Type Package

Package ‘patentsview’

October 14, 2022

Title An R Client to the PatentsView' API

Version 0.3.0
Encoding UTF-8

Description Provides functions to simplify the 'PatentsView' API
(<https://patentsview.org/apis/purpose>) query language,
send GET and POST requests to the API's seven endpoints, and parse the data
that comes back.

URL https://docs.ropensci.org/patentsview/index.html

BugReports https

://github.com/ropensci/patentsview/issues

License MIT + file LICENSE

LazyData TRUE

Depends R (>=3.1)

Imports httr, jsonlite, utils

Suggests knitr, rmarkdown, testthat, tidyr

RoxygenNote 7.1.1

NeedsCompilation no

Author Christopher Baker [aut, cre]

Maintainer Christopher Baker <chriscrewbaker@gmail.com>

Repository CRAN

Date/Publication 2021-09-25 04:30:02 UTC

R topics documented:

cast_pv_data

fieldsdf .

get_endpoints L L e e e e e e

get_fields
get_ok_pk

https://patentsview.org/apis/purpose
https://docs.ropensci.org/patentsview/index.html
https://github.com/ropensci/patentsview/issues

2 cast_pv_data

gry_funso e e 6
search_pv e 7
unnest_pv_data L. oL e e e e e 10
with_qfuns L 11
Index 12
cast_pv_data Cast PatentsView data
Description

This will cast the data fields returned by search_pv so that they have their most appropriate data
types (e.g., date, numeric, etc.).

Usage

cast_pv_data(data)

Arguments
data The data returned by search_pv. This is the first element of the three-element
result object you got back from search_pv. It should be a list of length 1, with
one data frame inside it. See examples.
Value

The same type of object that you passed into cast_pv_data.

Examples
Not run:

fields <- c("patent_date”, "patent_title"”, "patent_year")
res <- search_pv(query = "{\"patent_number\":\"5116621\"}", fields = fields)
cast_pv_data(data = res$data)

End(Not run)

fieldsdf 3

fieldsdf Fields data frame

Description

A data frame containing the names of retrievable and queryable fields for each of the 7 API end-
points. A yes/no flag (can_query) indicates which fields can be included in the user’s query. You
can also find this data on the API’s online documentation for each endpoint as well (e.g., the patents
endpoint field list table)

Usage

fieldsdf

Format

A data frame with 992 rows and 7 variables:

endpoint The endpoint that this field record is for
field The name of the field
data_type The field’s data type (string, date, float, integer, fulltext)

can_query An indicator for whether the field can be included in the user query for the given end-
point

group The group the field belongs to
common_name The field’s common name

description A description of the field

get_endpoints Get endpoints

Description

This function reminds the user what the 7 possible PatentsView API endpoints are.

Usage

get_endpoints()

https://patentsview.org/apis/api-endpoints/patents
https://patentsview.org/apis/api-endpoints/patents

4 get_fields

Value

A character vector with the names of the 7 endpoints. Those endpoints are:

* assignees

* cpc_subsections

e inventors

e locations

* nber_subcategories
* patents

* uspc_mainclasses

Examples

get_endpoints()

get_fields Get list of retrievable fields

Description

This function returns a vector of fields that you can retrieve from a given API endpoint (i.e., the
fields you can pass to the fields argument in search_pv). You can limit these fields to only cover
certain entity group(s) as well (which is recommended, given the large number of possible fields for
each endpoint).

Usage

get_fields(endpoint, groups = NULL)

Arguments
endpoint The API endpoint whose field list you want to get. See get_endpoints for a
list of the 7 endpoints.
groups A character vector giving the group(s) whose fields you want returned. A value
of NULL indicates that you want all of the endpoint’s fields (i.e., do not filter
the field list based on group membership). See the field tables located online to
see which groups you can specify for a given endpoint (e.g., the patents endpoint
table), or use the fieldsdf table (e.g., unique(fieldsdf[fieldsdf$endpoint
== "patents”, "group”])).
Value

A character vector with field names.

https://patentsview.org/apis/api-endpoints/patents
https://patentsview.org/apis/api-endpoints/patents

get_ok_pk 5

Examples

Get all assignee-level fields for the patents endpoint:
fields <- get_fields(endpoint = "patents"”, groups = "assignees")

#...Then pass to search_pv:
Not run:

search_pv(
query = '{"_gte":{"patent_date":"2007-01-04"3}}",
fields = fields

)

End(Not run)
Get all patent and assignee-level fields for the patents endpoint:
fields <- get_fields(endpoint = "patents”, groups = c("”assignees”, "patents"”))

Not run:

#...Then pass to search_pv:

search_pv(
query = '"{"_gte":{"patent_date":"2007-01-04"3}}",
fields = fields

)

End(Not run)

get_ok_pk Get OK primary key

Description

This function suggests a value that you could use for the pk argument in unnest_pv_data, based

on the endpoint you searched. It will return a potential unique identifier for a given entity (i.e., a

given endpoint). For example, it will return "patent_number" when endpoint = "patents”.
Usage

get_ok_pk(endpoint)

Arguments

endpoint The endpoint which you would like to know a potential primary key for.

Value

The name of a primary key (pk) that you could pass to unnest_pv_data.

6 qry_funs

Examples
get_ok_pk(endpoint = "inventors”) # Returns "inventor_id"
get_ok_pk(endpoint = "cpc_subsections”) # Returns "cpc_subsection_id"
gry_funs List of query functions
Description

A list of functions that make it easy to write PatentsView queries. See the details section below for
a list of the 14 functions, as well as the writing queries vignette for further details.
Usage

gry_funs

Format

An object of class 1ist of length 14.

Details

1. Comparison operator functions

There are 6 comparison operator functions that work with fields of type integer, float, date, or string:

* eq - Equal to

* neq - Not equal to

e gt - Greater than

* gte - Greater than or equal to
e 1t - Less than

* 1te - Less than or equal to
There are 2 comparison operator functions that only work with fields of type string:

* begins - The string begins with the value string

* contains - The string contains the value string
There are 3 comparison operator functions that only work with fields of type fulltext:

* text_all - The text contains all the words in the value string
* text_any - The text contains any of the words in the value string

* text_phrase - The text contains the exact phrase of the value string

https://docs.ropensci.org/patentsview/articles/writing-queries.html

search_pv
2. Array functions

There are 2 array functions:

* and - Both members of the array must be true

* or - Only one member of the array must be true

3. Negation function

There is 1 negation function:

* not - The comparison is not true

Value

An object of class pv_query. This is basically just a simple list with a print method attached to it.

Examples

gry_funs$eq(patent_date = "2001-01-01")

gry_funs$not(qry_funs$eq(patent_date = "2001-01-01"))

search_pv Search PatentsView

Description

This function makes an HTTP request to the PatentsView API for data matching the user’s query.

Usage
search_pv/(
query,
fields = NULL,
endpoint = "patents”,

subent_cnts = FALSE,
mtchd_subent_only = TRUE,

per_page = 25,
all_pages = FALSE,
sort = NULL,

method = "GET",
error_browser = NULL,

8

Arguments
query
fields
endpoint

subent_cnts

search_pv

The query that the API will use to filter records. query can come in any one of
the following forms:

* A character string with valid JSON.
E.g., '{"_gte":{"patent_date”:"2007-01-04"3}}'

¢ A list which will be converted to JSON by search_pv.

E.g., list("_gte" = 1list("patent_date” = "2007-01-04"))

* An object of class pv_query, which you create by calling one of the func-
tions found in the qry_funs list...See the writing queries vignette for de-
tails.

E.g., qry_funs$gte(patent_date = "2007-01-04")

A character vector of the fields that you want returned to you. A value of
NULL indicates that the default fields should be returned. Acceptable fields for a
given endpoint can be found at the API’s online documentation (e.g., check out
the field list for the patents endpoint) or by viewing the fieldsdf data frame
(View(fieldsdf)). You can also use get_fields to list out the fields available
for a given endpoint.

The web service resource you wish to search. endpoint must be one of the
following: "patents", "inventors", "assignees", "locations", "cpc_subsections",
"uspc_mainclasses", or "nber_subcategories".

Do you want the total counts of unique subentities to be returned? This is equiv-
alent to the include_subentity_total_counts parameter found here.

mtchd_subent_only

page
per_page

all_pages

sort

method

error_browser

Do you want only the subentities that match your query to be returned? A value
of TRUE indicates that the subentity has to meet your query’s requirements in
order for it to be returned, while a value of FALSE indicates that all subentity data
will be returned, even those records that don’t meet your query’s requirements.
This is equivalent to the matched_subentities_only parameter found here.

The page number of the results that should be returned.

The number of records that should be returned per page. This value can be as
high as 10,000 (e.g., per_page = 10000).

Do you want to download all possible pages of output? If all_pages = TRUE,
the values of page and per_page are ignored.

A named character vector where the name indicates the field to sort by and
the value indicates the direction of sorting (direction should be either "asc" or
"desc"). For example, sort = c("patent_number” = "asc") or

sort = c("patent_number"” = "asc”, "patent_date” = "desc"”). sort = NULL
(the default) means do not sort the results. You must include any fields that you
wish to sort by in fields.

The HTTP method that you want to use to send the request. Possible values
include "GET" or "POST". Use the POST method when your query is very long
(say, over 2,000 characters in length).

Deprecated
Arguments passed along to httr’s GET or POST function.

https://docs.ropensci.org/patentsview/articles/writing-queries.html
https://patentsview.org/apis/api-endpoints/patents
https://patentsview.org/apis/api-query-language
https://patentsview.org/apis/api-query-language

search_pv 9

Value
A list with the following three elements:

data A list with one element - a named data frame containing the data returned by the server. Each
row in the data frame corresponds to a single value for the primary entity. For example, if
you search the assignees endpoint, then the data frame will be on the assignee-level, where
each row corresponds to a single assignee. Fields that are not on the assignee-level would be
returned in list columns.

query_results Entity counts across all pages of output (not just the page returned to you). If you
set subent_cnts = TRUE, you will be returned both the counts of the primary entities and the
subentities.

request Details of the HTTP request that was sent to the server. When you set all_pages = TRUE,
you will only get a sample request. In other words, you will not be given multiple requests for
the multiple calls that were made to the server (one for each page of results).

Examples

Not run:
search_pv(query = '"{"_gt":{"patent_year":2010}}"')

search_pv(
query = gry_funs$gt(patent_year = 2010),
fields = get_fields("patents”, c("patents”, "assignees"))

)

search_pv(
query = gry_funs$gt(patent_year = 2010),
method = "POST",
fields = "patent_number”,
sort = c("patent_number” = "asc")

)

search_pv(
query = gry_funs$eq(inventor_last_name = "crew"),
all_pages = TRUE

)

search_pv(
query = gry_funs$contains(inventor_last_name = "smith"),
endpoint = "assignees”

)

search_pv(
query = gry_funs$contains(inventor_last_name = "smith"),
config = httr::timeout(40)

)

End(Not run)

10 unnest_pv_data

unnest_pv_data Unnest PatentsView data

Description

This function converts a single data frame that has subentity-level list columns in it into multiple
data frames, one for each entity/subentity. The multiple data frames can be merged together using
the primary key variable specified by the user (see the relational data chapter in "R for Data Science"
for an in-depth introduction to joining tabular data).

Usage

unnest_pv_data(data, pk = get_ok_pk(names(data)))

Arguments

data The data returned by search_pv. This is the first element of the three-element
result object you got back from search_pv. It should be a list of length 1, with
one data frame inside it. See examples.

pk The column/field name that will link the data frames together. This should be
the unique identifier for the primary entity. For example, if you used the patents
endpoint in your call to search_pv, you could specify pk = "patent_number”.
This identifier has to have been included in your fields vector when you
called search_pv. You can use get_ok_pk to suggest a potential primary key
for your data.

Value

A list with multiple data frames, one for each entity/subentity. Each data frame will have the pk
column in it, so you can link the tables together as needed.

Examples
Not run:
fields <- c("patent_number”, "patent_title”, "inventor_city"”, "inventor_country")
res <- search_pv(query = '{"_gte":{"patent_year"”:2015}}', fields = fields)
unnest_pv_data(data = res$data, pk = "patent_number™)

End(Not run)

https://r4ds.had.co.nz/relational-data.html

with_qfuns 11

with_gfuns With qry_funs

Description

This function evaluates whatever code you pass to it in the environment of the qry_funs list.
This allows you to cut down on typing when writing your queries. If you want to cut down on
typing even more, you can try assigning the qry_funs list into your global environment with:
list2env(gry_funs, envir = globalenv()).

Usage

with_qgfuns(code, envir = parent.frame())

Arguments

code Code to evaluate. See example.

envir Where should R look for objects present in code that aren’t present in qry_funs.
Value

The result of code - i.e., your query.

Examples

Without with_gfuns, we have to do:
gry_funs$and(
gry_funs$gte(patent_date = "2007-01-01"),
gry_funs$text_phrase(patent_abstract = c(”"computer program”)),
gry_funs$or(
gry_funs$eq(inventor_last_name = "ihaka"),
gry_funs$eq(inventor_first_name = "chris")
)
)

#...With it, this becomes:
with_gfuns(
and(
gte(patent_date = "2007-01-01"),
text_phrase(patent_abstract = c("computer program")),

or(
eq(inventor_last_name = "ihaka"),
eq(inventor_first_name = "chris")
)

)
)

Index

x datasets
fieldsdf, 3
gry_funs, 6

cast_pv_data, 2
fieldsdf, 3

GET, 8
get_endpoints, 3, 4
get_fields, 4,8
get_ok_pk, 5, 10
POST, 8
gry_funs, 6,8, 11
search_pv, 2,4,7, 10

unnest_pv_data, 5, 10

with_qgfuns, 11

12

	cast_pv_data
	fieldsdf
	get_endpoints
	get_fields
	get_ok_pk
	qry_funs
	search_pv
	unnest_pv_data
	with_qfuns
	Index

