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The R package openCR fits both non-spatial and spatial capture–recapture models to data from open
animal populations, where there is turnover during sampling. The interface generally resembles that of secr

(Efford 2022a) upon which openCR depends for some functions. This document explains the purpose and
general features of openCR. Help pages should be consulted for more detail on particular functions. The
vignette openCR-kernel.pdf explains the intricacies of movement kernels (see also Efford and Schofield 2022).
Worked examples using published datasets are given in another vignette openCR-examples.pdf1. The spatial
model was described by Efford and Schofield (2020).

This is still something of a work in progress, so be careful to check results ‘make sense’ and be aware of
limitations.

1 Outline

1.1 Model types

openCR fits nonspatial open-population models of the Cormack-Jolly-Seber (CJS) and Jolly-Seber-Schwarz-
Arnason (JSSA2 or ‘POPAN’) types. JSSA models are offered in both full and conditional likelihood forms,

1These supplementary vignettes are not included with the package. It is intended to distribute them on the website
https://www.otago.ac.nz/density/. Otherwise contact the author.

2As far as I know, this abbreviation was first used by Pledger et al. (2010). Recognising the contributions of Crosbie and
Manly, Schofield and Barker (2009) and Cowen et al. (2010) referred to it the Crosbie-Manly-Arnason-Schwarz (CMAS) model.
Link and Barker (2010) used ‘Crosbie-Manly-Schwarz-Arnason’ (CMSA) for the same model. CMSA has since been used by
various authors, including Schofield and Barker (2016). JSSA is used in openCR because this highlights its evolution from the
widely known Jolly-Seber model. POPAN refers to the software of Schwarz and Arnason (1996), recycled as the name of a data
type in MARK.
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each with several parameterizations of recruitment, and incorporating Pollock’s robust design. Conditional-
likelihood JSSA models are also called Pradel–Link–Barker (PLB) models. Pradel analyses are also provided.

Spatial versions of the CJS and JSSA model types are also provided3. The spatial models allow for ‘multi’,
‘proximity’ or ‘count’ detectors as defined in secr. Several functions are implemented for the decline in hazard
of detection with distance. Movement between primary sessions may be modelled (cf Ergon and Gardner
2014; Glennie et al. 2019), but particular care is needed, especially with respect to kernel truncation.

1.2 Data

Data are assumed to be from a robust design. Secondary sampling sessions are nested within primary sessions
and all turnover (births, deaths, immigration or emigration) is between primary sessions (Pollock 1982).
There may be a single secondary session per primary session (this limits identifiability of some parameters).

1.3 Model specification and fitting

Models are specified using formula notation as in secr. Possible predictors include both pre-defined variables
for learned responses, trend over time, etc., and user-provided covariates. Models are fitted by numerically
maximizing the log likelihood. The likelihood is formed as a product over capture histories (Pledger at
al. 2010) rather than from summary statistics. The fitted model is an object of class ‘openCR’ for which
generic methods are implemented (print, predict, AIC, plot etc.).

Variation in a parameter between primary sessions is modelled as e.g., model = phi ~ session4.
Within-session variation in detection parameters may also be modelled (see field vole example in
openCR-examples.pdf).

1.4 Parameterization

A selection of parameterizations is offered for recruitment in JSSA models. Models can also be parameterized
in terms of the time-specific population size (non-spatial models) or density (spatial models), avoiding the
super-population parameter.

Super-population size (or density in the case of secr models) may be computed as a derived parameter from
‘CL’ models with the function derived(), which also computes time-specific population sizes and densities.

1.5 Features and limitations

openCR has definite limitations that may or may not be addressed in future versions. Important differences
between secr and openCR are noted here. Online help is not guaranteed: users should attempt to solve
their own problems, or seek help from other users via phidot or secrgroup.

2 Dipper example

We start with a simple nonspatial example. Lebreton et al. (1992) demonstrated Cormack-Jolly-Seber
methods with a dataset on European Dipper (Cinclus cinclus) collected by Marzolin (1988). The object
dipperCH distributed with openCR provides these data in the secr ‘capthist’ format. See the Examples
section of its help page ?dipperCH for code to input the data from other sources.

library(openCR) # also loads secr

options(digits = 4, width = 90) # for more readable output

Dippers were captured annually over 1981–1987.

3A direct spatial implementation of CJS fails because the distribution of detected animals is not uniform at first detection,
but rather biased towards the vicinity of the detectors. Set details = list(CJSp1 = TRUE) to model first detections and get
sensible estimates (model type ‘CJSsecr’).

4This is equivalent of ~t in Lebreton et al. (1992) or ~time in RMark, and openCR recognises ~ t as a synonym of ~

session.
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m.array(dipperCH, never.recap = T) # compare Lebreton et al. 1992 Table 10

## R 1982 1983 1984 1985 1986 1987 NRecap

## 1981 22 11 2 0 0 0 0 9

## 1982 60 24 1 0 0 0 35

## 1983 78 34 2 0 0 42

## 1984 80 45 1 2 32

## 1985 88 51 0 37

## 1986 98 52 46

## 1987 93 93

We can fit a Cormack-Jolly-Seber model directly with openCR.fit and display the estimates:

dipper.phi.t <- openCR.fit(dipperCH, type = 'CJS', model = phi~t)

predict(dipper.phi.t)

## $p

## session estimate SE.estimate lcl ucl

## 1 1981 NA NA NA NA

## 2 1982 0.9021 0.02906 0.8286 0.9461

## 3 1983 0.9021 0.02906 0.8286 0.9461

## 4 1984 0.9021 0.02906 0.8286 0.9461

## 5 1985 0.9021 0.02906 0.8286 0.9461

## 6 1986 0.9021 0.02906 0.8286 0.9461

## 7 1987 0.9021 0.02906 0.8286 0.9461

##

## $phi

## session estimate SE.estimate lcl ucl

## 1 1981 0.6258 0.11165 0.3965 0.8098

## 2 1982 0.4542 0.06662 0.3295 0.5849

## 3 1983 0.4784 0.05845 0.3669 0.5921

## 4 1984 0.6244 0.05703 0.5079 0.7281

## 5 1985 0.6079 0.05483 0.4970 0.7088

## 6 1986 0.5833 0.05721 0.4688 0.6895

## 7 1987 NA NA NA NA

plot(dipper.phi.t, par = 'phi', ylim = c(0,1), pch = 16, col = 'red')

Session

ph
i

1981 1983 1985 1987

0.0

0.2

0.4

0.6

0.8

1.0

From this example you can see some of the virtues of openCR

• accessible data summaries
• compact model specification
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• direct plotting and tabulation of results.

See openCR-examples.pdf for more extensive analyses of this dataset.

3 A brief survey of open population capture–recapture models

There is a large literature on open-population capture–recapture modelling. Almost all modern models derive
from the Cormack-Jolly-Seber (CJS) or Jolly-Seber (JS) models (Seber 1982), with refinements by Crosbie
and Manly (1985), Schwarz and Arnason (1996), Pradel (1996) and others. The MARK software (White and
Burnham 1999) implemented many of these developments and remains the standard. This section describes
differences among models as they relate to openCR.

3.1 CJS vs JS

The split between the CJS and JS model lineages is fundamental. CJS models do not model the first capture
of each animal; they condition on that capture and model subsequent recapture probabilities p and apparent
survival φ. CJS estimates of apparent survival are robust and useful (Lebreton et al. 1992), but CJS models
stop short of estimating abundance, recruitment or population trend.

JS models model the first capture of each animal, and lead either directly or indirectly to estimates of
abundance and recruitment. The modern development of JS methods rests heavily on Schwarz and Arnason
(1996), so openCR follows Pledger et al. (2010) in using the label ‘JSSA’. JSSA models were the basis of
the POPAN software, which led to the POPAN data type in MARK. JSSA models are the main focus of
openCR.

3.2 Parameterization of recruitment in JSSA models

The JSSA model appears in several different forms whose unity is obscured by differing parameterizations
of recruitment. The classic POPAN formulation uses entry probabilities: the members of a notional
superpopulation enter the population with time-specific probability βj (PENT in MARK), an idea from
Crosbie and Manly (1985). Other parameterizations are

• number of new entrants at each time j
• per capita fecundity (new entrants at time j scaled by 1/number in population at j − 1)
• seniority (reverse-time survival Pradel 1996, Nichols 2016)
• population growth rate λ
• (relative) number in population at each time j

Estimates of recruitment or implied recruitment from any one of these six parameterizations can be used to
infer the others5. The choice of parameterization rests on which is more natural for the problem in hand (and
allows the desired constraints to be applied) and on practicalities (some are more likely to give numerical
problems than others).

Schwarz (2001) is illuminating (see also chapter on Jolly-Seber models by Schwarz and Arnason in the MARK
book, Cooch and White 2019). Pradel (1996), Williams, Nichols and Conroy (2002: p.518 et seq.), Pledger et
al. (2003, 2010) and Link and Barker (2005) also comment on and compare JS parameterizations. See also
the MARK help page on ‘Recruitment Parameters in Jolly-Seber models’ (‘Recruitment Parameters’ in the
help index).

3.3 Conditional (PLB) vs full likelihood JSSA

For each JSSA recruitment parameterization there is a choice between models that include the total number of
detected individuals (u· or n in different notations), and models that condition on this number. Conditional-
likelihood models do not directly estimate abundance; abundance is estimated as a derived parameter (Schwarz
and Arnason 1996). Full-likelihood models include abundance as a parameter. The choice of formulation

5except for some mostly trivial differences relating to removals
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has virtually no effect on the parameter estimates6. The conditional likelihood form is somewhat faster and
easier to fit (Schwarz and Arnason 1996), and it focuses on parameters that are estimated robustly (apparent
survival, seniority, population growth rate).

The conditional models discussed by Pradel (1996), Link and Barker (2005), Schofield and Barker (2016) and
others lack a distinguishing label to indicate their collective similarity. The label Pradel–Link–Barker PLB
was suggested by Efford and Schofield (2020).

3.4 Sufficient statistics vs capture histories

Historically the CJS and JS likelihoods have been expressed in terms of ‘sufficient statistics’ that are time-
specific counts of animals in different categories, such as the number caught, the number marked etc. This
approach is used in the openCR function JS.direct and with the Pradel model type in openCR.fit. The
likelihood may also be computed as a product over terms, one for each observed capture history7. Modelling
of individual capture histories, is slower, but it is extremely flexible, allowing direct inclusion of censoring,
learned responses, individual covariates, secondary sessions and other extensions. This is the approach used
in MARK and openCR.fit.

3.5 Robust design

Most published formulations of CJS and JSSA models admit only one secondary session per primary session.
Data collected according to a robust design with multiple secondary sessions must be collapsed to a single
sample per primary session. However, it is simple to adapt the capture-history models for multiple secondary
occasions, and this makes better use of the data. MARK offers many specific robust design models. A robust
design is assumed in openCR; data with a single secondary session per primary session are merely a special
case.

3.6 Spatial vs nonspatial

Models may be spatially explicit or not. Nonspatial models ignore the spatial distribution of animals. Spatial
models use the spatially explicit capture–recapture paradigm of Efford (2004), Borchers and Efford (2008) and
Royle et al. (2014). Open population spatial models using MCMC were published by Gardner et al. (2010),
Chandler and Clark (2014), Ergon and Gardner (2014), Whittington and Sawaya (2015) and others. Glennie
et al. (2019) proposed a frequentist hidden Markov formulation. The spatial models in openCR are described
by Efford and Schofield (2020) and provide very similar estimates to those of Glennie et al. (2019).

There are three major motivations for open spatial models

• allowance for varying extent of sampling area
• modelling of individual heterogeneity due to differential access to detectors
• separation of emigration and mortality

openCR fits spatial analogues of CJS and JSSA models by maximizing the likelihood. The abundance
parameter is density D (animals per hectare) rather than population size N .

Recruitment in spatial models may be modelled using parameterizations to those described above for
non-spatial models, replacing ‘number’ by ‘density’. The locations at which animals recruit are not modelled.

3.7 Home-range shifts between primary sessions

By definition, the interval between primary sessions is long enough for turnover due to births and deaths. It
is also possible that resident animals shift their home ranges (i.e. disperse). Spatial models may either ignore
such movement (Gardner et al. 2010, Chandler and Clark 2014, Whittington and Sawaya 2015) or attempt to
model it (Ergon and Gardner 2014). There are good arguments for modelling movement:

6this may not be true for spatial models with spatially varying density, but these models are not considered in openCR.
7strictly, the product over observed histories is only one component of the likelihood
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• Movement that is ignored inflates estimates of the within-session scale of detection σ, with flow-on
effects on demographic parameters.

• If the distribution of dispersal distances can be inferred from the detection histories of residents then it is
possible in principle to separate actual mortality from losses due emigration (Ergon and Gardner 2014).
However, the robustness and data requirements of movement models have yet to be fully understood.

4 Data structure and input

Data should be provided to openCR.fit as secr ‘capthist’ objects. The occasions of a single-session8 dataset
are treated as open-population temporal samples. For spatial analyses, the capthist object should use a point
detector type (‘multi’, ‘proximity’ or ‘count’).

openCR mostly uses the terminology of primary and secondary sessions (Pollock 1982) rather than ‘session’
and ‘occasions’ as in secr. Where ‘session’ appears without qualifier it refers to a primary session composed
of one or more secondary sessions.

The optional intervals attribute of the capthist object defines the structure. If intervals are not specified
then they default to 1.0 and each occasion is treated as a primary session. If intervals are specified then
some may be zero; occasions separated by ‘zero’ intervals are treated as secondary sessions within the same
primary session, as in MARK.

1 2 3 4 5 1 2 3 4 1 2 3 1 2 3 4 5

session 1 session 2 session 3 session 4

join()

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0intervals

Fig. 1. Structure of data for open-population analysis in openCR. Primary sessions initially correspond
to the sessions (components) of a multi-session secr capthist object; each primary session may have one
or more secondary sessions as numbered (top). For model fitting in openCR.fit the multi-session capthist
is ‘joined’ to form a single-session capthist with an ‘intervals’ attribute; non-zero intervals indicate breaks
between primary sessions (bottom). The join step is automatic when a multi-session capthist is provided to
openCR.fit if stratified = FALSE. (See Appendix 1 for code to make this figure).

To construct your own capthist objects –

1. Consult secr-datainput.pdf, or
2. Convert a dataframe in RMark input format using secr::unRMarkInput, or
3. Read a MARK .inp input file with read.inp.

Examples of data input code also appear on the help pages for data objects FebpossumCH, fieldvoleCH,
microtusCH and dipperCH.

A multi-session capthist object will be converted automatically to a single-session object using function
secr::join unless stratified = TRUE (see below). An appropriate intervals attribute is constructed, using

8The terms ‘single-session’ and ‘multi-session’ are here used in the secr sense (secr-multisession). openCR uses these data
structures, but interprets them differently as explained here.
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the intervals attribute of the multi-session object for the intervals between primary sessions (1.0 if not
specified), and setting other intervals to zero.

Table 1. Input formats for openCR 2.2

Input stratified Interpretation

single-session capthist not used secondary sessions split into primary sessions by ‘intervals’
multi-session capthist FALSE single stratum (each ‘session’ is one primary session)
multi-session capthist TRUE multi-stratum (each ‘session’ is one stratum)

4.1 Stratification

From openCR 2.0 onwards any model may be stratified. For stratified models (stratified = TRUE in
openCR.fit) each session of a multi-session capthist object is interpreted as an independent stratum that
contributes one component of the log likelihood. Each stratum (session) has its own detectors and capture
data. This assumes that primary sessions within each stratum have previously been joined manually in a
nominally ‘single-session’ capthist. The function stratify helps you construct stratified capthist objects
from collections of single-session objects.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0

stratum 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0

stratum 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 1 0 0 1 0 0 0 1 0 0 0

stratum 3

Fig. 2. Structure of data for stratified open-population analysis in openCR. Each stratum is a pre-joined
(single-session) component of a multi-session capthist object. The internal structure and detector may differ
between strata.

Stratified models may use ‘stratum’ as a factor-valued predictor. Groups of strata may be contrasted using
stratum-level covariates as described later.

5 Model types

The various models available in openCR are named to encode the distinctions made in the ‘Brief survey’.
Names are formed by concatenating four components:

1. ‘CJS’ vs ‘JSSA’
2. Spatial (‘secr’) vs non-spatial (default, blank)
3. JSSA recruitment parameterization (‘f’,‘l’,‘b’,‘g’,‘BN’,‘BD’,‘N’,‘D’ - see following)
4. JSSA likelihood conditional (‘CL’) vs full (default, blank)
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Thus ‘JSSAsecrfCL’ is a spatial JSSA model parameterized in terms of per capita recruitment f and fitted
by maximizing the conditional likelihood (a spatial version of Link and Barker (2005), minus parameter
covariation). Any movement model is specified separately with the ‘movementmodel’ argument of openCR.fit.

Models of the form ‘JSSA. . . CL’ are variations on the Pradel–Link–Barker models. openCR 2.2 recognises
labels of the form ‘PLB. . . ’ as an alias for each of these models. Thus ‘PLBf’ is synonymous with ‘JSSAfCL’,
and ‘PLBsecrl’ is synonymous with ‘JSSAsecrlCL’.

Parameters vary with the type of model, as listed below. Each of these primary parameters (‘real’ parameters
in MARK) may also be modelled as a linear combination of predictors on a suitable link scale, allowing the
inclusion of covariates and constraints. The coefficients of the parameter-specific linear combinations are
called ‘beta’ parameters in MARK; the likelihood is maximized with respect to the concatenated list of beta
parameters.

5.1 Non-spatial openCR models

5.1.1 Parameters and model types

Table 2. Parameter definitions and default link functions (nonspatial models)

Parameter Symbol Link Description

p p logit capture probability (recapture probability for CJS)
phi* φ logit apparent survival
b b mlogit entry probability cf PENT in MARK
f* f log per capita recruitment rate
gamma* γ logit seniority (Pradel 1996)
lambda* λ log population growth rate (finite rate of increase)
superN N log superpopulation size
BN BN log number of entrants
N Nj log time-specific population size

* parameters marked with an asterisk are scaled by the interval between primary sessions.

Table 3. Parameters of nonspatial openCR models

Type Alias p phi b f gamma lambda superN BN N

CJS + +
JSSAbCL PLBb + + +
JSSAfCL PLBf + + +
JSSAgCL PLBg + + +
JSSAlCL PLBl + + +
JSSAb + + + +
JSSAf + + + +
JSSAg + + + +
JSSAl + + + +
JSSAB + + +
JSSAN + + +

Models with type ending in CL are of the Pradel–Link–Barker type, with aliases as shown.

5.1.2 Non-spatial models using sufficient statistics

openCR mostly fits models by modelling capture histories one-by-one. An alternative faster method is to
evaluate the likelihood expressed in terms of sufficient statistics. Sufficient statistics vary among models, but
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they are typically counts such as provided by the function JS.counts. The ‘sufficient statistics’ approach is not
compatible with individual covariates. The non-spatial model types ‘Pradel’ and ‘Pradelg’ are implemented
in openCR using sufficient statistics (Pradel 1996) and therefore fall outside the main framework (Table
3). They correspond to ‘JSSAlCL’ and ‘JSSAgCL’ respectively, and estimate the same parameters as those
models. Estimates should coincide except when there are losses on capture. ‘Pradel’ is parameterized in
terms of population growth rate (lambda) and ‘Pradelg’ is parameterized in terms of seniority (gamma).

Additionally, the function JS.direct computes classic Jolly–Seber estimates using the sufficient statistics.

5.2 Spatial openCR models

Table 4. Parameter definitions and default link functions (spatial models)

Parameter Symbol Link Description

lambda0 λ0 log detection function intercept
sigma σ log detection function scale (m)
z z log detection function shape parameter (HHR, HAN, HCG, HVP)
phi* φ logit apparent survival
b b mlogit entry probability (beta)
f* f log per capita recruitment rate
gamma* γ logit seniority (Pradel 1996)
lambda* λ log population growth rate (finite rate of increase)
superD D log superpopulation density
BD BD log entrants per hectare
D Dj log time-specific population density

* parameters marked with an asterisk are scaled by the interval between primary sessions.

Table 5. Parameters of spatial openCR models

Type Alias lambda0 sigma z phi b f gamma lambda superD BD D

CJSsecr + + + +
JSSAsecrbCL PLBsecrb + + + + +
JSSAsecrfCL PLBsecrf + + + + +
JSSAsecrgCL PLBsecrg + + + + +
JSSAsecrlCL PLBsecrl + + + + +
JSSAsecrb + + + + + +
JSSAsecrf + + + + + +
JSSAsecrl + + + + + +
JSSAsecrB + + + + +
JSSAsecrD + + + + +
secrCL + + +
secrD + + + +

Spatial models with type ending in CL have features in common with the Pradel–Link–Barker models, hence
the aliases as shown.

6 Model formulae

Formulae define a linear model for each ‘real’ parameter (p, phi, sigma etc.) on the link scale (logit, log etc.).
Alternative link functions not shown in Tables 2 and 4 are ‘loglog’ and ‘sin’, both as defined in MARK.
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The default linear combination for each parameter is a constant, null model (~1, parameter constant over
time, unaffected by individual differences etc.). To include other effects build formulae using either predefined
(built-in) predictors listed here, or the names of covariates.

6.1 Built-in predictors

Table 6. Built-in predictors (‘sessions’ refers to primary sessions)

Predictor Parameters Description

stratum all Factor, one level per stratum (stratified = TRUE)
session all except ‘superN’, ‘superD’ Factor, one level per primary session
t all except ‘superN’, ‘superD’ synonym of ‘session’
Session all except ‘superN’, ‘superD’ Continuous time
b p, phi, lambda0, sigma learned response (persists across sessions)
B p, lambda0, sigma transient (Markovian) response across sessions
bk p, phi, lambda0, sigma detector-specific learned response (persists across sessions)
bsession p, lambda0, sigma learned response within sessions
Bsession p, lambda0, sigma transient (Markovian) response within sessions
bksession p, lambda0, sigma detector-specific learned response within sessions
Bksession p, lambda0, sigma detector-specific transient (Markovian) response within sessions
h2 all except abundance 2-class finite mixture
h3 all except abundance 3-class finite mixture
age all except abundance age factor
Age all except abundance linear effect on age
Age2 all except abundance linear effect on age2

Differences among the various learned responses may be understood by examining their effect on the parameter
index array (PIA). This table illustrates the PIA slice corresponding to an individual with the non-spatial
detection history shown (4 primary sessions, each of 4 secondary sessions). The values ‘1’ and ‘2’ refer to
different parameter combinations, most commonly to levels of lambda0.

Detection history : 0100 0000 0000 0100

~bsession 1122 1111 1111 1122 persistent within
primary session

~Bsession 1121 1111 1111 1121 transient within
primary session

~b 1122 2222 2222 2222 persistent
~B 1122 2222 1111 1122 transient across

primary sessions

IMPORTANT NOTE: Learned response predictors (‘b’, ‘bsession’ etc.) were re-defined in openCR 1.3.0.
Models fitted with earlier versions should be re-fitted.

6.2 User-provided covariates

The rules for covariates largely follow secr (secr-overview.pdf). Covariates may be at the level of stratum,
primary session, secondary session (detection parameters only), individual (CL models only), or detector
(spatial models only). Further complexity may be modelled by providing custom design data cutting across
these categories (see below).

Individual and detector covariates are named columns in the ‘covariates’ attributes of the respective capthist
and traps object. Covariate names should differ from the built-in predictors (Table 6).
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Stratum covariates are provided to openCR.fit in the argument ‘stratumcov’. That should be a dataframe
with one row per stratum; the name of any column may be used in a model formula.

Primary session covariates are provided to openCR.fit in the argument ‘sessioncov’, rather than associated
with a data object. If ‘sessioncov’ is a vector (length equal to number of primary sessions) rather than a
dataframe then it may be referenced as ‘scov’ in model formulae. For stratified data, ‘sessioncov’ may be a
list with one component per stratum (the lazy option of providing a single vector or dataframe works only if
all strata have the same sessions).

Covariates for detection parameters in secondary sessions are provided in the ‘timecov’ argument. If ‘timecov’
is a vector (length equal to total number of secondary sessions) rather than a dataframe then it may be
referenced as ‘tcov’ in model formulae. For stratified data, ‘timecov’ may be a list with one component per
stratum (the lazy option of providing a single vector or dataframe works only if all strata have the same
primary and secondary sessions).

7 More on modelling

7.1 Closed populations

The types ‘secrD’ and ‘secrCL’ cause openCR.fit to treat the data as if from a closed population (no mortality,
no recruitment, no movement); the intervals attribute is ignored.

msk <- make.mask(traps(captdata), buffer = 100, type = 'trapbuffer')

fit_secr <- secr.fit(captdata, detectfn = 'HHN', mask = msk, trace = FALSE)

fit_openCR <- openCR.fit(captdata, detectfn = 'HHN', mask = msk, type = 'secrD')

# massage the predict.openCR results to the same format as predict.secr

pred_openCR <- plyr::rbind.fill(predict(fit_openCR))

pred_openCR <- pred_openCR[c(2,1,3), !(names(pred_openCR) %in% c('stratum','session'))]

rownames(pred_openCR) <- fit_secr$realnames

# compare estimates

predict(fit_secr)[,-1]

## estimate SE.estimate lcl ucl

## D 5.485 0.64703 4.356 6.9058

## lambda0 0.307 0.03413 0.247 0.3815

## sigma 28.764 1.30055 26.326 31.4283

pred_openCR

## estimate SE.estimate lcl ucl

## D 5.485 0.64479 4.356 6.9058

## lambda0 0.307 0.03403 0.247 0.3815

## sigma 28.764 1.29988 26.326 31.4283

# compare timings in seconds

c(secr = fit_secr$proctime, openCR = fit_openCR$proctime)

## secr.elapsed openCR.elapsed

## 3.72 3.41

The maximised log likelihoods differ because openCR does not include the multinomial constant. secr has
function logmultinom that lets us add it back:
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# compare maximised log likelihoods

c(secr.logLik = logLik(fit_secr), openCR.logLik = logLik(fit_openCR) + logmultinom(captdata))

## secr.logLik openCR.logLik

## -758.9 -758.9

7.2 Finite mixtures

Two- and three-class finite mixtures (h2, h3) allow for individual heterogeneity in detection and turnover
parameters (Pledger et al. 2003, 2010). Using one of these predictors in a formula causes a further real
parameter ‘pmix’ to be added. pmix is the proportion in latent mixture class 2 for h2, and the proportions in
classes 2 and 3 for h3 (the proportion in class 1 is obtained by subtracting from 1). The implementation in
openCR assumes that class membership applies across all parameters. The posterior probabilities of class
membership for all detected individuals are returned as the ‘posterior’ component of the fitted model.

Finite mixture likelihoods are prone to multimodality. Misleading estimates result when the numerical
maximization settles on a local maximum (see also [secr-finitemixtures.pdf].

7.3 Age

If age is modelled as a factor then it is useful to group older animals in a maximum age class (‘maximumage’).
‘minimumage’, ‘maximumage’ and ‘initialage’ are optional components of the ‘details’ argument of openCR.fit.
‘initialage’ can name an individual covariate to avoid the assumption that all animals are the minimum age
at first detection.

Specify the details argument ‘agebreaks’ to group numeric ages into age classes. Breaks are used with the cut

function to generate a factor from the numeric ages; the cut argument ‘right’ is set to FALSE to include the
lower limit in each age class. Extreme ages are shrunk to the interval [‘minimumage’, ‘maximumage’] before
grouping, so these arguments must be compatible with ‘agebreaks’ (e.g., ‘maximumage’ >= lower bound of
oldest group). Check the grouping by applying it to the matrix of numeric ages in your data. For example,

agebrk <- c(0, 2, Inf)

# construct matrix of numeric ages (animal x secondary session)

age <- age.matrix(join(ovenCH), maximumage = 2, unborn = NA)

# tabulate the grouped ages

aclass <- cut(age, breaks = agebrk, right = FALSE)

table(age, aclass)

## aclass

## age [0,2) [2,Inf)

## 0 680 0

## 1 620 0

## 2 0 1000

The notation [0,2) indicates ages in the interval 0 ≤ age < 2. The numbers in older groups include animals
never seen again and possibly dead.

This example illustrates how to use grouped ages in a model. The data are an undocumented non-spatial
selection from the same brushtail possum study as OVpossumCH (trapping in February, June and September,
1980–1988, known-age females only; interval in years). The individual covariate ‘age’ records the age of each
possum at first capture, in years.

# retrieve capthist object

datadir <- system.file('extdata', package = 'openCR')

CH <- readRDS(paste0(datadir,'/poss8088F.RDS'))
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# model with grouped ages; any maximumage>=6 OK

fit <- openCR.fit(CH, model = list(phi ~ age), details = list(

agebreaks = c(0,2,4,6,Inf), initialage = 'age', maximumage = 6))

# show results for first session only, as no time effect fitted

# levels of age grouping factor are stored in 'design' object

newdat <- data.frame(age = fit$design$agelevels)

predict(fit, newdata = newdat)$phi

## session age estimate SE.estimate lcl ucl

## 1 Feb1980 [0,2) 0.5622 0.06095 0.4415 0.6760

## 2 Feb1980 [2,4) 0.9152 0.03530 0.8157 0.9634

## 3 Feb1980 [4,6) 0.8775 0.04529 0.7583 0.9424

## 4 Feb1980 [6,Inf) 0.8220 0.02079 0.7776 0.8592

If ‘agebreaks’ is omitted then the default uses bins of width 1 time unit from ‘minimumage’ up to, but not
including, ‘maximumage’, with an extra bin for ‘maximumage’ and above (7 bins [0,1),. . . ,[6,Inf) in this
example).

The older ‘agecov’ mechanism is limited to sampling sessions separated by one time unit and is deprecated
from 2.2.6.

For a quadratic relationship with age, specify an additive model with both Age and Age2 terms (e.g., model
= phi ~ Age + Age2).

7.4 Sampling intervals

We have seen the role of the intervals attribute in defining primary and secondary sessions. Between-session
intervals need to be specified only if they vary, or if you would like rates (phi, gamma, lambda, f) to be
reported in time units other than the (implicitly constant) sampling interval. Scaling from the standardised

parameter θj to the interval-specific value θ′
j uses θ′

j = θ
Tj

j where θj is one of φj or λj , and Tj is the duration
of interval j.

Scaling γ follows the same pattern except that the relevant duration for γj is Tj−1. Scaling per capita

recruitment fj is more tricky. We use f ′
j = (φj + fj)Tj − φ

Tj

j .

7.5 Custom design data

Occasionally there is a need for covariates that do not relate specifically to individuals, sessions or detectors,
and are not included as canned predictors. For this you must construct your own dataframe of design data
and pass it as the ‘dframe’ argument of openCR.fit. Design data are used as input to the model.matrix

function (the ‘data’ argument); model.matrix generates the design matrix for each real parameter. Design
data are usually constructed internally in openCR.fit from named covariates and other predictors that
appear in model formulae; if ‘dframe’ is provided then the internally constructed design data are added as
extra columns, overwriting any custom columns of the same name. The same design dataframe is used for all
parameters.

Constructing ‘dframe’ is fiddly. The dataframe should have one row for each combination of unique capture
history, secondary session, detector and latent class (mixture). For nonspatial models without finite mixtures
this collapses to one row for each capture history and secondary session. The order of rows follows that of
the elements in an array with dimensions (n, S, K, X) for n unique capture histories, S secondary sessions,
K detectors and X latent classes9. The secr function insertdim can help to expand data into the correct
row order.

9This rectangular (or cuboidal) configuration includes cells that are redundant and unused for a particular model type (e.g.,
cells corresponding to sessions at or before first capture in CJS models). However, the full complement of rows is required in
dframe.
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A warning: by default openCR.fit replaces the input capthist with a more compact version using only unique
capture histories (the number of each is kept in the individual covariate ‘freq’; see the function squeeze).
Design data are in terms of the ‘squeezed’ capture histories.

In this example we define a function to construct custom design data for a learned response.

makedf.b <- function (ch, spatial = FALSE, nmix = 1, naive = FALSE) {

R <- 1 # assume single stratum

ch <- squeeze(ch)

# Construct matrix of logical values TRUE iff caught before

detected <- apply(abs(ch),1:2,sum)>0

detected <- t(apply(detected, 1, cumsum)>0)

if (naive)

b <- rep(FALSE, prod(dim(ch)[1:2]))

else

b <- t(apply(detected, 1, function(x) {x[which.max(x)] <- FALSE; x}))

# For a simple non-spatial case: data.frame(customb = as.vector(b))

# More generally:

n <- nrow(ch)

S <- ncol(ch)

K <- if (spatial) dim(ch)[3] else 1

data.frame(customb = insertdim(b, c(2,3,1), c(R,n,S,K,nmix)))

}

Now compare the result with the canned predictor ‘b’ for a persistent learned response.

ovenj <- join(ovenCH)

fitb <- openCR.fit(ovenj, model = p ~ b)

fitbc <- openCR.fit(ovenj, model = p ~ customb, dframe = makedf.b(ovenj))

AIC(fitb, fitbc)

## model npar rank logLik AIC AICc dAIC AICwt

## fitb p~b phi~1 3 2 -254.6 515.2 515.6 0 0.5

## fitbc p~customb phi~1 3 2 -254.6 515.2 515.6 0 0.5

Our custom model gives exactly the same result as the canned predictor ‘b’ when type = ‘CJS’ because
the precise secondary session of first capture is irrelevant for CJS models (recaptures are modelled only for
subsequent primary sessions unless details$CJSp1 == TRUE).

Discrepancies can arise with non-CJS models because these account for animals never detected. The
corresponding likelihood component uses a distinct design matrix for a ‘naive’ animal. To customize non-CJS
models a separate dframe should be provided that applies to naive animals:

fitb2 <- openCR.fit(ovenj, model = p ~ b, type = 'JSSAfCL', start = fitb)

fitbc2 <- openCR.fit(ovenj, model = p ~ customb, type = 'JSSAfCL',

dframe = makedf.b(ovenj), dframe0 = makedf.b(ovenj, naive = TRUE))

AIC(fitb2, fitbc2)

## model npar rank logLik AIC AICc dAIC AICwt

## fitb2 p~b phi~1 f~1 4 4 -660.9 1330 1330 0 0.5

## fitbc2 p~customb phi~1 f~1 4 4 -660.9 1330 1330 0 0.5

7.6 Transience

An ad hoc adjustment for transience may be programmed as follows (cf Pradel et al. 1997).

makedf.resident <- function (ch, spatial = FALSE, nmix = 1) {

nstrata <- 1 # assume single stratum
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ch <- squeeze(ch)

n <- nrow(ch)

S <- ncol(ch)

K <- if (spatial) dim(ch)[3] else 1

primary <- primarysessions(intervals(ch))

detected <- apply(abs(ch),1:2,sum)>0

nprimary <- apply(detected, 1, function(x) length(unique(primary[x])))

data.frame(resident = insertdim(nprimary>1, 1, c(nstrata, n, S, K, nmix)))

}

A simpler approach is to code an individual covariate that scores whether an individual was detected in more
than one primary session.

addresidentcov <- function (ch) {

primary <- primarysessions(intervals(ch))

detected <- apply(abs(ch), 1:2, sum)>0

nprimary <- apply(detected, 1, function(x) length(unique(primary[x])))

covariates(ch) <- data.frame(residentcov = nprimary>1)

ch

}

Results are identical:

ovenj <- join(ovenCH)

ovenj <- addresidentcov(ovenj)

fitnull <- openCR.fit(ovenj, model = phi ~ 1)

fitcov <- openCR.fit(ovenj, model = phi ~ residentcov)

fitdf <- openCR.fit(ovenj, model = phi ~ resident, dframe = makedf.resident(ovenj))

fits <- openCRlist(fitnull, fitcov, fitdf)

AIC(fits)

## model npar rank logLik AIC AICc dAIC AICwt

## fitcov p~1 phi~residentcov 3 2 -225.8 457.6 458.0 0.00 1

## fitnull p~1 phi~1 2 2 -254.6 513.2 513.4 55.56 0

## fitdf p~1 phi~resident 3 2 -254.6 515.2 515.6 57.56 0

pred <- predict(fits, newdata = data.frame(resident = TRUE, residentcov = TRUE))

do.call(rbind, lapply(pred, '[[', 'phi'))

## session resident residentcov estimate SE.estimate lcl ucl

## fitnull 2005 TRUE TRUE 0.4630 0.05473 0.3590 0.5703

## fitcov 2005 TRUE TRUE 0.7387 0.08484 0.5443 0.8699

## fitdf 2005 TRUE TRUE 0.4630 0.05473 0.3590 0.5703

Hines et al. (2003) suggested extending the definition of residence to include animals captured at least d days
apart within a primary session; either of the approaches here may be modified accordingly. Here is the code
for two individual covariates:

addresidentcov2 <- function (ch, d = 1) {

primary <- primarysessions(intervals(ch))

secondary <- secondarysessions(intervals(ch))

detected <- apply(abs(ch), 1:2, sum)>0

nprimary <- apply(detected, 1, function(x) length(unique(primary[x])))

dsecondary <- apply(detected, 1, function(x)

max(by(secondary[x], primary[x], function(y) diff(range(y)))))

covariates(ch) <- data.frame(residentcov1 = nprimary>1,

residentcov2 = nprimary>1 | dsecondary>=d)
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ch

}

7.7 Factor coding

Factor predictors take a number of discrete values (levels). These are usually represented by columns of 0’s
and 1’s in the design matrix, where the number of columns (and coefficients) relates to the number of levels.
The default in R is to use ‘treatment contrasts’; one coefficient describes a reference class (level) and other
coefficients represent the effect size (difference from the reference class on the link scale). By default the first
level is used as the reference: for time effects (t, session) the first primary session is the reference level10.

This may lead to trouble if the parameter is not identifiable in the reference class. One workaround is to
specify a session covariate with differently ordered levels. Another is to switch to dummy variable coding
in which each coefficient represents the magnitude of one real parameter on the link scale (useful in itself).
Dummy variable coding is achieved by removing the intercept from the formula (-1), assuming the default
contrast function for factor coding (contr.treatment; check with options()$contrasts). The following
model fits yield the same estimates of ‘real’ parameters and the same log-likelihood, but with different ‘beta’
parameters:

fit0 <- openCR.fit(ovenCH, model = p~t)

fitd <- openCR.fit(ovenCH, model = p ~ -1+t)

coef(fit0)

## beta SE.beta lcl ucl

## p -1.54953 0.2459 -2.0315 -1.0675

## p.t3 0.32963 0.3280 -0.3133 0.9725

## p.t4 -1.42728 0.5259 -2.4581 -0.3965

## p.t5 -0.14375 0.4489 -1.0236 0.7361

## phi -0.03141 0.2399 -0.5016 0.4388

coef(fitd)

## beta SE.beta lcl ucl

## p.t2 -1.54955 0.2459 -2.0316 -1.0675

## p.t3 -1.21990 0.2188 -1.6487 -0.7911

## p.t4 -2.97677 0.4663 -3.8907 -2.0628

## p.t5 -1.69325 0.3783 -2.4347 -0.9518

## phi -0.03142 0.2399 -0.5016 0.4387

Dummy variable coding has proved useful for avoiding some maximization problems. From openCR 2.1.0,
dummy variable coding can be selected with the ‘details’ argument ‘dummyvariablecoding’. This updates the
model to remove the intercept, and assigns the default starting value across all levels of a factor (rather than
zero for non-reference levels). The following fit is therefore equivalent to the preceding fitd.

fitd2 <- openCR.fit(ovenCH, model = p~t, details = list(dummyvariablecoding = 't'))

coef(fitd2)

## beta SE.beta lcl ucl

## p.t2 -1.54955 0.2459 -2.0316 -1.0675

## p.t3 -1.21990 0.2188 -1.6487 -0.7911

## p.t4 -2.97677 0.4663 -3.8907 -2.0628

## p.t5 -1.69325 0.3783 -2.4347 -0.9518

## phi -0.03142 0.2399 -0.5016 0.4387

10This does not apply for times when a parameter can never be estimated – for example, openCR understands that seniority
(gamma) is not estimated for the first session and uses the second session for the reference level.
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7.8 Mean of a parameter across levels of a factor

Suppose you wish to estimate the average of a parameter across levels of a factor such as time (session).
Cooch and White (2019 Section 6.15) advocate modifying the design matrix so that one beta parameter
(coefficient) relates directly to the mean. This is achieved very simply in openCR.fit11 by setting the contrast
function for the factor to contr.sum in the details argument12. With the resulting factor coding the first
coefficient corresponds to the mean. Applying this to estimate the average time-specific survival rate for the
dippers assuming constant recapture probability:

fit <- openCR.fit(dipperCH, model = phi~t, details = list(contrasts = list(t = contr.sum)))

invlogit(coef(fit)['phi',c('beta','lcl','ucl')])

## beta lcl ucl

## phi 0.5633 0.505 0.6199

The mean is backtransformed from the link scale. This results in some bias owing to the nonlinearity of
link functions other than the identity function. Cooch and White take the position that the bias is often
ignorable.

8 Movement models

Potential movement of home ranges between primary sessions (= dispersal) is a critical part of open-population
models (Efford and Schofield 2022). The argument movementmodel of openCR.fit allows the possibilities in
Table 7. Two of these do not model movement at all. The default ‘static’ is a null model in which each animal
retains the same home range. The ‘IND’ option models the locations of an animal independently in each
primary session; information is sacrificed and the implied movement depends on the size of the habitat mask.

The remaining options (‘BVN’, ‘BVE’, ‘BVC’, ‘BVT’, etc.) fit a dispersal kernel (Nathan et al. 2012) to
represent movement between primary sessions. This usually requires at least one more parameter to represent
the spatial scale of dispersal.

Table 7. Models for movement between primary sessions.

Movement model Parameters Description (aliases in parentheses)

static 0 Centres constant across primary sessions
BVN 1 Bivariate normal (‘normal’, Gaussian)
BVE 1 Bivariate Laplace kernel (‘exponential’)
BVC 1 Bivariate Cauchy kernel
BVT 2 Bivariate t (‘t2D’, 2Dt)
RDE 1 Exponential distance moved
RDG 2 Gamma distance moved
RDL 2 Lognormal distance moved
UNI 0 Uniform within arbitrary radius
IND 0 Centres unconstrained within habitat mask
(user function) 0,1,2 User-supplied function (ncores = 1 only)

Note: ‘BVN’, ‘BVE’ and ‘BVT’ kernels were previously designated ‘normal’, ‘exponential’ and ‘t2D’ respec-
tively, and these names are still recognised.

8.1 Movement kernels

Note: The online vignette openCR-kernel.pdf covers movement kernels in detail. This section is retained for
historical reasons and will be removed in future.

11This also works in secr.fit.
12Helmert contrasts (contr.helmert) also yield the mean as the first coefficient, but the coding is more obscure.
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All movement kernels in openCR are radially symmetrical. Relative probability of movement is specified in
terms of radial distance r from the point of origin (Table 8). Four of the built-in kernels (BVN, BVE, BVC,
BVT) are defined directly as bivariate probability density functions g(r). Three others (denoted RDE, RDG,
RDL) are defined indirectly by the univariate distribution of distance moved f(r) where a point on the kernel
has polar coordinates (r, θ) assuming direction θ uniform on (0, 2π) (Cousens et al. 2008, Ergon and Gardner
2014).

The extent of the kernel is controlled by the argument ‘kernelradius’ that gives the radius in terms of mask
cells. Cell-specific probabilities are normalised so that they sum to 1.0 across the kernel. Dispersal probability
effectively falls to zero at the boundary of the kernel, so the kernel radius is a critical part of the model. The
uniform ‘UNI’ kernel has no parameters but depends critically on the user-specified kernel radius.

Table 8. Kernel probability density functions. ‘move.a’ and ‘move.b’ are the names used in openCR for
scale and shape parameters, as indicated in the table. Based in part on Nathan et al. (2012, Table 15.1) and
Clark et al. (1999) with adjustment for parameterisation in openCR. g(r) = f(r)/(2πr).

Kernel move.a move.b f(r) Mean r*

BVN α — r
α2 e

−r2

2α2 α
√

π
2

BVE α — r
α2 e

−r
α 2α

BVT α β 2βr
α2

(

1 + r2

α2

)−(β+1)

α
√

π

2
Γ(β−0.5)

Γ(β)

RDE α — 1
α

e
−r
α α

RDG α β 1
Γ(β)αβ rβ−1e

−r
α αβ

RDL exp µ 1/(eσ2

− 1) 1
rσ

√
2π

e
−(ln(r)−µ)2

2σ2 eµ+ σ2

2

UNI — —
(user) a b

* Continuous, untruncated, kernel. Expected values for the discretized and truncated kernel will be less (see
summary.kernel).

The ‘BVT’ kernel is the same as ‘2Dt’ of Clark et al. (1999) and Nathan et al. (2012). The parameter α
(move.a) corresponds to a in Nathan et al. (2012) and

√
u in Clark et al. (1999); the parameter β (move.b)

corresponds to b−1 in Nathan et al. (2012) and p in Clark et al. (1999). Defining move.b as β ≡ b−1 is handy
because the default link for move.b (log) then ensures b > 1. The degrees of freedom of the corresponding
t-distribution are given by ν = 2β.

The ‘BVT’ kernel approaches bivariate normal as β → ∞ and Cauchy as β → 0 (e.g., Clark et al. 1999).
Clark et al. (1999 p. 1485) found it hard to fit this kernel to seed dispersal data. The mean is undefined for
β ≤ 0.5.

8.2 Zero-inflated kernels

openCR 2.2 introduces zero-inflated versions of kernels otherwise defined with one parameter or none.
Zero-inflated kernels use the suffix ‘zi’, hence ‘BVNzi’, ‘BVEzi’, ‘RDEzi’, ‘UNIzi’. The kernel-free independent
movement model ‘IND’ also has a zero-inflated form ‘INDzi’ that is not strictly independent or uncorrelated.
Each of these models has an additional zero-inflation parameter (move.b or move.a depending on whether the
base kernel does or does not already have a parameter). Zero-inflated kernels often fit well, but it is common
for the fitted scale parameter ‘move.a’ of BVNzi, BVEzi and RDEzi models to become large and essentially
unidentifiable as the kernel for r > 0 flattens.
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8.3 User-defined kernel

A kernel function may be specified by the user and passed in the argument movementmodel. The function
should have argument r, and optionally a, or a and b (the last two correspond to openCR parameters
move.a and move.b) It should return a vector of values one for each element of r, although length(r) = 1
when the likelihood is evaluated in C++ (details$R = FALSE, the default). The code should give a valid
result when r = 0 that will be used for the origin cell. With the default link (‘log’ for both move.a and
move.b) there is no risk of a ≤ 0 or b ≤ 0.

8.4 Sparse kernels

A big problem with standard kernels as defined in openCR <2.0.0 is that the number of cells increases with
the square of the radius. Processing time is roughly proportional to the number of cells, and kernels with
many cells fit slowly. openCR 2.0.0 introduces novel ‘sparse’ kernels that include only those grid cells that
lie on 4 axes (N-S, E-W, NW-SE, NE-SW) (Efford 2022b). The number of cells then increases only linearly
with radius. Cell-wise movement probabilities are adjusted so that the distribution of dispersal distances is
almost unchanged (essentially multiplying by 2πr at radius r, and adjusting cells on the oblique axes by

√
2).

Sparse kernels are obtained by setting sparsekernel = TRUE when fitting a model with openCR.fit(). Here
is an example.

par(mar = c(3,1,4,5))

k <- make.kernel(movementmodel = 'BVN', kernelradius = 10, spacing = 10, move.a = 40,

sparse = TRUE, clip = TRUE)

plot(k)

symbols(0,0, add = TRUE, circles = 100, inches = FALSE)

kernelp

0.004
0.008
0.012
0.016
0.020
0.024

kernel = BVN, spacing = 10, kernelradius = 10, move.a = 40, ncells = 69

Note that the maximum on each axis is no longer at the centre. In fact, the central cell is assigned zero
weight because r = 0 (this is undesirable and may be corrected in future). Each oblique arm in the example
has only 7 cells; these cells have higher weighting to avoid orientation bias.

Somewhat surprisingly, sparse kernels appear to work about the same as full kernels, only faster.

8.5 Edge effects

When a kernel is applied to cells near the edge of a habitat mask some projected movements will lie outside
the mask. This creates a problem for the model. Kernel cell values are probabilities summing to one; the cell
probabilities of a truncated kernel will no longer be true probabilities and results are prone to bias.

openCR.fit offers two approaches to resolve this problem:

1. If the mask is rectangular, the truncated cells (and their probabilities) may be ‘wrapped’ to the
opposing edge of the mask. This works fine if the kernel is not too large. Wrapping does not impose
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a computational burden. A rectangular mask is generated by make.mask with the default type =

'traprect'.

2. For any mask, the cell probabilities of a truncated kernel may be scaled (normalized) so that they sum
to 1.0. This requires substantial additional computation.

The edge method is chosen by setting the argument ‘edgemethod’ in openCR.fit; the options are ‘truncate’
(default in 1.5.0 and later), ‘wrap’, and ‘none’. Wrapping is fast, but it will cause an error if the mask is not
rectangular. If a rectangular mask does not make sense (e.g., because the habitat is patchy) then you must
use edgemethod = 'truncate' for unbiased estimates.

Prior to 1.5.0 there was no adjustment (movement truncated without normalization, equivalent to edgemethod

= 'none' in later versions) and estimates from movement models could be biased because the probability of
a null (all-zero) history was estimated incorrectly.

8.6 Plotting and summary

A kernel may be constructed with make.kernel and visualised with the plot method. Use the summary

method to obtain a terse description.

par (mar = c(3,3,4,6), cex = 0.9)

k <- make.kernel (movementmodel = 'BVN', spacing = 10, move.a = 40, clip = TRUE)

plot(k, contour = TRUE)

kernelp

0.000

0.002

0.004

0.006

0.008

0.010

 0.001 
 0.002 

 0.003 

 0.004 

 0.005 

 0.006 

 0.007 

 0
.0

08
  0.009 

kernel = BVN, spacing = 10, kernelradius = 10, move.a = 40, ncells = 349

summary(k)

## Kernel radius (cells) : 10

## Spacing (side of cell) : 10 (m)

## Number of cells : 349

## Movement model : BVN

## Parameter(s) : move.a = 40

## Proportion truncated : 0.03189

## Movement as truncated at edge of kernel

## Empirical mean distance : 47.91 (m)

## Expected distance : 47.19 (m)

## 50th percentile (median) : 45.61 (m)

## 90th percentile : 79.39 (m)

## Movement, untruncated kernel

## Expected distance : 50.13 (m)

## 50th percentile (median) : 47.1 (m)

## 90th percentile : 85.84 (m)
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Use the secr function spotHeight(k) to display cell values on the plot.

8.7 Warnings

1. The independent option ‘IND’ (previously ‘uncorrelated’) is not recommended. It discards information
on the continuity of home ranges between primary sessions, and estimates may vary with the (often
arbitrary) extent of the habitat mask.

2. Kernel-based movement models require extreme care. Definitive advice cannot yet be given on the safe
use of these models. Long-distance movements will usually be poorly sampled and poorly modelled.

3. User-defined functions cannot be used with multithreaded C++, so they will be slow to fit; always set
ncores = 1.

9 Settlement models

When one of the kernel models is used (movementmodel not ‘static’, ‘IND’ or ‘INDzi’) the movement model
may be modified by weighting settlement according one or more local (mask) covariates. The weights are given
by a new parameter ‘settle’. By default the logarithm of ‘settle’ is a linear combination of mask covariates
with no intercept. ‘settle’ may also vary by

• stratum
• primary session
• canned variables corresponding to coordinates x, y, xy, x2, y2 (see secr)

The settlement model is invoked by setting details = list(settlemodel = TRUE).

This code compares a model with uniform settlement to one in which settlement varies with the ‘y’ coordinate
of the mask. The data are the ovenbird mistnetting data compressed to a single occasion per year.

ovenCHb <- reduce(ovenCHp, by = 'all', outputdetector = 'count')

msk <- make.mask(traps(ovenCHp[[1]]), buffer = 500, spacing = 40, type = 'trapbuffer')

# uniform settlement

fit0 <- openCR.fit(ovenCHb, type = 'PLBsecrf', mask = msk, binomN = 1,

movementmodel = 'BVN', details = list(settlemodel = FALSE))

# logarithmic N-S gradient in settlement

fit1 <- openCR.fit(ovenCHb, type = 'PLBsecrf', mask = msk, binomN = 1,

movementmodel = 'BVN', details = list(settlemodel = TRUE), model = settle~y)

In this example there is no evidence for a N-S gradient in settlement. The intercept is removed automatically
when the link function is the default (‘log’), as shown in the resulting formula for ‘settle’.

AIC(fit0, fit1)[,-6]

## model npar rank logLik AIC dAIC AICwt

## fit0 lambda0~1 phi~1 f~1 sigma~1 move.a~1 5 5 -953.3 1917 0.000 0.5838

## fit1 lambda0~1 phi~1 f~1 sigma~1 move.a~1 settle~y - 1 6 6 -952.7 1917 0.677 0.4162

coef(fit1)

## beta SE.beta lcl ucl

## lambda0 -3.4907 0.13367 -3.7527 -3.2287

## phi 0.6260 0.37561 -0.1102 1.3621

## f -1.1646 0.31579 -1.7836 -0.5457

## sigma 4.3264 0.07189 4.1855 4.4673

## move.a 4.9283 0.20971 4.5172 5.3393

## y -0.6941 0.61933 -1.9080 0.5198
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The cumulative effect of differential settlement may be visualised with function cumMove by specifying a
single mask covariate with values in the range 0 to 1.

NOTE: Settlement models are a novelty in openCR 2.2.2 and their value is limited because survival and
recruitment are not allowed to vary across space. The implementation may change.

10 Derived parameters

Various derived parameters may be computed from a fitted model. Specifically,

1. Abundance at each primary session (population size for non-spatial models or density for spatial models)
may be computed from any JSSA model, including those fitted by maximizing the conditional likelihood.
By default, the estimator is Horvitz-Thompson-like at the level of the superpopulation (N or D). For
non-spatial models N̂ =

∑n
i=1 p̂−1

i where p̂i is the estimated probability animal i is seen in at least one

session. For spatial models D̂ =
∑n

i=1 â−1
i , where âi is the estimated effective sampling area of animal

i (Borchers and Efford 2008). The sums are over all individuals ever seen. Session-specific abundances
are inferred by distributing N or D over sessions according to the entry probabilities b. Alternatively
(HTbysession = TRUE) the H-T estimate may be based on the number detected in each session and
the corresponding session-specific estimates of p or a.

2. Any of the recruitment parameters in Table 3 or Table 5 may be computed from any other model of
the same class (non-spatial or spatial)13.

Both goals are served by the derived method for openCR objects. Among other outputs, this generates a
summary table with point estimates of all relevant parameters. We demonstrate this with a new dipper
model, fitted using conditional likelihood:

dipperCL <- openCR.fit(dipperCH, type = 'JSSAlCL',

model = list(lambda~t, phi~t))

# only these parameters are in the model and estimated directly,

names(predict(dipperCL))

## [1] "p" "phi" "lambda"

# but we can derive b, f, gamma and N, as well as the super-population N

d <- derived(dipperCL)

print(d, digits = 3, legend = TRUE)

## Total number observed 294

## Parameters in model p, phi, lambda

## Superpopulation size 310.6

## Session-specific counts and estimates:

##

## stratum session t n R m r z time p phi lambda b f gamma kappa N

## 1 1 1 22 22 0 13 0 0 0.902 0.626 2.792 0.0785 2.166 NA NA 24.4

## 1 2 2 60 60 11 25 2 1 0.902 0.454 1.265 0.1701 0.811 0.224 2.23 68.1

## 1 3 3 78 78 26 36 1 2 0.902 0.478 1.026 0.1778 0.548 0.359 2.36 86.2

## 1 4 4 80 80 35 48 2 3 0.902 0.624 1.104 0.1519 0.480 0.466 2.05 88.4

## 1 5 5 88 88 47 51 3 4 0.902 0.608 1.103 0.1365 0.495 0.566 1.86 97.6

## 1 6 6 98 98 52 52 2 5 0.902 0.583 0.958 0.1554 0.375 0.551 2.09 107.6

## 1 7 7 93 93 54 0 0 6 0.902 NA NA 0.1298 NA 0.609 1.77 103.1

##

## Field Definition

## ------- -----------------------------------------

## stratum independent stratum

13However, the effect of a constraint (e.g., parameter constant over sessions) will vary depending on the parameter to which it
is applied.
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## session primary session

## t primary session

## n number observed

## R number released

## m number already marked

## r number recaptured in later session

## z number known alive but not caught

## time accumulated time since start

## p detection probability per secondary session

## phi apparent survival per unit time

## lambda population growth rate per unit time

## b entry probabilities

## f per capita recruitment per unit time

## gamma seniority (cf reverse-time phi)

## kappa recruitment parameter of Link and Barker (2005)

## N population size

The print method for objects from derived provides some control over formatting, as shown. Use the Dscale
argument to change area units (spatial models only).

derived does not yet provide delta-method SE or confidence intervals for derived parameters. A reliable
workaround for abundance paramaters (N, D)14 is to (i) infer the point estimates with derived15, (ii) assemble
a start vector on the link scale(s) for an equivalent full-likelihood openCR.fit model that includes the derived
abundances, and (iii) run openCR.fit with method = "none" to compute the hessian at the MLE, and hence
the full variance-covariance matrix.

11 Simulating open-population data

The secr functions sim.popn and sim.capthist provide the means to generate spatial open-population data
with known survival probability, population trend λ and detection parameters. Open population data are
generated by setting nsessions > 1 in sim.popn and specifying a value for λ. Turnover settings are controlled
by components of the ‘details’ argument of sim.popn. The secr help page ?turnover should be consulted.
sim.capthist should be called with renumber = FALSE (otherwise individual capture histories cannot be
matched across primary sessions).

Use the openCR function sim.nonspatial to generate non-spatial open-population data. openCR also
provides these functions to streamline simulation –

Function Purpose

runsim.nonspatial Generate data with sim.nonspatial and fit models using openCR.fit

runsim.spatial Generate data with sim.popn and sim.capthist, and fit models using openCR.fit

sumsims Summarise list output from runsim.nonspatial or runsim.spatial

runsim.nonspatial and runsim.spatial are essentially wrappers; the user must provide appropriate
argument values for each of the nested functions.

14This may sometimes be feasible for derived recruitment parameters, but given the doubts introduced by differing constraints
(e.g. constant f vs constant λ) it is better just to refit the model.

15These are also the MLE when distribution = “poisson” (e.g., Schofield and Barker 2016).
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12 Troubleshooting

12.1 Nonidentifiability

It is common for some session-specific parameters of open capture–recapture models to be nonidentifiable,
either for structural reasons or because the particular dataset is uninformative (e.g., Gimenez et al. 2004).

The main diagnostic is the rank of the Hessian matrix. If the rank is less than the number of parameters then
the model is not fully identifiable and the estimates of some parameters will be confounded or unreliable.
Matrix rank is determined numerically by counting non-zero eigenvalues. Computed eigenvalues of non-
identifiable parameters may appear as small positive numbers, so it is necessary to apply an arbitrary
numerical threshold.

Exactly which parameter estimates are unreliable can usually be discerned from computed variances (SE and
confidence intervals). Data cloning (Lele et al. 2010) is also helpful; function cloned.fit implements the
method for nonspatial models.

Session-specific turnover parameters may become nonidentifiable if home ranges are allowed to move freely
between primary sessions (movementmodel = 'uncorrelated'). Intuitively, this is because radical changes
in individual detection probability (due to proximity to detectors) cannot be separated from mortality and
recruitment.

12.2 Failure of numerical maximization

Bad estimates (zero, very large, close to starting values or zero variance) may merely indicate a problem with
the maximization algorithm rather than nonidentifiability.

12.2.1 Starting values

Numerical maximization of the likelihood requires appropriate starting values for the parameters. If starting
values are poor then initial evaluations of the likelihood may return an infinite value, or otherwise provide
inadequate direction for the numerical algorithm.

openCR.fit provides a mechanism for recycling earlier estimates as starting values: simply provide the name
of a previously fitted model as the start argument. Parameters shared between the models will be set to the
old estimates, while unmatched parameters will be set to defaults. A list of two previous models may be
provided; values from the first take precedence.

12.2.2 Boundary estimates

Variance estimation based on the Hessian matrix fails if the estimate lies on a boundary of the parameter
space. Computed SE are then extreme, and confidence limits are implausible. This commonly happens when
apparent survival (phi) approaches 1.0. Boundary estimates are more benign than other reasons for failure
(the estimates themselves may be reliable). Alternative methods for variance estimation in this case have not
been implemented.

Using the “sin” link for parameters bounded by 0 and 1 (the probability parameters p and phi) can be helpful.

12.2.3 Alternative algorithms

The default method for maximizing the likelihood function is Newton-Raphson as implemented in the R
function nlm. This relies on numerical gradient estimates, which can cause trouble. Avoid gradient estimation
entirely by using the somewhat slower ‘Nelder-Mead’ method of function optim e.g.,

fitnr <- openCR.fit(ovenCH, type = 'JSSAlCL', model = list(phi ~ t, lambda~t))

fitnm <- openCR.fit(ovenCH, type = 'JSSAlCL', model = list(phi ~ t, lambda~t),

method = "Nelder-Mead", details = list(control = list(maxit = 5000)))
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The default maximum number of likelihood evaluations for the Nelder-Mead algorithm (500) is often too
small and results in a “probable maximization error” warning. Here we increase it to 2000 by setting the
details argument “control” that is passed to optim.

Somewhat alarmingly, the NM algorithm settles on a lower log likelihood and different estimates:

AIC(fitnm,fitnr)

## model npar rank logLik AIC AICc dAIC AICwt

## fitnr p~1 phi~t lambda~t 9 9 -656.7 1331 1334 0.000 0.9898

## fitnm p~1 phi~t lambda~t 9 9 -661.3 1341 1344 9.154 0.0102

We can fix that by feeding Nelder-Mead the starting values from another model:

fitnm <- openCR.fit(ovenCH, type = 'JSSAlCL', model = list(phi ~ t, lambda~t),

method = "Nelder-Mead", details = list(control = list(maxit = 2000)),

start = fitnr)

AIC(fitnm,fitnr)

## model npar rank logLik AIC AICc dAIC AICwt

## fitnm p~1 phi~t lambda~t 9 9 -656.7 1331 1334 0 0.5

## fitnr p~1 phi~t lambda~t 9 9 -656.7 1331 1334 0 0.5

In the longer term, better maximizers are needed.

12.2.4 Step into infeasible parameter space

The Newton-Raphson algorithm typically takes a large step in parameter space after a few iterations, and the
resulting log-likelihood may be undefined (NA). Recovery is usually automatic, but sometimes maximization
gets stuck at this point. From 2.2.6 it is possible to control the step size with the details argument ‘stepmax’.
The default stepmax is generally 1000 on the link scale; and often stepmax = 2 works just as well:

fitnr2 <- openCR.fit(ovenCH, type = 'JSSAlCL', model = list(phi ~ t, lambda~t),

details = list(stepmax = 2))

12.2.5 Number of iterations

Exceeding the iteration limit of nlm results in code 4. The default number of iterations was increased to
300 in openCR 2.1.0 from the previous default of 100. Each iteration in nlm completes one evaluation of
the gradient of the likelihood function, and requires multiple likelihood evaluations. For many parameters
300 iterations may still not be enough: increase it with the details argument control (e.g., details =

list(control = list(iterlim = 500))). See the help for optim for the relevant control settings of other
maximizers such as ‘Nelder-Mead’.

12.2.6 Factor coding

Boundary values of ‘beta’ coefficients may sometimes be avoided by changing the default factor coding,
particularly for session-specific estimates (~t, ~session). This may be tackled manually, but from 2.1.0 there
is a shortcut using the details argument ‘dummyvariablecoding’. See the section above on Factor coding.

12.3 Speed

Spatial models are slow to fit. Consider these options

• Use no more mask points than necessary. Typically about 1000 will do (may not apply for kernel
movement models).

• Data with many occasions (secondary sessions) should be collapsed.
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• Use the conditional likelihood (PLB) models: estimates of phi and lambda are often all you need, and
derive can give estimates of abundance (superN, N, superD, and D) from PLB models, as well as
alternative measures of recruitment.

• Avoid individual covariates with many levels. This applies especially to continuous individual covariates:
normally these should be discretized (coded as a few ordered categories, but not converted to factor).

• First fit the most simple model and then add complexity; use a simpler related model for ‘start’.
• ‘secr’ data with detector type ‘multi’ fit much faster than ‘proximity’ data; use this option if it makes

sense (and even maybe when it doesn’t).
• For problems with many parameters, ‘cyclic fixing’ may be useful (Schwarz and Arnason 1996; Pledger

et al. 2003).

openCR ≥ 1.2 uses multiple threads to run some calculations in parallel. Multithreading uses Rcpp-
Parallel. A couple of tuning parameters are available. The number of threads is set with the ‘ncores’
argument of openCR.fit, or with the setNumThreads function of secr that sets the environment variable
RCPP_PARALLEL_NUM_THREADS. By default openCR ≥ 1.5.0 uses only 2 cores, for compliance
with CRAN rules. You can increase this up to the number of (virtual) cores available (i.e. 8 on a quad-core
desktop with hyperthreading), or some lesser number if you want to multitask:

# RCPP_PARALLEL_NUM_THREADS

# recommended for quad-core Windows PC

setNumThreads(7)

The grain size' tuning parameter (see [RcppParallel](https://rcppcore.github.io/RcppParallel/))

may be varied withdetails$grain‘, but it seems to have little effect.

13 Extras

13.1 Sampling variance warning

Full models (not CL or Pradel) include superpopulation size N as a variable. The default in openCR for
both non-spatial and spatial models is to treat N as a Poisson variable, from which it follows that the number
of individuals detected at least once (n) is also Poisson. This is also the default in secr. However, estimates
from POPAN models in MARK treat N as fixed and n as binomial. The assumption of fixed N leads to
narrower confidence intervals and estimates of detection and turnover parameters that differ slightly from
conditional likelihood models (see e.g. Schofield and Barker 2016). To obtain JSSA estimates from openCR

that match those from MARK it is necessary to set distribution = "binomial".

13.2 Example datasets

Several examples of analyses with openCR are given in the associated vignette openCR-examples.pdf. These
use data already formatted as secr capthist objects in R; the objects are provided in one or other package.
All are available immediately openCR is loaded with library. Each has its own help page.

Table 9. Data objects in openCR. ‘RD’ indicates robust design with multiple secondary sessions. See
openCR-examples.pdf for references.

Data object Spatial RD Species etc. Source

microtusCH
etc.

No Yes* Meadow vole Microtus

pennsylvanicus USA
Nichols et al. (1984), Williams et
al. (2002)

FebpossumCH No Yes Brushtail possum Trichosurus

vulpecula New Zealand
M. Efford unpubl.

dipperCH No No European dipper Cinclus cinclus

France
Lebreton et al. (1992), MARK

gonodontisCH No No Moth Gonodontis bidentata England Bishop et al. (1978), Crosbie
(1979)
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Data object Spatial RD Species etc. Source

fieldvoleCH Yes Yes Field vole Microtus agrestis Norway Ergon and Lambin (2013)

Table 10. Multi-session data objects in secr.

Data object Spatial RD Species etc. Source

OVpossumCH Yes Yes Brushtail possum Trichosurus

vulpecula New Zealand
M. Efford unpubl.

ovenCHp Yes Yes Ovenbird Seiurus aurocapilla USA D. Dawson and M. Efford
unpubl.

13.3 Testing assumptions

This is generally an undeveloped field for spatially explicit capture–recapture models. Demonstrating that
assumptions were not satisfied may also be of no consequence: we would usually ignore such a finding if the
estimator is reasonably robust.

For Cormack-Jolly-Seber (nonspatial) models there is an established suite of tests following Burnham et
al. (1987). The tests have been implemented in the U-CARE software of Choquet et al. (2009), recently
translated into R by Gimenez et al (2018) as package R2ucare. Program RELEASE (Burnham et al. 1987)
also implements the core CJS tests and is available through MARK.

The openCR function ucare.cjs is a wrapper for relevant functions in R2ucare, which should be installed.
We briefly demonstrate it here for the dipper data of Marzolin (1988).

if (requireNamespace("R2ucare"))

ucare.cjs(dipperCH, verbose = FALSE, by = 'sex')

## Loading required namespace: R2ucare

## $Male

## $Male$components

## stat df p_val sign_test

## test3sr 6.778 5 0.238 -1.530

## test3sm 0.000 2 1.000 NA

## test2ct 4.284 2 0.117 -1.035

## test2cl 0.000 0 1.000 NA

##

## $Male$overall_CJS

## chi2 degree_of_freedom p_value

## Gof test for CJS model: 11.06 9 0.271

##

##

## $Female

## $Female$components

## stat df p_val sign_test

## test3sr 4.985 5 0.418 1.428

## test3sm 2.041 3 0.564 NA

## test2ct 3.250 4 0.517 -0.901

## test2cl 0.000 0 1.000 NA

##

## $Female$overall_CJS

## chi2 degree_of_freedom p_value

## Gof test for CJS model: 10.28 12 0.592
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This invocation of ucare.cjs calls the R2ucare functions test3sr, test3sm, test2ct, test2cl and
overall_CJS for each sex and provides a condensed report. For interpretation see the original papers, the
R2ucare vignette, and Chapter 5 of the MARK book (Cooch and White 2019). Lebreton et al. (1992: 86)
indicate only Test 3SR is meaningful for these data (see also openCR-examples.pdf).

13.4 Limitations of openCR

openCR does not do

1. Continuous random effects (consider finite mixtures as an alternative)
2. Parameter counting to adjust AIC
3. Overdispersion adjustment (chat, QAIC) or goodness-of-fit tests, except for ucare.cjs (above).
4. MCMC
5. Bootstrap confidence intervals
6. Temporary emigration parameterizations of non-spatial robust-design models
7. Age-specific survival curves (Weibull etc.)
8. Mark-resight
9. SE for derived parameters and estimates with mlogit link (to be fixed)

Parameter counting and overdispersion adjustment are probably the most critical omissions. See Cooch and
White (2019) for detailed coverage in the context of MARK.

13.5 Differences from secr

Defaults for some arguments differ between openCR.fit and secr.fit. For openCR.fit –

1. trace = FALSE

2. By default the reported log likelihood and AIC do not include the multinomial constant
(details$multinom = FALSE)

3. The default criterion for AIC() and modelAverage() is ‘AIC’, not ‘AICc’ as in secr.
4. The maximum number of iterations used by openCR.fit() to maximize the likelihood defaults to 300

rather than 100.

distribution has been elevated to a full argument rather than merely a component of details. This
argument describes the distribution of the number of individuals detected (default distribution = “poisson”)
(see here).

When details$LLonly = TRUE, openCR.fit returns a vector with the log likelihood in position 1, followed
by the named starting values of the coefficients (beta parameters) (secr.fit returns only the log likelihood).

In secr the argument CL is used in secr.fit to switch between full- and conditional-likelihood models. In
openCR conditional-likelihood models are given a separate type with the suffix CL (or use PLB alias).

The predictor ‘t’ is used in secr models to indicate a factor with one level for each secondary session. In
openCR it is a synonym for ‘session’, i.e. a factor with one level for each primary session. This is consistent
with the use of ‘t’ in Lebreton et al. (1992) and makes for more compact model specification. In the unlikely
event that you want to code a model with one level for each secondary session in openCR, use the ‘timecov’
argument.

Arguments to be passed to nlm() cannot merely be appended as in the . . . argument of secr.fit(), but must be
passed as a named list in the details argument control. See here for an example.

Parts of openCR are coded in C++, via the R package Rcpp. The Rcpp interface requires less copying
of data, and enables the use of multiple threads via RcppParallel. openCR also duplicates some C++
functions in native R code, which is useful for debugging. Select the R version by setting details = list(R

= TRUE) in openCR.fit. This currently works for most models except those with detector type ‘multi’ and
some exotic movement models.
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Strata (openCR >=2.0) are analogous to sessions in secr in that they are treated as independent with
no re-detections of animals between strata. The total log-likelihood in openCR is the sum of stratum log
likelihoods, just as the total is the sum of session loglikelihoods in secr.

These features of secr are not available in openCR

1. Hybrid mixture models (hcov in secr)
2. Groups (use strata, or CL and individual covariates, or see marked)
3. Regression splines from mgcv

4. Density surfaces and other spatial density models
5. Post-hoc probability density of activity centres (fxi in secr)
6. Non-point detectors (polygon, polygonX etc. in secr; discretize instead)
7. ‘collate’ function (make.table may do the job)
8. Variable effort for nonspatial models (cf Efford, Borchers and Mowat 2013) (The ‘usage’ attribute of

traps objects is applied in spatial openCR models).
9. Negative binomial counts (binomN<0)

13.6 Relationship to other software

The non-spatial capability of openCR largely duplicates MARK and RMark. Several of the nonspatial
model types have exact matches in MARK (Table 11).

Table 11. Relationship of non-spatial openCR models to MARK model types

openCR type MARK model Reference

CJS CJS Seber (1982)
JSSAb POPAN Schwarz and Arnason (1996)
JSSAfCL LinkBarker Link and Barker (2005)
Pradel Pradlambda Pradel (1996)
Pradelg Pradsen Pradel (1996)

The R package marked (Laake, Johnson and Conn 2013) also overlaps substantially with the non-spatial
features of openCR. Its interface echoes RMark just as openCR echoes secr. marked has some fancy
features for individual covariates and random effects, and promises fast processing of large datasets. marked

1.2.6 includes full-likelihood JSSA (POPAN) models parameterized in terms of entry probabilities (type
JSSAb)16, but not the other JSSA options in Table 3.
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15 Appendix 1. Code for figures.

Code used to generate schematic diagrams of data structure.

onemulti <- function(st = c(0,6,11,15), le = c(5,4,3,5), yb = 7, col=col1, outer = TRUE) {

col <- rep(col, le)

xl <- unlist(mapply(":",st,le+st-1))

yb <- rep(yb,length(xl))

xr <- xl + width

yt <- yb + height

rect(xl,yb,xr,yt,col=col)

text(xl+width/2, yb+height/2, unlist(mapply(":", 1, le)))

xl <- st - margin

yb <- rep(yb[1], length(xl)) - margin

xr <- st+le-1+width+margin

yt <- yb+height+2*margin

rect(xl,yb,xr,yt)

text(st+le/2, rep(yb[1]+2*margin,length(st))+height+0.5, paste('session',1:length(st)))

if (outer) {

rect(st[1]-3*margin, yb[1]-2*margin, tail(st+le-1,1)+width+3*margin,

yb[1]+height+8*margin)

}

}

onejoined <- function(offset = 1.5, le = c(5,4,3,5), yb = 2.2, col=col1, intervals = TRUE,

intlabel = 'intervals', leftlabel = '', outer = TRUE) {

col <- rep(col, le)

xl <- 0:(sum(le)-1)+offset

yb <- rep(yb,length(xl))

xr <- xl + width

yt <- yb + height

rect(xl,yb,xr,yt,col=col)

text(xl+width/2, yb+height/2, c(1:length(xl)))

if (intervals) {

xi <- offset + (1:(length(xl)-1)) - (1-width)/2

xip <- cumsum(le)[-length(le)] # intermediate between primary sessions

intervals <- rep(0,length(xi))

intervals[xip] <- 1

text(xi, yb [-1]-0.8, intervals)

text(-0.2, yb[1]-0.8, intlabel)

segments(xi[xip], rep(yb[1]-0.4,length(xip)), xi[xip], rep(yb[1]+0.4,

length(xip))+height)

}

text (0.4, yb[1]+height/2, leftlabel, adj = c(1,0.5))

if (outer) {

rect(offset-2*margin, yb[1]-2*margin, sum(le)-1+offset+width+2*margin,

yb[1]+height+2*margin)

}

}

# Fig. 1 Single-stratum data

par(cex=1, xpd = TRUE, mfrow = c(1,1), mar=c(1,4,1,4))

width <- 0.85

height <- 1.1

33



margin <- 0.15

col1 <- c('salmon','pink','brown', 'red')

col2 <- c('green','lightgreen','darkgreen', 'lightblue')

MASS::eqscplot(0,0,xlim=c(0,20), ylim=c(0,8), type='n', axes=F,xlab='',ylab='')

onemulti(col = col1)

text(9, 5.2, 'join()', cex=1.1)

arrows (10.7,6.2,10.7,4.2)

onejoined(leftlabel='')

# Fig. 2 Multi-stratum data

par(cex = 0.9, xpd = TRUE, mfrow = c(1,1), mar = c(1,4,1,4))

MASS::eqscplot(0,0,xlim=c(-3,20), ylim=c(-2,8), type='n', axes=FALSE, xlab = '',ylab='')

onejoined(leftlabel='stratum 1', yb = 6.5, intlabel='')

onejoined(leftlabel='stratum 2', yb = 3, intlabel='')

onejoined(leftlabel='stratum 3', yb = -0.5, le = c(4,3,4,4), intlabel='', col = col2)

rect(-3, -2, 19.3, 8.7)
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