -0.15273*** 0.03866 -0.12912** 0.04568
ys 0.60851*** 0.17253 0.59192*** 0.17309 0.54843** 0.19379 0.59404** 0.18922 0.29825 0.17402
L1.ys -0.71116** 0.23172 -0.56599* 0.26110 -0.66598** 0.22142 -0.77509*** 0.22750 -0.39531 0.21439
L2.ys 0.10580 0.14120 0.10054 0.16110 0.12729 0.15561 0.17620 0.15027 0.12557 0.13491
1979 0.00955 0.01029 0.01122 0.01168 0.02354* 0.01097 0.02278*** 0.00621 0.01567 0.00969
1980 0.02202 0.01771 0.02307 0.02006 0.04106* 0.01953 0.04178* 0.01800 0.02034 0.01929
1981 -0.01177 0.02951 -0.02136 0.03324 0.00215 0.03389 0.01271 0.02742 -0.04586 0.03014
1982 -0.02706 0.02928 -0.03112 0.03397 0.01762 0.02289 0.01554 0.02401 0.00703 0.02050
1983 -0.02132 0.03046 -0.01799 0.03693 0.04332* 0.01803 0.03006 0.01730 0.04808* 0.01886
1984 -0.00770 0.03141 -0.02337 0.03661 0.02912 0.02161 0.02610 0.03956 0.02236 0.02069

(a) one-step estimates; instruments for equations in first differences: L (2/8) .n,D.w, L.D.w,D.k, L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984
(b) two-step estimates; instruments for equations in first differences: L (2/8) .n,D.w, L.D.w,D.k, L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984
(c) two-step estimates; equations in first differences: L (2/8) .n,D.w, L.D.w, L2.D.w,D.k, L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984

equations in levels: L (1/7) .D.n,w, L.w, L2.w, k, L.k, L2.k, ys, L.ys, L2.ys
(d) two-step estimates; equations in first differences: L (2/8) .n, u,D.w, L.D.w, L2.D.w,D.k, L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984

equations in levels: w,L.w, L2.w, k, L.k, L2.k, ys, L.ys, L2.ys
(e) 17 step estimates; equations in first differences: L (2/8) .n,D.w, L.D.w, L2.D.w,D.k, L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984

equations in levels: L (1/7) .D.n,w, L.w, L2.w, k, L.k, L2.k, ys, L.ys, L2.ys
* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null that the coefficient is equal to zero)
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Regarding the arguments

use.mc.diff = TRUE, include.y = TRUE, include.x = FALSE

it has to be noted that the HNR moment conditions (use.mc.diff) derived from the lagged
dependent variable (include.y) are employed, while none are derived from other explanatory
variables (by default include.x = FALSE). The latter argument implies that these other
explanatory variables in the model are assumed to be exogenous and instrument themselves.

Different capabilities for testing hypotheses about the population parameters are available
in pdynmc. Among them are the tests for serial correlation in the idiosyncratic remainder
components proposed by Arellano and Bond (1991), Hansen tests, and Wald tests. In the
following, carrying out these tests and interpreting the results is briefly illustrated based on
the two-step GMM estimation results presented in column (b) of Table 1.

Employing the test for second order serial correlation of Arellano and Bond (1991) described
in Section 5.2 by m.test(m2, t.order = 2) yields:

Serial correlation test of degree 2

data: GMM Estimation; H0: no serial correlation of order 2 in epsilon

normal = -0.36744, p-value = 0.7133

The test does not reject the null hypothesis at any plausible significance level and does not
provide any indication that the model specification might be inadequate. The test statistic
and p-value are similar to xtabond2 and pgmm.

Computing the Hansen J-test of the overidentifying restrictions described in Section 5.3 by
j.test(m2) yields:

J-Test of Hansen

data: GMM Estimation; H0: overidentifying restrictions valid

chisq = 31.381, df = 25, p-value = 0.1767

The test does not reject the overidentifying restrictions and does not provide any indications
that the validity of the instruments employed in estimation may be in doubt. Comparing the
results to xtabond2 shows that the degrees of freedom and the p-value differ. We consider
25 degrees of freedom to be the appropriate number here, as 41 instruments are employed
in estimation to obtain 16 coefficient estimates. It seems that the function xtabond2 does
not correct the degrees of freedom for the number of dummies dropped in estimation1. The
difference in the p-value is due to the differences in the degrees of freedom. Our results are
equivalent to the results of pgmm for the overidentifying restrictions test. In pgmm, the above
test is referred to as ‘Sargan test’.

For the Wald test illustrated in Section 5.4, consider the null hypothesis that the popula-
tion parameters of all coefficients included in the model are zero jointly, which is tested by
wald.fct(param = "all", object = m2:

1Dummies are dropped by the estimation routine in case of high collinearity.
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Wald test

data: GMM Estimation; H0: beta = 0; tested model parameters: all

chisq = 1104.7, df = 16, p-value < 2.2e-16

The test rejects the null hypothesis. Comparing the test result to the implementation of
the test in xtabond2 – again – reveals differences concerning the degrees of freedom. We
consider 16 to be the appropriate number of degrees of freedom here, since this corresponds
to the number of estimated parameters. As noted previously, the differences seem to stem
from xtabond2 not adjusting the degrees of freedom for the dummies dropped in estimation.
Alternative hypotheses that can be tested via the Wald test in pdynmc are that all slope
parameters are zero jointly and that all parameters corresponding to the time dummies are
zero jointly (param = "time.dum" only tests the time dummies, while param = "slope" only
tests the slope parameters).

6.2. GMM estimation with HNR and ABov moment conditions

When the ‘constant correlated effects’ assumption stated in Equation (10) holds, the HNR
moment conditions from equations in differences employed in Section 6.1 can be extended by
the ABov moment conditions from equations in levels.

The ABov moment conditions are particularly useful for data generating processes, which are
highly persistent (Blundell and Bond 1998). In this case, identification by the HNR moment
conditions from equations in levels may fail and GMM estimation based on HNR moment
conditions is documented to possess poor finite sample performance (see, e.g., Blundell and
Bond 1998; Blundell et al. 2001; Bun and Sarafidis 2015).

In pdynmc, the ABov moment conditions from equations in levels can be (additionally) in-
corporated by :

use.mc.lev = TRUE

In principle, both, the time dummies and the further explanatory variables can be included
in the equations in first differences and the level equations. It is recommended, though, to
include the dummies only in one of the equations, as it can be shown that incorporating them
in both equations renders one set of dummies redundant for estimation – while for the non-
lagged dependent explanatory variables, this equivalence does not hold.2 We accommodate
non-lagged dependent explanatory variables in the levels equations by

fur.con.lev = TRUE

and use this argument together with the earlier specified ones.

In order to obtain coefficient estimates, a decision about the matrix H in the one-step weight-
ing matrix is required. When using the HNR and ABov moment conditions, the decision about
H effectively involves specifying the matrices A, B, and C in the general structure given

2Note that this is the case in balanced panels. The results may also not be numerically
identical across function calls for different choices of the one-step weighting matrix. For a dis-
cussion, see https://www.statalist.org/forums/forum/general-stata-discussion/general/1357268-system-gmm-
time-dummies.
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in Section 4.2. As mentioned, the diagonal elements A and C reflect the expected variance
covariance properties within a set of moment conditions, while B reflects the expected co-
variances across different sets of moment conditions. In the given setting, A corresponds to
the variance covariance properties of the HNR moment conditions, C to those of the ABov
moment conditions, and B to those across the HNR and ABov moment conditions. Three
different options are currently available in pdynmc to set up the weighting matrix w.mat:
iid.err, identity, and zero.cov. The first option leads to HHNR being used for A, an
identity for C, and a matrix B, such that BB′ = HHNR. Setting w.mat to identity leads
to an identity matrix being used for the diagonal matrices A and C and an adequately di-
mensioned matrix B with 1 on the diagonal3. When using the option zero.cov, the matrices
A and C are as for option iid.err, but B is set to a null matrix. In case nonlinear moment
conditions are used, the part of H which corresponds to the nonlinear moment conditions is
set to an identity for all choices of w.mat. All elements of the matrices containing the expected
covariance properties of the nonlinear moment conditions with other moment conditions are
always set to zero.

The results presented in column (c) of Table 1 are the two-step estimates of column (a2)
of Table 4 in Arellano and Bond (1991) extended by the ABov moment conditions. All ar-
guments are specified as described above. Including the ABov moment conditions into the
analysis leads to substantial changes in the coefficient estimates of the first lag of the depen-
dent variable. Note that the results indicate a markedly higher persistence of employment
and render including two lags of the dependent variable questionable (Blundell and Bond
1998, e.g., estimate a version of the equation which contains only one lag of all explanatory
variables). Note that the coefficient estimates of the explanatory variables, besides the first
lag of the dependent variable, appear to be similar across estimations.

Equivalent results to column (c) of Table 1 can be obtained from the pgmm function in the
plm-package – besides some minor numerical differences at the fifth digit. When replicating
the results with xtabond2, differences in the implementations become obvious: The instrument
set for the ABov moment conditions is extended in similar fashion to the HNR moment
conditions in xtabond2, while this is not the case in pgmm. An argument is available in
pdynmc to extend the instrument set as in xtabond2:

inst.stata = TRUE

Due to the reasons described in Section 3.3, this argument is set to FALSE per default. When
setting the option to TRUE, the results from xtabond2 and pdynmc are very close to our
results.

6.3. GMM estimation with HNR and AS moment conditions

Recall that the linear ABov moment conditions from equations in levels comprise the nonlinear
AS moment conditions and render them redundant for estimation (Blundell and Bond 1998; a
derivation is provided in Fritsch 2019). Both sets of moment conditions may be useful in GMM
estimation when the lag parameter is close to unity and it can be shown that extending the
HNR moment conditions by either the ABov- or the AS moment conditions may identify the
lag parameter – even when the individual moment conditions fail to do so (Bun and Kleibergen

3Note that the matrix B is not necessarily a quadratic matrix.
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2019; Gørgens et al. 2019). The ABov moment conditions require the ‘constant correlated
effects’ assumption, while the AS moment conditions only require standard assumptions to
hold. Therefore, the latter may be useful in situations where the ‘constant correlated effects’
assumption is in doubt and the statistician aims to investigate a highly persistent dynamic
process with a structure similar to Equation (3). In pdynmc, including nonlinear moment
conditions into the analysis is available via:

use.mc.nonlin = TRUE

When extending the analysis of Arellano and Bond (1991) by the nonlinear AS moment
conditions, the results differ substantially from column (b) of Table 1 and are very similar to
the coefficient estimates shown in column (c) of Table 1. This casts doubt on the HNR moment
conditions and may be a hint that there is high persistence in the employment process – as high
persistence leads to the lag parameters not being identified by the HNR moment conditions
(Bun and Kleibergen 2019; Gørgens et al. 2019). Note that since the unobservable error
term u (which can be expressed in terms of observable model components and parameters)
is included in the instrument set for the equations in first differences, nonlinear moment
conditions are employed in estimation. Also note that the coefficient estimates in column (d)
of Table 1 are very close to coefficient estimates obtained from xtdpdgmm.

6.4. Iterated GMM

Iterated GMM can be used, by specifying the following commands:

estimation = "iterative", max.iter = 100, iter.tol = 0.01,

When estimation = "iterative" is used, max.iter specifies the maximum number of it-
erations, iter.tol the search tolerance w.r.t. convergence. We employ max.iter = 100 and
iter.tol = 0.01. These values are the default values and can be adjusted by the user. It-
erated GMM results are shown in column (e) of Table 1. The moment conditions employed
are the same as in column (c) of the table. The parameter estimates obtained after 17 steps
are relatively similar to those in columns (c)-(d).

6.5. Starting values

If numerical optimization techniques are used, the starting for all parameters are drawn from
the uniform distribution on an interval [-1, 1] by the following commands (set as default):

start.val.lo = -1, start.val.up = 1, seed.input = 42

As usual, the seed.input ensures reproducibility. The starting values can be varied by
the user via arguments start.val.lo and start.val.up and setting custom.start.val to
TRUE.

7. Concluding remarks

The R-package pdynmc provides a function to estimate linear dynamic panel data models.
The implementation allows for general lag structures of the explanatory variables, which may
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encompass lags of the dependent variable and further explanatory variables. For estimation,
linear and nonlinear moment conditions are derived from the model assumptions; further
controls and external instruments (if available) may also be added. Estimation is carried
out by numerical optimization of the GMM objective function. Corresponding closed form
solutions are computed – where possible – and stored besides the results from numerical
optimization. The estimation routine can handle balanced and unbalanced panel data sets
and provides one-step-, two-step-, and continuously updating estimation. Accounting for
(unobserved) time-specific effects is possible by including time dummies. Different choices for
the weighting matrix, which guides the aggregation of moment conditions in one-step GMM
estimation are available. Concerning the computation of standard errors for the coefficient
estimates, the following options are currently available in pdynmc: non-robust one- and two-
step standard errors and robust one-step- and Windmeijer-corrected two-step standard errors.
Some standard hypothesis and specification tests are also available. Among them are Wald
tests, overidentifying restrictions tests and a test for serial correlation in the idiosyncratic
remainder components.

We plan to extend the package by the following features in the future:

� As mentioned in Section 2, speed improvements are a priority to enable the use of this
package in Monte Carlo simulations. In addition, once the ”bleeding-edge”features of iterated
GMM become mainstream, having a package that provides some basic functionality will be
of use.

� Incorporate further diagnostics and tests to assess the validity of the estimated specifica-
tions and the underlying moment conditions and assumptions (e.g., testing the ‘constant
correlated effects’ assumption and testing for structural breaks).

� Facilitate choosing an adequate dynamic specification by lag selection techniques.

� Include moment selection capabilities based on an appropriate criterion into GMM estimation
which allow to remove certain instruments/moment conditions.

� Expand the possible choices for the one-step weighting matrix by, e.g., the proposition in
Kiviet (2007b) for GMM estimation based on linear HNR- and ABov moment conditions.

� Implement the IV estimator solely based on the nonlinear moment conditions proposed by
Pua et al. (2019a,b).
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