Package 'numOSL'

July 22, 2025

3diy 22, 2023	
Type Package	
Title Numeric Routines for Optically Stimulated Luminescence Dating	
Version 2.8	
Date 2023-12-06	
Author Jun Peng [aut, cre], Bo Li [aut], Chunxin Wang [aut], Jorge More [ctb], Burton Garbow [ctb], Kenneth Hillstrom [ctb], John Burkardt [ctb], Paul Gilbert [ctb], Ravi Varadhan [ctb]	
Maintainer Jun Peng <pengjun10@mails.ucas.ac.cn></pengjun10@mails.ucas.ac.cn>	
Description Optimizing regular numeric problems in optically stimulate such as: equivalent dose calculation, dose rate determination, grow curve decomposition, statistical age model optimization, and statistical age model optimization.	th curve fitting, decay
License GPL-3	
Depends R (>= 2.15.3)	
Imports graphics, stats, utils, grDevices	
<pre>URL https://CRAN.R-project.org/package=numOSL</pre>	
NeedsCompilation yes	
Repository CRAN	
Date/Publication 2023-12-06 12:20:02 UTC	
Contents	
numOSL-package	

2 numOSL-package

numOS	SL-package	Package for tackling basic numeric problems uminescence dating	in optically stimulated	
Index			5	58
	Signaldata			57
				54
				53 54
	1			52 52
				49
	•			48
	_			46
	•			44
	_			42
				41
				39
				37
				35
	fitGrowth		3	32
	fastED			28
	EDdata			27
	decomp			24
				23
				20
	• 1			18
				17
				ر 13
	calDA			Ç

Description

Package for routine numeric optimization and data visualization in optically stimulated luminescence dating.

Details

Package: numOSL Type: Package Version: 2.8

Date: 2023-12-06 License: GPL-3

Author(s)

Jun Peng Hunan University of Science and Technology (HNUST), Xiangtan, China

Bo Li University of Wollongong (UOW), Wollongong, Australia Chunxin Wang University of Science and Technology of China, Hefei, China

Package maintainer

Jun Peng <pengjun10@mails.ucas.ac.cn>

Related package projects

R program KMS https://github.com/pengjunUCAS/KMS R package tgcd https://CRAN.R-project.org/package=tgcd

References

Peng J, Dong ZB, Han FQ, Long H, Liu XJ, 2013. R package numOSL: numeric routines for optically stimulated luminescence dating. Ancient TL, 31(2): 41-48.

Peng J, Li Bo, 2017. Single-aliquot Regenerative-Dose (SAR) and Standardised Growth Curve (SGC) Equivalent Dose Determination in a Batch Model Using the R Package 'numOSL'. Ancient TL, 35(2): 32-53.

analyseBINdata

BIN data analysis

Description

Analysing signal data records extracted from a BIN file.

Usage

Arguments

obj_pickBIN

list(required): an object of S3 class "pickBIN" produced by

function pickBINdata

nfchn integer(required): number of the first few channels from the initial part of a decay curve. Number of counts summed over channels (Delay+1L): (Delay+nfchn) is calculated as the fast-component

plus backgroud signal

nlchn integer(**required**): number of the last few channels from the latter part

of a decay curve. If bg="late", number of counts averaged over channels (Delay+On-nlchn+1L): (Delay+On) will be calculated as the backgroud signal, if bg="early", number of counts averaged over channels (Delay+nfchn+1L): (Delay+nfchn+nlchn) will be calculated as the backgroud signal. Delay and On are obtained internally from the BIN file.

fchn integer(**required**): channels used for calculating the fast-component signals

1chn integer(**required**): channels used for calculating the background counts

bg character(with default): background subtraction method, i.e.,

bg="early" or bg="late"

me numeric(with default): measurement error of Lx (or Tx) in percent

distp character(with default): distribution of photon counts, distp="p" denotes

Poisson distribution, distp="op" denotes Over Poisson distribution

kph numeric(optional): correction factor for photon counts
kdc numeric(optional): correction factor for dark counts

dcr numeric(optional): dark count rate

FR. fchn vector(optional): fast-component signal channels, note that those channels are

extracted internally from the "ON" channels,

i.e., FR. fchn=((Delay+1):(Delay+On))[FR. fchn].

Example: FR. fchn=1:5

FR. mchn vector(optional): medium-component signal channels, note that those channels

are extracted internally from the "ON" channels, i.e., FR.mchn=((Delay+1):(Delay+0n))[FR.mchn].

Example: FR.mchn=31:60

FR. 1chn vector(optional): background signal channels, note that those channels are ex-

tracted internally from the "ON" channels,

i.e., FR.lchn=((Delay+1):(Delay+On))[FR.lchn].

Example: FR.1chn=201:250

signal.type character(with default): type of signal, "LxTx", "Lx", or "Tx"

outfile character(optional): if specified, analysis results (i.e., NO, Position, Grain,

SAR.Cycle, Dose, Init, BG, Lx, seLx, TInit, TBG, Tx, seTx, LxTx, seLxTx) will be written to a CSV file named "outfile" and saved to the current work

directory

Details

Function analyseBINdata is used for signal (i.e., Lx, Tx, and Lx/Tx) calculation. It provides two protocols for background subtraction (i.e., the early and late background subtraction methods).

Standard error of signals are assessed using two methods: if photon counts are assummed to follow Poisson distributions, **Eqn.(3)** of Galbraith (2002) will be applied; if photon counts are over-dispersed, **Eqn.(10)** of Bluszcz et al. (2015) will be applied.

If arguments FR.fchn, FR.mchn, and FR.1chn are provided, fast ratio will be calculated according to Madsen et al. (2009).

Value

Return an invisible list of S3 class object "analyseBIN" containing the following elements:

SARdata a data.frame containing calculated SAR data sets

criteria values used as rejection criteria (0-1 values indicating if Tn is more than 3 sigma

above BG or not, ratio of initial Tn signal to BG and associated standard error, relative standard error of Tn in percent, fast ratio of Tn and associated standard error), NA is produced if the value can not be calculated. Note that in this function

rejection criteria are calculated but not applied

Tn values of Tn and associated standard errors

LnTn.curve decay curves for Ln and Tn for different aliquots (grains)

TxTn ratios of Tx to Tn for various SAR cycles

agID aliquot or grain ID (i.e., NO, Position, and Grain)

SARdata is a data.frame containing the following elements if signal.type="LxTx":

Element	Description
NO	aliquot (grain) number
SAR.Cycle	SAR cycle (N, R1, R2, R3,)
Dose	regenerative dose
LxTx	sensitivity-corrected regenerative-dose signal
seLxTx	standard error of LxTx

SARdata contains the following elements if signal.type="Lx":

Element	Description
NO	aliquot (grain) number
SAR.Cycle	SAR cycle (N, R1, R2, R3,)
Dose	regenerative dose
Lx	regenerative-dose signal
seLx	standard error of Lx

SARdata contains the following elements if signal.type="Tx":

Element	Description
NO	aliquot (grain) number
SAR.Cycle	SAR cycle (N, R1, R2, R3,)
Dose	regenerative dose
Tx	test-dose signal

seTx standard error of Tx

Note

Though function analyseBINdata is originally designed to analyze CW-OSL data sets, IRSL data sets obtained from the SAR protocol can also be analyzed.

References

Ballarini M, Wallinga J, Wintle AG, Bos AJJ, 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements, 42(3): 360-369.

Bluszcz A, Adamiec G, Heer AJ, 2015. Estimation of equivalent dose and its uncertainty in the OSL SAR protocol when count numbers do not follow a Poisson distribution. Radiation Measurements, 81: 46-54.

Cunningham AC, Wallinga J, 2010. Selection of integration time intervals for quartz OSL decay curves. Quaternary Geochronology, 5(6): 657-666

Duller GAT, 2016. Analyst (v4.31.9), User Mannual.

Durcan JA, Duller GAT, 2011. The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Radiation Measurements, 46(10): 1065-1072.

Galbraith R, 2002. A note on the variance of a backround-corrected OSL count. Ancient TL, 20(2): 49-51.

Madsen AT, Duller GAT, Donnelly JP, Roberts HM, Wintle AG, 2009. A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating. Geomorphology, 109(1-2): 36-45.

See Also

```
loadBINdata; pickBINdata; pickSARdata; calED; calSARED; calSGCED; fitGrowth; lsNORM; BIN
```

Examples

as_analyseBIN 7

as_analyseBIN Transfom SAR data sets into S3 class object "analyseBIN"
--

Description

Transfom SAR data sets into S3 class object "analyseBIN".

Usage

```
as_analyseBIN(SARdata)
```

Arguments

SARdata matrix(required): SAR data set, it should contain five columns

(i.e., NO, SAR. Cycle, Dose, Signal, and Signal. Err), see SARdata for details

Value

Return an invisible list of S3 class object "analyseBIN" containing the following elements:

SARdata a data.frame containing SAR data sets

criteria values used as rejection criteria, here it is set equal to NULL

Tn values of Tn and associated standard errors, here it is set equal to NULL

LnTn. curve decay curves of Ln and Tn for different aliquots (grains), here it is set equal to

NULL

TxTn ratios of Tx to Tn for various SAR cycles, here it is set equal to NULL

agID aliquot or grain ID (i.e., NO, Position, and Grain), here both Position and

Grain are set equal to 0

SARdata is a data.frame containing the following elements:

Element	Description
NO	aliquot (grain) number
SAR.Cycle	SAR cycle (N, R1, R2, R3,)
Dose	regenerative dose
Signal	OSL signal
Signal.Err	standard error of OSL signal

Note

Function as_analyseBIN transforms SAR data sets (see SARdata) into S3 class object "analyse-BIN". The returned elements such as criteria, Tn, LnTn.curve, and TxTn are set equal to NULL.

See Also

analyseBINdata; SARdata; calSARED; pickSARdata

8 BIN

Examples

```
### Example 1:
data(SARdata)
obj_analyseBIN <- as_analyseBIN(SARdata[1:8,,drop=FALSE])
res_calSARED <- calSARED(obj_analyseBIN)
res_calSARED$sarED

### Example 2 (not run):
# obj_analyseBIN <- as_analyseBIN(SARdata)
# res_calSARED <- calSARED(obj_analyseBIN, rcy1.range=c(1,1), outpdf="SARED")

### Example 3 (not run):
# obj_analyseBIN <- as_analyseBIN(SARdata)
# res_pickSARdata <- pickSARdata(obj_analyseBIN, fom.up=6, outpdf="SARdata")
# res_pickSARdata$SARdata</pre>
```

BIN

BIN data

Description

BIN data for aeolian sample GL2-1 from the south margin of the Tengger Desert (Peng et al., 2013).

Usage

```
data(BIN)
```

Format

A S3 class object "loadBIN" produced by function loadBINdata that contains the following two elements:

```
records a list consists of loaded data records for each aliquot (grain) tab a data.frame used for summarizing loaded data records
```

References

Peng J, Han FQ, 2013. Selections of fast-component OSL signal using sediments from the south edge of Tengger Desert. Acta Geoscientica Sinica, 34(6): 757-762.

See Also

```
loadBINdata; pickBINdata; analyseBINdata
```

Examples

```
# Not run.
# data(BIN)
# class(BIN)
```

calDA	Dose rate and age calculation
-------	-------------------------------

Description

Calculating the total dose rate and burial age and assessing associated standard errors using a Monte Carlo method.

Usage

```
calDA(dose, minGrainSize, maxGrainSize,
    Ucontent, Thcontent, Kcontent, Rbcontent, Wct, depth, longitude,
    latitude, altitude, alphaValue = 0, inKcontent = 0, inRbcontent = 0,
    calRbfromK = FALSE, bulkDensity = 2.5, cfType = "Liritzis2013", rdcf = 0,
    rba = 0, ShallowGamma = TRUE, nsim = 5000, reject = TRUE, plot = TRUE,
    sampleName = "")

calDAbatch(inputfile = "inputDRtable", cfType = "Liritzis2013",
    rdcf = 0, rba = 0, calRbfromK = FALSE,
    ShallowGamma = TRUE, nsim = 5000, reject = TRUE,
    outfile = paste(inputfile, "_Results", sep=""),
    outpdf = paste(inputfile, "_Results", sep=""), digits = 4)
```

Arguments

dose	vector(required): a two-element vector containing the equivalent dose and associated measurement error (unit, Gy)
minGrainSize	numeric(required): lower limit on grain size (unit, um)
maxGrainSize	<pre>numeric(required): upper limit on grain size (unit, um)</pre>
Ucontent	<pre>vector(required): a two-element vector containing the uranium content and its measurement error (unit, ppm)</pre>
Thcontent	<pre>vector(required): a two-element vector containing the thorium content and its measurement error (unit, ppm)</pre>
Kcontent	<pre>vector(required): a two-element vector containing the potassium content and its measurement error (unit, percent)</pre>
Rbcontent	<pre>numeric(required): the rubidium content (unit, ppm). The measurement error is optional</pre>
Wct	<pre>vector(required): a two-element vector containing the water content and its measurement error (unit, percent)</pre>
depth	numeric(required): sampling depth (unit, m). The associated error is optional
longitude	<pre>numeric(required): longitude of the sampling site (unit, decimal degree). The associated error is optional</pre>
latitude	<pre>numeric(required): latitude of the sampling site (unit, decimal degree). The associated error is optional</pre>

altitude numeric(required): altitude of the sampling site (unit, m above sea level). The associated error is optional alphaValue numeric(with default): average alpha efficiency. The associated error is optional, for example, alphaValue=0.038 or alphaValue=c(0.038,0.002) inKcontent numeric(with default): internal potassium content (unit, percent). The associated error is optional, for example, inKcontent=12.5, or inKcontent=c(12.5,0.5) inRbcontent numeric(with default): internal rubidium content (unit, ppm). The associated error is optional, for example, inRbcontent=400, or inRbcontent=c(400,100) calRbfromK logical(with default): whether calculate the rubidium and internal rubidium contents using the provided potassium and internal potassium contents respectively. If calRbfromK=TRUE, the provided rubidium and/or internal rubidium contents will not be used for dose-rate calculation numeric(with default): average density of bulk sample (unit, g/cm³). bulkDensity The associated error is optional, for example, bulkDensity=2.5, or bulkDensity=c(2.5,0.2)character(with default): type of the conversion factor, one from cfType "AdamiecAitken1998", "Guerin2011", and "Liritzis2013" rdcf numeric(with default): constant relative standard error (RSD) for dose-rate conversion factors (unit, percent). If rdcf=0, the dose-rate conversion factors will be assummed to be perfectly determined, otherwise their errors calculated using the constant RSD will be accounted for during the Monte Carlo simulation. Since the conversion factors of "Liritzis2013" contain measured standard errors, when cfType="Liritzis2013", a positive rdcf value indicates that the measured errors will be accounted for during simulation rba numeric(with default): constant RSD for alpha and beta dose absorption fractions (unit, percent). If rba=0, the determined alpha and beta dose attenuation factors will be assummed to be free from errors ShallowGamma logical(with default): consider the scaling of gamma dose rate for samples collected at shallow burial depths or not nsim integer(with default): number of Monte Carlo simulations reject logical(with default): whether randomly generated negative values of variables (including equivalent dose, uranium, thorium, potassium, and water contents, alpha efficiency, and bulk-sample density, etc) and meaningless values (longitude beyonds [-180, 180], or latitude beyonds [-90, 90]) will be reject during the Monte Carlo simulation plot logical(with default): draw a plot showing the simulated distributions of dose rates and ages or not character(with default): name of the sample sampleName inputfile character(with default): name of the input file containing measured dataset of individual samples used for dose rate and age calculations outfile character(with default): name of the files containing the results of calculated dose rates and ages for a number of samples. The files will be written using

CSV/HTML format and saved to the current work directory

outpdf character(with default): name of a PDF file showing the distributions of dose

rates and ages simulated using a Monte Carlo method for a number of samples.

The file will be saved to the current work directory

digits integer(with default): the number of decimal places or significant digits to be

used for values of the output CSV/HTML files

Details

Function calDA is used for calculating the annual dose rate and burial age using the concentrations of radioactive nuclides (uranium, thorium, potassium) obtained from Neutron Activation Analysis (NAA) or inductively coupled plasma mass spectrometry (ICP-MS), grain size, water content, average sample density, geographical parameters (depth, longitude, latitude, altitude), and the equivalent dose. The elemental concentrations of uranium, thorium, and potassium are converted into alpha, bata, and gamma dose rates according to dose-rate conversion factors (Adamiec and Aitken, 1998; Guerin et al., 2011; Liritzis et al., 2013). Alpha and beta dose absorded fractions are determined using published data (Mejdahl, 1979; Brennan et al., 1991). The contribution of the internal beta dose rate can be assessed if the internal potassium content is provided. The gamma dose rate for samples collected at shallow depths are corrected using the scaling factors of Aitken (1985). The cosmic ray dose rate is estimated as a function of depth, altitude and geomagnetic latitude (Prescott and Hutton, 1994) and the contribution to cosmic dose rate from a soft component is considered at shallow depths (Barbouti and Rastin, 1983).

The hydrofluoric acid-etched quartz and K-feldspar samples have an alpha efficiency of zero, while the reported alpha values of un-etched coarse-grained quartz and K-feldspar are 0.1 ± 0.02 (Olley et al., 1998) and 0.15 ± 0.05 (Balescu and Lamothe, 1994), respectively. Three reported alpha values for fine-grained quartz are 0.038 ± 0.002 (Rees-Jones, 1995), 0.04 ± 0.01 (Rees-Jones and Tite, 1997), and 0.035 ± 0.003 (Lai et al., 2008). Two reported alpha values for fine-grained polymineral are 0.086 ± 0.004 (Rees-Jones, 1995) and 0.09 ± 0.02 (Kreutzer et al., 2014). Huntley and Hancock (2001) assumed an internal rubidium content of 400 ± 100 ppm. Three reported internal potassium contents are $12.5\pm0.5\%$ (Huntley and Baril, 1997), $13\pm1\%$ (Zhao and Li, 2005), and $10\pm2\%$ (Smedley et al., 2012).

The standard error of the age and dose rate is estimated by a "parametric bootstrap" method (Peng et al., 2016). Constant relative standard errors for dose-rate conversion factors, alpha and beta dose absorption factors can be assummed during the simulation. Arguments such as dose, Ucontent, Thcontent, Kcontent, Wct should be two-element vectors representing paired values of $\mu \pm \sigma$, where μ and σ denote the measured value and associated standard error, respectively. Arguments such as depth, longitude, latitude, altitude, alphaValue, Rbcontent, inKcontent, inRbcontent, and bulkDensity, can be either a scalar or a two-element vector. This means that uncertainties from these quantities can be either ignored or taken into account during the simulation.

Function calDAbatch is a wrapper of the function calDA and is used to calculate the dose rates and burial ages for a number of samples in a batch mode. The function requires as input a CSV file containing dose-rate datasets of different samples that are saved row by row. A template of the input CSV file with the name "myDRdata" can be generated using the command calDAbatch("myDRdata") (see examples).

Value

Function calDA returns a matrix that contains calculated alpha, beta, gamma, cosmic, and total dose rate and age and associated standard errors, lower and upper bounds of 95 percent confidence intervals for the sample under considered.

Function calDAbatch returns an invisible list that contains calculated dose-rate results for each of the provided samples.

Author(s)

Orignal R code written by Jun Peng, improved version of code written by Chunxin Wang

References

Adamiec G, Aitken M, 1998. Dose-rate conversion factors: update. Ancient TL, 16(2): 37-49.

Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, London.

Balescu S, Lamothe M, 1994. Comparison of TL and IRSL age estimates of feldspar coarse grains from waterlain sediments. Quaternary Science Reviews, 13: 437-444.

Barbouti AI, Rastin BC, 1983. A study of the absolute intensity of muons at sea level and under various thicknesses of absorber. Journal of Physics G Nuclear Physics, 9: 1577e1595.

Brennan BJ, Lyons RG, Phillips SW, 1991. Attenuation of alpha particle track dose for spherical grains. International Journal of Radiation Application and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 18: 249-253.

Guerin G, Mercier N, Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL, 29: 5-8.

Huntley DJ, Baril M, 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL, 15: 11-13.

Huntley DJ, Hancock R, 2001. The Rb contents of the K-feldspar grains being measured in optical dating. Ancient TL, 19: 43-46.

Kreutzer S, Schmidt C, DeWitt R, Fuchs M, 2014. The a-value of polymineral fine grain samples measured with the post-IR IRSL protocol. Radiation Measurements, 69: 18-29.

Lai ZP, Zoller L, Fuchs M, Bruckner H, 2008. Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiation Measurements, 43: 767-770.

Liritzis I, Stamoulis K, Papachristodoulou C, Ioannides K, 2013. A re-evaluation of radiation doserate conversion factors. Mediterranean Archaeology and Archaeometry, 13: 1-15.

Mejdahl V, 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry, 21: 61-72.

Olley J, Caitcheon G, Murray A, 1998. The distribution of apparent dose as determined by Optically Stimulated Luminescence in small aliquots of fluvial quartzImplications for dating young sediments. Quaternary Science Reviews, 17: 1033-1040.

Prescott, JR, Hutton JT, 1994. Cosmic ray contributions to dose rates for Luminescence and Esr dating: large depths and long-term time variations. Radiation Measurements, 23(2-3): 497-500.

Peng J, Dong ZB, Zhang ZC, 2016. Determining the error of dose rate estimates on luminescence dating using Monte Carlo approach. Nuclear Techniques, 38(7): 070201. (In Chinese).

Rees-Jones J, 1995. Optical dating of young sediments using fine-grained quartz. Ancient TL, 13: 9-14.

Rees-Jones J, Tite MS, 1997. Optical dating results for British archaeological sediments. Archaeometry, 39: 177-187.

Smedley RK, Duller GAT, Pearce NJG, Roberts HM, 2012. Determining the K-content of single-grains of feldspar for luminescence dating. Radiation Measurements, 47: 790-796.

Zhao H, Li SH, 2005. Internal dose rate to K-feldspar grains from radioactive elements other than potassium. Radiation Measurements, 40: 84-93.

Further reading

Durcan JA, King GE, Duller GAT, 2015. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology, 28: 54-61.

Grun R, 2009. The "AGE" program for the calculation of luminescence age estimates. Ancient TL, 27: 45-46.

Examples

```
calDA(dose=c(25.04,0.68), minGrainSize=90,
      maxGrainSize=180, Ucontent=c(2.86,0.19),
      Thcontent=c(8.63,0.34), Kcontent=c(2.00,0.11), Rbcontent=0,
      Wct=c(0.05,0.05), depth=c(1.1,0.05), longitude=c(103.16,0.1),
      latitude=c(37.64,0.1), altitude=c(1170,58.5), bulkDensity=c(2.5,0.1),
      rdcf=0.03, rba=0.03)
# Not run.
# Generate a template of input CSV file "myDRdata" using the following command.
# calDAbatch(inputfile="myDRdata")
# Put your dose rate dataset into the above generated template file "myDRdata.csv", then run
# the following command to calculate dose rates and ages for your samples in a batch mode.
# d <- calDAbatch(inputfile="myDRdata", nsim=3000)</pre>
# idx <- sapply(d, is.matrix)</pre>
# h <- t(sapply(d[idx], function(x) c(t(x[6:7,1:2]))))
# colnames(h) <- c("DR", "Se.DR", "Age", "Se.Age")</pre>
# print(h)
```

calED

Equivalent dose calculation and error assessment

Description

Calculating an equivalent dose and assessing its standard error.

Usage

```
calED(Curvedata, Ltx, model = "gok", origin = FALSE,
    errMethod = "sp", nsim = 500, weight = TRUE,
    trial = FALSE, plot = TRUE, nofit.rgd = NULL,
    agID = NULL, Tn = NULL, Tn3BG = NULL,
    TnBG.ratio = NULL, rseTn = NULL, FR = NULL,
    LnTn.curve = NULL, TxTn = NULL)
```

Arguments

Curvedata	matrix(required): a three-column matrix (i.e., regenerative doses, sensitivity-corrected regenerative-dose signals, and associated standard errors)
Ltx	vector(required): a two-element vector consists of sensitivity-corrected natural-dose signal and its error
model	character(with default): model used for growth curve fitting, see fitGrowth for available models
origin	logical(with default): logical value indicating if the growth curve should be forced to pass the origin
errMethod	<pre>character(with default): method used for equivalent dose error assessment. "sp" and "mc" denote error estimation using the Simple Transformation and Monte Carlo methods, respectively</pre>
nsim	integer(with default): desired number of randomly simulated equivalent dose obtained by Monte Carlo simulation
weight	logical(with default): logical value indicating if the growth curve should be fitted using a weighted procedure, see function fitGrowth for details
trial	logical(with default): logical value indicating if the growth curve should be fitted using other models if the given model fails, see function fitGrowth for details
plot	logical(with default): logical value indicating if the results should be plotted
nofit.rgd	<pre>integer(optional): regenerative doses that will not be used during the fitting. For example, if nofit.rgd=1 then the first regenerative dose will not be used during growth curve fitting</pre>
agID	<pre>vector(optional): a three-elemenet vector indicating aliquot (grain) ID, i.e., agID[1]=NO, agID[2]=Position, agID[3]=Grain</pre>
Tn	vector(optional): a two-element vector containing value and standard error of Tn
Tn3BG	numeric(optional): 0-1 value indicating if Tn is more than 3 sigma above BG, 1 indicates Tn>3_sigma_BG, 0 indicates Tn<=3_sigma_BG
TnBG.ratio	vector(optional): a two-element vector containing value and standard error of ratio of initial Tn signal to BG
rseTn	numeric(optional): relative standard error of Tn in percent
FR	vector(optional): a two-element vector containing value and standard error of fast ratio of Tn
LnTn.curve	$\label{list} \begin{array}{ll} \textbf{list}(\textbf{optional}) \colon \textbf{decay curve data for Ln and Tn, it should contain four elements,} \\ \textbf{i.e., names}(\texttt{LnTn.curve}) = \texttt{c}("\texttt{Ln.x", "Ln.y", "Tn.x", "Tn.y"}) \end{array}$
TxTn	vector(optional): ratios of Tx to Tn for various SAR cycles

Details

Function calED is used for calculating an equivalent dose and assessing its standard error. The standard errors of an equivalent dose can be assessed using the Simple Transformation or Monte Carlo method (Duller, 2007).

Interpolation is performed using a combination of golden section search and successive parabolic interpolation (*R* function optimize in package *stats*) (freely available Fortran 77 source code at https://www.netlib.org/fmm/fmin.f). See function fitGrowth for more details on growth curve fitting.

Value

Return an invisible list that contains the following elements:

message return 0 if calculation succeeds, 1 if growth curve fitting fails, 2 if natural-dose

signal saturates, 3 if equivalent dose calculation fails, 4 if equivalent dose error

assessment fails

fitIDX Indices of dose points used in growth curve fitting

LMpars optimized parameters for the growth curve value minimized objective for the growth curve avg.error average fit error for the growth curve

RCS reduced chi-square value for the growth curve

FOM figure of merit value for the growth curve in percent

calED.method method used for equivalent dose calculation, i.e.,

"Interpolation" or "Extrapolation"

mcED randomly simulated equivalent doses

ED calculated equivalent dose and its standard error

ConfInt 68 percent and 95 percent confidence intervals for the equivalent dose

RecyclingRatio1

the first recycling ratio and its standard error

RecyclingRatio2

the second recycling ratio and its standard error

RecyclingRatio3

the third recycling ratio and its standard error

Recuperation1 the first recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to

natural-dose signal) and its standard error in percent

Recuperation2 the second recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal

to maximum regenerative-dose signal) and its standard error in percent

Note

Arguments agID, Tn, Tn3BG, TnBG.ratio, rseTn, FR, LnTn.curve, and TxTn have nothing to do with equivalent dose calculation. They are used only for plotting purpose.

Argument Tn3BG indicates if Tn (after background subtraction) is more than 3 sigma above BG, while argument TnBG.ratio denotes the ratio of Tn (no background subtraction) to BG.

Function calED will return message=3 (i.e., "Failed in equivalent dose calculation") if the equivalent dose to be calculated below -50 (<Gy>I<s>).

68 percent (one sigma) and 95 percent (two sigma) confidence intervals of equivalent doses will be determined respectively using normal approximation and Monte Carlo simulation, for errMethod="sp" and errMethod="mc".

Function sgcED in previous versions was bundled to function calSGCED.

References

Duller GAT, 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL, 25(1): 15-24.

Duller GAT, 2016. Analyst (v4.31.9), User Mannual.

Galbraith RF, Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology, 11: 1-27.

See Also

analyseBINdata; fitGrowth; calRcyRcp; calSARED; fastED; calSGCED

Examples

calRcyRcp 17

Carneynep Recycling rand and recuperation calculation	calRcyRcp	Recycling ratio and recuperation calculation
---	-----------	--

Description

Calculating recycling ratio, recuperation, and associated standard errors.

Usage

```
calRcyRcp(Curvedata, Ltx)
```

Arguments

Curvedata matrix(required): a three-column matrix (i.e., regenerative doses,

sensitivity-corrected regenerative-dose signals, and associated standard errors)

Ltx vector(required): a two-element vector consists of sensitivity-corrected

natural-dose signal and its error

Value

Return a list that contains the following elements:

RecyclingRatio1

the first recycling ratio and its standard error

RecyclingRatio2

the second recycling ratio and its standard error

RecyclingRatio3

the third recycling ratio and its standard error

Recuperation1 the first recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to

natural-dose signal) and its standard error in percent

Recuperation2 the second recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal

to maximum regenerative-dose signal) and its standard error in percent

Note

If the sensitivity-corrected signals for the frist, second, and third repeated regenerative doses are R1, R2, and R3, respectively, then RecyclingRatio1=R2/R1, RecyclingRatio2=R3/R1, and RecyclingRatio3=R3/R2.

References

Wintle AG, Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 41(4): 369-391.

See Also

```
calED; fastED; calSARED; pickSARdata
```

18 calSARED

calSARED

SAR equivalent doses calculation and selection

Description

Calculating and selecting a series of equivalent doses in a batch mode according to the single aliquot regenerative-dose (SAR) method (Murray and Wintle, 2000).

Usage

```
calSARED(obj_analyseBIN, model = "gok", origin = FALSE,
    errMethod = "sp", nsim = 500, weight = TRUE,
    trial = TRUE, nofit.rgd = NULL, Tn.above.3BG = TRUE,
    TnBG.ratio.low = NULL, rseTn.up = NULL, FR.low = NULL,
    rcy1.range = NULL, rcy2.range = NULL, rcy3.range = NULL,
    rcp1.up = NULL, rcp2.up = NULL, fom.up = NULL,
    rcs.up = NULL, calED.method = NULL, rseED.up = NULL,
    use.se = TRUE, outpdf = NULL, outfile = NULL)
```

Arguments

obj_analyseBIN	list(required): an object of S3 class "analyseBIN" produced by function analyseBINdata or as_analyseBIN
model	character(with default): model used for growth curve fitting, see fitGrowth for available models
origin	logical(with default): logical value indicating if the growth curve should be forced to pass the origin
errMethod	character(with default): method used for equivalent dose error assessment. See function calED for details
nsim	integer(with default): desired number of randomly simulated equivalent dose obtained by Monte Carlo simulation
weight	logical(with default): logical value indicating if the growth curve should be fitted using a weighted procedure, see function fitGrowth for details
trial	logical(with default): logical value indicating if the growth curve should be fitted using other models if the given model fails, see function fitGrowth for details
nofit.rgd	<pre>integer(optional): regenerative doses that will not be used during the fitting. For example, if nofit.rgd=6 then the sixth regenerative dose will not be used during growth curve fitting</pre>
Tn.above.3BG	logical(with default): logical value indicating if aliquot (grain) with Tn below 3 sigma BG should be rejected
TnBG.ratio.low	numeric(optional): lower limit on ratio of initial Tn signal to BG
rseTn.up	numeric(optional): upper limit on relative standard error of Tn in percent
FR.low	numeric(optional): lower limit on fast ratio of Tn

calSARED 19

rcy1.range	<pre>vector(optional): a two-element vector indicating the lower and upper limits on recycling ratio 1, Example: rcy1.range=c(0.9,1.1)</pre>
rcy2.range	vector(optional): a two-element vector indicating the lower and upper limits on recycling ratio 2
rcy3.range	vector(optional): a two-element vector indicating the lower and upper limits on recycling ratio 3
rcp1.up	numeric(optional): upper limit on recuperation 1 (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) in percent
rcp2.up	numeric(optional): upper limit on recuperation 2 (i.e., ratio of the sensitivity-corrected zero-dose signal to maximum regenerative-dose signal) in percent
fom.up	<pre>numeric(optional): upper limit on figure of merit (FOM) values of growth curves in percent</pre>
rcs.up	numeric(optional): upper limit on reduced chi-square (RCS) values of growth curves
calED.method	<pre>character(optional): method used for equivalent dose calculation, i.e., "Interpolation" or "Extrapolation"</pre>
rseED.up	<pre>numeric(optional): upper limit on the relative standard error of equivalent dose in percent</pre>
use.se	logical(with default): logical value indicating if standard errors of values should be used during application of rejection criteria
outpdf	character(optional): if specified, results of SAR equivalent dose calculation will be written to a PDF file named "outpdf" and saved to the current work directory
outfile	<pre>character(optional): if specified, SAR equivalent doses related quantities will be written to a CSV file named "outfile" and saved to the current work directory</pre>

Value

Return an invisible list that contains the following elements:

LMpars	a list containing optimized parameters of growth curves of calculated (selected) SAR equivalent doses
Tn	values and standard errors of Tn of calculated (selected) SAR equivalent doses
Ltx	sensitivity-corrected natural-dose signals and associated standard errors used for SAR equivalent dose calculation
sarED	calculated (selected) SAR equivalent doses and associated standard errors
ConfInt	68 percent (one sigma) and 95 percent (two sigma) confidence intervals of SAR equivalent doses
agID	aliquot (grain) ID of calculated (selected) SAR equivalent doses
summary.info	a summary of the SAR equivalent dose calculation

20 calSGCED

Note

Rejection criteria used to select reliable SAR equivalent dose estimates can be catergorized into three groups:

- (1) signal-related criteria, such as Tn. above. 3BG, TnBG.ratio.low, rseTn.up, and FR.low;
- (2) growth-curve-related criteria, such as rcy1.range, rcy2.range, rcy3.range, rcp1.up, rcp2.up, fom.up, and rcs.up;
- (3) equivalent-dose-related criteria, such as calED.method and rseED.up.

References

Duller GAT, 2016. Analyst (v4.31.9), User Mannual.

Murray AS, Wintle AG, 2000. Luminescence dating of quartz using improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32(1): 57-73.

Wintle AG, Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 41(4): 369-391.

See Also

analyseBINdata; fitGrowth; calED; calSGCED; pickSARdata

Examples

calSGCED

SGC Equivalent dose calculation and selection

Description

Calculating and selecting equivalent doses in a batch model according to the "standardised growth curve" (SGC) method suggested by Roberts and Duller (2004) or the "global standardised growth curve" (gSGC) method suggested by Li et al. (2015, 2016).

Usage

```
calSGCED(obj_analyseBIN, SGCpars, model, origin, avgDev,
    method = "SGC", SAR.Cycle = "N", errMethod = "sp",
    Tn.above.3BG = TRUE, TnBG.ratio.low = NULL,
    rseTn.up = NULL, FR.low = NULL, rseED.up = NULL,
    use.se = TRUE, outpdf = NULL, outfile = NULL)
```

calSGCED 21

Arguments

obj_analyseBIN	list(required): an object of S3 class "analyseBIN" produced by function analyseBINdata or as_analyseBIN
SGCpars	<pre>vector(required): optimized parameters of the SGC obtained using function lsNORM (or fitGrowth)</pre>
model	character(required): fitting model used for obtaining SGCpars
origin	logical(required): logical value indicating if established SGC passes the origin
avgDev	numeric(required): average deviation (i.e., average fit error) of the SGC obtained using function fitGrowth or lsNORM. This quantity stands for the uncertainty of established SGC when assessing the equivalent dose error using the simple transformation method
method	$\begin{array}{l} \textbf{character}(\textbf{with default}) \textbf{: method used for equivalent dose calculation, i.e.,} \\ \textbf{method="SGC" (for the original SGC method) or method="gSGC" (for the improved SGC method)} \end{array}$
SAR.Cycle	<pre>character(with default): SAR cycles used for SGC equivalent dose calculation. Example: SAR.Cycle=c("N","R3")</pre>
errMethod	character(with default): method used for equivalent dose error assessment
Tn.above.3BG	logical(with default): logical value indicating if aliquot (grain) with Tn below 3 sigma BG should be rejected
TnBG.ratio.low	numeric(optional): lower limit on ratio of initial Tn signal to BG
rseTn.up	numeric(optional): upper limit on relative standard error of Tn in percent
FR.low	numeric(optional): lower limit on fast ratio of Tn
rseED.up	<pre>numeric(optional): upper limit on the relative standard error of equivalent dose in percent</pre>
use.se	logical(with default): logical value indicating if standard errors of values should be used during application of rejection criteria
outpdf	character(optional): if specified, results of SGC equivalent dose calculation will be written to a PDF file named "outpdf" and saved to the current work directory
outfile	character(optional): if specified, SGC equivalent doses related quantities will be written to a CSV file named "outfile" and saved to the current work directory

Value

Return an invisible list that contains the following elements:

scale.Ltx	scaled standardised natural-dose signals and associated standard errors used for SGC equivalent dose calculation. Note that standardised natural-dose signals will remain un-scaled if method="SGC"
sgcED	calculated SGC equivalent doses
ConfInt	68 percent (one sigma) and 95 percent (two sigma) confidence intervals of SGC equivalent doses
agID	aliquot (grain) ID of calculated (selected) SGC equivalent doses
summary.info	a summary of the SGC equivalent dose calculation

22 calSGCED

References

Li B, Roberts RG, Jacobs Z, Li SH, 2015. Potential of establishing a "global standardised growth curve" (gSGC) for optical dating of quartz from sediments. Quaternary Geochronology, 27: 94-104.

Li B, Jacobs Z, Roberts RG, 2016. Investigation of the applicability of standardised growth curves for OSL dating of quartz from Haua Fteah cave, Libya. Quaternary Geochronology, 35: 1-15.

Roberts HM, Duller GAT, 2004. Standardised growth curves for optical dating of sediment using multiple-grain aliquots. Radiation Measurements, 38(2): 241-252.

See Also

fitGrowth; IsNORM; SARdata; scaleSGCN; calED; calSARED

Examples

```
data(SARdata)
### (1) gSGC ED calculation:
### gSGCpars were obtained using function "lsNORM".
gSGCpars <- c(137.440874251, 0.007997863, 2.462035263, -0.321536177)
avg.error2 <- 0.1111623
res <- calSGCED(as_analyseBIN(SARdata), gSGCpars, method="gSGC",</pre>
                model="gok", origin=FALSE, avgDev=avg.error2,
                SAR.Cycle=c("N","R3"))
print(res$sgcED)
### (2) SGC ED calculation (not run):
### SGCpars were obtained using function "fitGrowth".
# SGCpars <- c(183.474322547, 0.007038048, 4.254287622, -0.337734151)
# avg.error <- 0.3156259
# calSGCED(as_analyseBIN(SARdata), SGCpars, method="SGC", model="gok",
           origin=FALSE, avgDev=avg.error, SAR.Cycle="N", outpdf="SGCED")
### (3) gSGC ED calculation and signal-related
        rejection criteria application (not run):
# data(BIN)
# res_pickBIN <-pickBINdata(BIN, LType="OSL")</pre>
# res_analyseBIN <- analyseBINdata(res_pickBIN, nfchn=4, nlchn=30)</pre>
# res_lsNORM <- lsNORM(res_analyseBIN$SARdata, model="gok", origin=FALSE)</pre>
# calSGCED(res_analyseBIN, SGCpars=res_lsNORM$LMpars2[,1],
          model="gok", origin=FALSE, avgDev=res_lsNORM$avg.error2,
          method="gSGC", SAR.Cycle=c("N","R3"), Tn.above.3BG=TRUE,
          TnBG.ratio.low=4, rseTn.up=10, outpdf="foo", outfile="foo")
```

dbED 23

|--|

Description

Calculating statistical parameters (skewness, kurtosis, quantiles) for a number of equivalent dose values.

Usage

```
dbED(EDdata, plot = TRUE, typ = "pdf", from = NULL,
    to = NULL, step = NULL, nbin = 15, pcolor = "purple",
    psize = 1.5, outfile = NULL)
```

Arguments

EDdata	matrix(required): a two-column matrix (i.e., equivalent dose values and associated standard errors)
plot	logical(with default): draw a plot or not
typ	<pre>character(with default): type of plot, typ="pdf" means a probability density plot and typ="hist" means a histogram plot</pre>
from	numeric(optional): desired lower limit on x-axis
to	numeric(optional): desired upper limit on x-axis
step	<pre>numeric(optional): a step-size used for constructing the probability density plot (if typ="pdf"). Smaller step value gives smoother density curve</pre>
nbin	<pre>integer(with default): desired number of intervals for the histogram (if typ="hist")</pre>
pcolor	<pre>character(with default): color of data points, input colors() to see available col- ors</pre>
psize	numeric(with default): size of data points
outfile	<pre>character(optional): if specified, calculated probability densities (if typ="pdf") will be written to a CSV file named "outfile" and saved to the current work directory</pre>

Value

Return a list that contains the following elements:

weight.ED	weighhed mean of equivalent dose values and associated standard error
skewness	weighted skewness of equivalent dose values and associated standard error
kurtosis	kurtosis of equivalent dose values and associated standard error
quantile.ED	quantiles of equivalent dose values

24 decomp

References

Galbraith RF, 2010. On plotting OSL equivalent doses. Ancient TL, 28(1): 1-10.

Galbraith RF, Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology, 11: 1-27.

See Also

```
psRadialPlot; RadialPlotter; EDdata
```

Examples

```
data(EDdata)
dbED(EDdata$gl11,typ="pdf")
```

decomp

OSL decay curve decomposition

Description

Decomposing a CW-OSL or LM-OSL decay curve to a given number of first-order exponential components using a combination of differential evolution and Levenberg-Marquardt algorithm suggested by Bluszcz and Adamiec (2006).

Usage

```
decomp(Sigdata, delay.off = c(0,0), ncomp = 2,
    constant = TRUE, typ = "cw", control.args = list(),
    weight = FALSE, plot = TRUE, log = "x", lwd = 2,
    curve.no = NULL, SAR.Cycle = NULL, irr.dose = NULL,
    outfile = NULL, transf = TRUE)
```

Arguments

Sigdata	<pre>matrix(required): a two-column matrix (i.e., stimulation time and photon count values)</pre>
delay.off	<pre>vector(with default): a two-elment vector indicating the "Delay" and "Off" values of the decay curves, i.e., delay.off[1]=Delay,delay.off[2]=Off</pre>
ncomp	integer(with default): number of decomposed components
constant	logical(with default): logical value indicating if a constant component should be subtracted from the decay curve
typ	<pre>character(with default): type of a decay curve (i.e., typ="cw" or typ="lm")</pre>
control.args	list(with default): arguments used in the differential evolution algorithm, see details

decomp 25

weight	logical(with default): logical value indicating if the fit should be performed using a weighted procedure
plot	logical(with default): logical value indicating if the results should be plotted
log	character(with default): a character string which contains "x" if the x axis is to be logarithmic, "y" if the y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic
lwd	numeric(with default): width of curves (lines)
curve.no	numeric(optional): decay curve number
SAR.Cycle	numeric(optional): SAR cycle of the decay curve, Example: SAR.Cycle="R1"
irr.dose	numeric(optional): irradiation dose of the decay curve
outfile	<pre>character(optional): if specified, decomposed signal values will be written to a CSV file named "outfile" and saved to the current work directory</pre>
transf	logical(with default): do not use (for backward compatibility purpose)

Details

Function decomp decomposes an OSL decay curve to a specified number of components using a combination of differential evolution and Levenberg-Marquardt algorithm. Both CW-OSL and LM-OSL decay curves can be decomposed.

```
For a CW-OSL decay curve, the fitting model (Bluszcz and Adamiec, 2006) is: I(t)=a1*b1*exp(-b1*t)+...+ak*bk*exp(-bk*t), where k=1, 2, ..., 7, I(t) is the luminescence intensity as a function of time, a is the number of trapped electrons, and b is the detrapping rate. The constant component is c if constant=TRUE.
```

```
For a LM-OSL decay curve, the fitting model (Bulur, 2000) is: I(t)=a1*b1*(t/P)*exp[-b1*t^2/(2*P)]+...+ak*bk*(t/P)*exp[-bk*t^2/(2*P)], where k=1, 2, ..., 7, and I(t) is the luminescence intensity as a function of time, P is the total stimulation time, a is the number of trapped electrons, and b is the detrapping rate. The constant component is c*(t/P) if constant=TRUE.
```

Parameters are initialized using a differential evolution method suggested by Bluszcz and Adamiec (2006), then the Levenberg-Marquardt algorithm (minpack: Fortran 90 version by John Burkardt, freely available at https://people.sc.fsu.edu/~jburkardt/f_src/minpack/minpack.html) will be performed to optimize the parameters. If weight=TRUE, the photon counts will be assumed to follow a Possion distribution with a standard error equal to the square root of the number of photon counts, and the decay curve will be fitted using a weighted procedure. Setting weight=TRUE gives more weight to photon counts from slower decaying components.

Arguments in control . args that control the differential evolution algorithm include:

- (1) factor: the number of population members, np=factor*ncomp, default factor=20;
- (2) f: a weighting factor that lies between 0 and 1.2, default f=0.5;
- (3) cr: a crossover constant that lies between 0 and 1, default cr=0.99;
- (4) *maxiter*: maximum number of iterations, default maxiter=500;
- (5) *tol*: tolerance for stopping the iteration, the procedure will be terminated if all relative standard deviations of parameters are smaller than tol, defalut tol=0.1.

26 decomp

Value

Return an invisible list containing the following elements:

message return 0 if fit succeeds, else 1

comp. sig a matrix containing time, signal, and fitted signal values for each component

LMpars optimized parameters for the decay curve

constant estimated constant component, it returns 0 if constant=FALSE

value minimized objective for the decay curve

FOM figure of merit value for the decay curve in percent

Note

Arguments curve.no, SAR.Cycle, and irr.dose have nothing to do with decay curve fitting. They are used only for plotting purpose.

The model to be optimized should not be underdetermined. This means that the number of data points should exceed (or at least be equal to) the number of parameters. For a given model, this routine will return an error if any standard errors of parameters cannot be estimated by numerical difference-approximation. Function decompc in previous versions was bundled to function decomp.

We would like to thank Professor Andrzej Bluszcz who helps us a lot during the programming of this function. Dr Jeong-Heon Choi is thanked for providing published data sets to test this routine.

References

Bluszcz A, 1996. Exponential function fitting to TL growth data and similar applications. Geochronometria, 13: 135-141.

Bluszcz A, Adamiec G, 2006. Application of differential evolution to fitting OSL decay curves. Radiation Measurements, 41(7-8): 886-891.

Bulur E, 2000. A simple transformation for converting CW-OSL curves to LM-OSL curves. Radiation Measurements, 32(2): 141-145.

Differential evolution algorithm, https://en.wikipedia.org/wiki/Differential_evolution

Jain M, Murray AS, Boetter-Jensen L, 2003. Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements, 37(4-5): 441-449.

More JJ, 1978. "The Levenberg-Marquardt algorithm: implementation and theory," in Lecture Notes in Mathematics: Numerical Analysis, Springer-Verlag: Berlin. 105-116.

Further reading

Adamiec G, 2005. OSL decay curves-relationship between single- and multiple-grain aliquots. Radiation Measurements, 39(1): 63-75.

Balian HG, Eddy NW, 1977. Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, 145(2): 389-95.

Choi JH, Duller GAT, Wintle AG, 2006. Analysis of quartz LM-OSL curves. Ancient TL, 24(1): 9-20.

EDdata 27

Li SH, Li B, 2006. Dose measurement using the fast component of LM-OSL signals from quartz. Radiation Measurements, 41(5): 534-541.

Peng J, Dong ZB, Han FQ, Han YH, Dai XL, 2014. Estimating the number of components in an OSL decay curve using the Bayesian Information Criterion. Geochronometria, 41(4): 334-341.

See Also

Signaldata; pickBINdata; fastED

Examples

EDdata

Equivalent dose values

Description

Two sets of equivalent dose values.

Usage

```
data(EDdata)
```

Format

A list that contains two sets of equivalent dose values:

gl11 35 equivalent dose values of a sand sample from the Tengger Desert (Peng and Han, 2013)

al3 84 equivalent dose values of an alluvial deposit from the andean precordillera (Schmidt et al., 2012)

References

Peng J, Han FQ, 2013. Selections of fast-component OSL signal using sediments from the south edge of Tengger Desert. Acta Geoscientica Sinica, 34(6): 757-762.

Schmidt S, Tsukamoto S, Salomon E, Frechen M, Hetzel R, 2012. Optical dating of alluvial deposits at the orogenic front of the andean precordillera (Mendoza, Argentina). Geochronometria, 39(1): 62-75.

See Also

dbED; psRadialPlot; RadialPlotter; mcFMM; mcMAM; optimSAM; sensSAM

Examples

```
# Not run.
# data(EDdata)
# names(EDdata)
```

fastED

Fast-component equivalent dose calculation

Description

Estimating a fast-, medium-, or slow-component equivalent dose using decay curves obtained from the single aliquot regenerative-dose (SAR) method.

Usage

```
fastED(Sigdata, Redose, delay.off = c(0,0), ncomp = 2,
       constant = TRUE, compIDX = 1, control.args = list(),
       typ = "cw", model = "gok", origin = FALSE, errMethod = "sp",
       nsim = 500, weight.decomp = FALSE, weight.fitGrowth = TRUE,
       trial = TRUE, nofit.rgd = NULL, outpdf = NULL, log = "x",
       lwd = 2, test.dose = NULL, agID = NULL)
```

Arguments

Sigdata	matrix(required): a series of decay curves stored in a matrix column by column, the first column denotes stimulation time values, see details. Data structure of this kind can be obtained using function pickBINdata by setting argument force.matrix=TRUE, see examples
Redose	vector(required): regenerative dose values. Example: Redose=c(1,2,3,4,0,1)
delay.off	<pre>vector(with default): a two-elment vector indicating the "Delay" and "Off" values of the decay curves, i.e., delay.off[1]=Delay,delay.off[2]=Off</pre>
ncomp	integer(with default): number of components to be decomposed
constant	logical(with default): logical value indicating if a constant background should be subtracted from the decay curve, see function decomp for details
compIDX	<pre>integer(with default): index of the component to be extracted. For example, compIDX=1 and compIDX=2 indicate respectively that the fast- and medium- component signals will be used to calculate the equivalent dose. The index should not exceed the number of components to be decomposed</pre>
control.args	list(with default): arguments used in the differential evolution algorithm, see function decomp for details

character(with default): type of an OSL decay curve, only CW-OSL decay curve

can be analyzed currently character(with default): model used for growth curve fitting, see function model fitGrowth for available models origin logical(with default): logical value indicating if the growth curve should be forced to pass the origin character(with default): method used for equivalent dose error assessment. See errMethod function calED for details nsim integer(with default): desired number of randomly simulated equivalent dose obtained by Monte Carlo simulation character(with default): logical value indicating if the decay curve should be weight.decomp fitted using a weighted procedure, see function decomp for details weight.fitGrowth character(with default): logical value indicating if the growth curve should be fitted using a weighted procedure, see function fitGrowth for details trial logical(with default): logical value indicating if the growth curve should be fitted using other models if the given model fails, see function fitGrowth for details nofit.rgd integer(optional): regenerative doses that will not be used during the fitting. For example, if nofit.rgd=1 then the first regenerative dose will not be used during fast-, medium-, or slow-component growth curve fitting

outpdf character(optional): if specified, results of fast-, medium-, or slow-component equivalent dose calculation will be written to a PDF file named "outpdf" and

saved to the current work directory

log character(with default): a character string which contains "x" if the x axis is to

be logarithmic, "y" if the y axis is to be logarithmic and "xy" or "yx" if both axes

are to be logarithmic

lwd numeric(with default): width of curves (lines)
test.dose numeric(optional): test dose of decay curves

agID vector(optional): a three-elemenet vector indicating aliquot (grain) ID, i.e.,

agID[1]=NO, agID[2]=Position, agID[3]=Grain

Details

typ

Function fastED is used to estimate a fast-, medium-, or slow-component equivalent dose using data sets obtained from the SAR protocol (Murray and Wintle, 2000). The routine trys to decompose a series of decay curves to a specified number of components, then the numbers of trapped electrons from the fast-, medium-, or slow-component will be used to construct the growth curve to estimate a fast-, medium-, or slow-component equivalent dose. See function decomp, fitGrowth, and calED for more details concerning decay curve decomposition, growth curve fitting, and equivalent dose calculation, respectively.

Argument Sigdata is a column-matrix made up with stimulation time values and a number of decay curves:

Column.no	Description
I	Stimulation time values
II	Natural-dose signal values
III	Test-dose signal values for the natural-dose
IV	The 1th Regenerative-dose signal values
V	Test-dose signal values for the 1th regenerative-dose
VI	The 2th regenerative-dose signal values
VII	Test-dose signal values for the 2th regenerative-dose

Value

Return an invisible list containing the following elements:

data sets used for building the fast-, medium-, or slow-component growth curve Ltx sensitivity-corrected natural-dose fast-, medium-, or slow-component signal and its standard error LMpars optimizaed parameters for the fast-, medium-, or slow-component growth curve walue minimized objective for the fast-, medium-, or slow-component growth curve avg.error average fit error for the fast-, medium-, or slow-component growth curve reduced chi-square value for the fast-, medium-, or slow-component growth curve figure of merit value for the fast-, medium-, or slow-component growth curve in percent method used for calculating the fast-, medium-, or slow-component equivalent dose, i.e., "Interpolation" or "Extrapolation" meED randomly simulated fast-, medium-, or slow-component equivalent doses ED fast-, medium-, or slow-component equivalent dose and its standard error ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error secured the first fast-, medium-, or slow-component recycling ratio and its standard error in percent the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal) and its standard error in percent				
Ltx sensitivity-corrected natural-dose fast-, medium-, or slow-component signal and its standard error LMpars optimizaed parameters for the fast-, medium-, or slow-component growth curve minimized objective for the fast-, medium-, or slow-component growth curve avg.error average fit error for the fast-, medium-, or slow-component growth curve reduced chi-square value for the fast-, medium-, or slow-component growth curve figure of merit value for the fast-, medium-, or slow-component growth curve in percent method used for calculating the fast-, medium-, or slow-component equivalent dose, i.e., "Interpolation" or "Extrapolation" randomly simulated fast-, medium-, or slow-component equivalent doses ED fast-, medium-, or slow-component equivalent dose and its standard error ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recycling ratio and its standard error the first fast-, medium-, or slow-component recycling ratio and its standard error the first fast-, medium-, or slow-component recycling ratio and its standard error the first fast-, medium-, or slow-component recycling ratio and its standard error the first fast-, medium-, or slow-component recycling ratio and its standard error in percent experiments.	decomp.pars	a list containing optimized parameters of successfully fitted decay curves		
LMpars optimizaed parameters for the fast-, medium-, or slow-component growth curve minimized objective for the fast-, medium-, or slow-component growth curve avg. error average fit error for the fast-, medium-, or slow-component growth curve reduced chi-square value for the fast-, medium-, or slow-component growth curve figure of merit value for the fast-, medium-, or slow-component growth curve in percent method method used for calculating the fast-, medium-, or slow-component equivalent dose, i.e., "Interpolation" or "Extrapolation" and method used for calculating the fast-, medium-, or slow-component equivalent doses fast-, medium-, or slow-component equivalent doses fast-, medium-, or slow-component equivalent dose fast-, medium-, or slow-component equivalent dose and its standard error for the first fast-, medium-, or slow-component recycling ratio and its standard error from the first fast-, medium-, or slow-component recycling ratio and its standard error for first fast-, medium-, or slow-component recycling ratio and its standard error for first fast-, medium-, or slow-component recycling ratio and its standard error for first fast-, medium-, or slow-component recycling ratio and its standard error for first fast-, medium-, or slow-component recycling ratio and its standard error for the first fast-, medium-, or slow-component recycling ratio and its standard error for the first fast-, medium-, or slow-component recycling ratio and its standard error for the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	Curvedata	data sets used for building the fast-, medium-, or slow-component growth curve		
value minimized objective for the fast-, medium-, or slow-component growth curve avg.error average fit error for the fast-, medium-, or slow-component growth curve reduced chi-square value for the fast-, medium-, or slow-component growth curve figure of merit value for the fast-, medium-, or slow-component growth curve in percent method used for calculating the fast-, medium-, or slow-component equivalent dose, i.e., "Interpolation" or "Extrapolation" randomly simulated fast-, medium-, or slow-component equivalent doses ED fast-, medium-, or slow-component equivalent dose and its standard error ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	Ltx	•		
avg.error average fit error for the fast-, medium-, or slow-component growth curve RCS reduced chi-square value for the fast-, medium-, or slow-component growth curve in figure of merit value for the fast-, medium-, or slow-component growth curve in percent calED.method method used for calculating the fast-, medium-, or slow-component equivalent dose, i.e., "Interpolation" or "Extrapolation" mcED randomly simulated fast-, medium-, or slow-component equivalent doses ED fast-, medium-, or slow-component equivalent dose and its standard error ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recycling ratio and its standard error the first fast-, medium-, or slow-component recycling ratio and its standard error or slow-component recycling ratio and its standard error or slow-component recycling ratio and its standard error or the first fast-, medium-, or slow-component recycling ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	LMpars	optimizaed parameters for the fast-, medium-, or slow-component growth curve		
reduced chi-square value for the fast-, medium-, or slow-component growth curve FOM figure of merit value for the fast-, medium-, or slow-component growth curve in percent calED.method method used for calculating the fast-, medium-, or slow-component equivalent dose, i.e., "Interpolation" or "Extrapolation" mcED randomly simulated fast-, medium-, or slow-component equivalent doses ED fast-, medium-, or slow-component equivalent dose and its standard error ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	value	minimized objective for the fast-, medium-, or slow-component growth curve		
FOM figure of merit value for the fast-, medium-, or slow-component growth curve in percent calED.method method used for calculating the fast-, medium-, or slow-component equivalent dose, i.e., "Interpolation" or "Extrapolation" mcED randomly simulated fast-, medium-, or slow-component equivalent doses ED fast-, medium-, or slow-component equivalent dose and its standard error ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	avg.error	average fit error for the fast-, medium-, or slow-component growth curve		
calED.method method used for calculating the fast-, medium-, or slow-component equivalent dose, i.e., "Interpolation" or "Extrapolation" mcED randomly simulated fast-, medium-, or slow-component equivalent doses ED fast-, medium-, or slow-component equivalent dose and its standard error ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	RCS			
dose, i.e., "Interpolation" or "Extrapolation" mcED randomly simulated fast-, medium-, or slow-component equivalent doses ED fast-, medium-, or slow-component equivalent dose and its standard error ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	FOM			
ED fast-, medium-, or slow-component equivalent dose and its standard error 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	calED.method	•		
ConfInt 68 percent and 95 percent confidence interval of the fast-, medium-, or slow-component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	mcED	randomly simulated fast-, medium-, or slow-component equivalent doses		
component equivalent dose RecyclingRatio1 the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	ED	fast-, medium-, or slow-component equivalent dose and its standard error		
the first fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	ConfInt			
RecyclingRatio2 the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	RecyclingRatio1			
the second fast-, medium-, or slow-component recycling ratio and its standard error RecyclingRatio3 the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)		· · · · · · · · · · · · · · · · · · ·		
Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)				
the third fast-, medium-, or slow-component recycling ratio and its standard error Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)				
Recuperation1 the first fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)				
corrected zero-dose signal to natural-dose signal) and its standard error in percent Recuperation2 the second fast-, medium-, or slow-component recuperation (i.e., ratio of the sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)				
sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)	Recuperation1	corrected zero-dose signal to natural-dose signal) and its standard error in per-		
	Recuperation2	sensitivity-corrected zero-dose signal to the maximum regenerative-dose signal)		

Note

Argument test. dose and agID have nothing to do with fast-, medium-, or slow-component equivalent dose calculation. They are used only for plotting purpose.

The number of trapped electrons that corresponds to the largest, the second largest, and the third largest decay rates will be regarded as the fast-, medium-, and slow-component signals, respectively, which cannot always ensure that pure fast-, medium-, or slow-component signals be extracted if an ultra-fast decaying component appears.

The authors thank Professor Sheng-Hua Li and Professor Geoff Duller for their helpful discussions concerning fast-component equivalent dose calculation.

References

Li SH, Li B, 2006. Dose measurement using the fast component of LM-OSL signals from quartz. Radiation Measurements, 41(5): 534-541.

Murray AS, Wintle AG, 2000. Luminescence dating of quartz using improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32(1): 57-73.

See Also

pickBINdata; Signaldata; fitGrowth; decomp; calED

Examples

32 fitGrowth

fitGrowth Growth curve fitting

Description

Fitting growth curves using the Levenberg-Marquardt algorithm.

Usage

```
fitGrowth(Curvedata, model = "gok", origin = FALSE,
    weight = TRUE, trial = FALSE, plot = TRUE,
    nofit.rgd = NULL, agID = NULL, Tn = NULL,
    Tn3BG = NULL, TnBG.ratio = NULL, rseTn = NULL,
    FR = NULL, RecyclingRatio1 = NULL,
    RecyclingRatio2 = NULL, RecyclingRatio3 = NULL,
    Recuperation1 = NULL, Recuperation2 = NULL,
    LnTn.curve = NULL, TxTn = NULL)
```

Arguments

Curvedata	matrix(required): a three-column matrix (i.e., regenerative doses, sensitivity-corrected regenerative-dose signals, and associated standard errors)
model	character(with default): model used for growth curve fitting, see details
origin	logical(optional): logical value indicating if the growth curve should be forced to pass the origin
weight	logical(with default): logical value indicating if the growth curve should be fitted using a weighted procedure, see details
trial	logical(with default): logical value indicating if the growth curve should be fitted using other models if the given model fails, see details
plot	logical(with default): logical value indicating if the results should be plotted
nofit.rgd	integer(optional): regenerative doses that will not be used during the fitting. For example, if nofit.rgd=c(5,6) then both the fifth and sixth regenerative doses will not be used during growth curve fitting
agID	<pre>vector(optional): a three-elemenet vector indicating aliquot (grain) ID, i.e., agID[1]=NO, agID[2]=Position, agID[3]=Grain</pre>
Tn	vector(optional): a two-element vector containing value and standard error of Tn
Tn3BG	numeric(optional): 0-1 value indicating if Tn is more than 3 sigma above BG, 1 indicates Tn>3_sigma_BG, 0 indicates Tn<=3_sigma_BG
TnBG.ratio	vector(optional): a two-element vector containing value and standard error of ratio of initial Tn signal to BG
rseTn	numeric(optional): relative standard error of Tn in percent
FR	vector(optional): a two-element vector containing value and standard error of fast ratio of Tn

fitGrowth 33

```
RecyclingRatio1
                   vector(optional): a two-element vector containing value and
                   standard error of the first recycling ratio
RecyclingRatio2
                   vector(optional): a two-element vector containing value and
                   standard error of the second recycling ratio
RecyclingRatio3
                   vector(optional): a two-element vector containing value and
                   standard error of the third recycling ratio
                  vector(optional): a two-element vector containing value and
Recuperation1
                   standard error of the first recuperation
Recuperation2
                  vector(optional): a two-element vector containing value and
                  standard error of the second recuperation
                  list(optional): decay curve data for Ln and Tn, it should contain four elements,
LnTn.curve
                  i.e., names(LnTn.curve)=c("Ln.x", "Ln.y", "Tn.x", "Tn.y")
                   vector(optional): ratios of Tx to Tn for various SAR cycles
TxTn
```

Details

In growth curve fitting using function fitGrowth, five models are available:

- (1) "line": a linear model, y=a*x+b;
- (2) "exp": a single saturation exponential model, y=a*[1-exp(-b*x)]+c;
- (3) "lexp": a single saturation exponential plus linear model, y=a*[1-exp(-b*x)]+c*x+d;
- (4) "dexp": a double saturation exponential model, y=a*[1-exp(-b*x)]+c*[1-exp(-d*x)]+e;
- (5) "gok": a general order kinetic model (Guralnik et al., 2015), y=a*[1-(1+b*c*x)^(-1/c)]+d.

The fitting process is performed using the Levenberg-Marquardt algorithm (minpack: Fortran 90 source code by John Burkardt, freely available at https://people.sc.fsu.edu/~jburkardt/f_src/minpack/minpack.html). If weight=TRUE, a weighted procedure will be performed through weighting each data point by its inverse variance. User is advised to set argument plot=TRUE if possible to visualize the quality of fit.

Argument trial=TRUE means that if the growth curve can not be fitted successfully using the user-supplied model, then the procedure will try to fit other models instead:

```
Model Tried model
"dexp" c("dexp", "gok", "exp", "line")
"lexp" c("lexp", "gok", "exp", "line")
"gok" c("gok", "exp", "line")
"exp" c("exp", "line")
"line" c("line")
```

For example, if model="dexp" and trial=TRUE, then a number of models from sequence c("dexp", "gok", "exp", "line") will be applied one after another until the fit succeeds.

The required number of data points for each model is (value inside the parentheses denotes the required number of observations if the model passes the origin):

34 fitGrowth

Model	Required NPoints
"dexp"	>=5 (>=4)
"lexp"	>=4 (>=3)
"gok"	>=4 (>=3)
"exp"	>=3 (>=2)
"line"	>=2 (>=1)

If user-provided data is not enough for model fitting (i.e., the number of data points is less than the number of parameters of a given model), then a model with less parameters will be fitted. For example, if 4 data points are fitted using a "dexp" (origin=FALSE) model that actually needs at least 5 data points, then a 4-parameter "gok" model will be fitted instead.

Value

Return a list that contains the following elements:

message	return 0 if the fit succeeds, else 1
fitIDX	Indices of dose points used in growth curve fitting
LMpars	optimized parameters for the growth curve
value	minimized objective for the growth curve
avg.error	average fit error for the growth curve
RCS	reduced chi-square value for the growth curve
FOM	figure of merit value for the growth curve in percent

Note

Arguments agID, Tn, Tn3BG, TnBG.ratio, rseTn, FR,

RecyclingRatio1, RecyclingRatio2, RecyclingRatio3,

Recuperation1, Recuperation2, LnTn. curve, TxTn have nothing to do with growth curve fitting. They are used only for plotting purpose.

The model to be optimized should not be underdetermined. This means that the number of data points should exceed (or at least be equal to) the number of parameters. For a given model, the procedure will return an error if any standard errors of parameters cannot be estimated by numerical difference-approximation.

References

Balian HG, Eddy NW, 1977. Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, 145(2): 389-95.

Guralnik B, Li B, Jain M, Chen R, Paris RB, Murray AS, Li SH, Pagonis V, Valla PG, Herman F, 2015. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar. Radiation Measurements, 81: 224-231.

More JJ, 1978. "The Levenberg-Marquardt algorithm: implementation and theory" in Lecture Notes in Mathematics: Numerical Analysis, Springer-Verlag: Berlin. 105-116.

loadBINdata 35

See Also

```
analyseBINdata; SARdata; calED; calSARED; fastED; pickSARdata; lsNORM; calSGCED
```

Examples

loadBINdata

BIN file loading (importing)

Description

Loading (importing) a BIN file into the R platform.

Usage

```
loadBINdata(filename, view = TRUE)
```

Arguments

filename character(**required**): name(s) of file(s) (with file extension ".BIN", ".bin", "BINX",

or "binx"), the file(s) must be available from the current working directory. Ex-

ample: filename=c("foo1.bin","foo2.binx")

view logical(optional): logical value indicating if the loaded data should be visualized

in a Summary Table

Details

Function loadBINdata is used for loading BIN (BINX) files into the R platform. Five versions of binary files (V3, V4, V6, V7, and V8) are loadable. It can load a single BIN (BINX) file or a number of files into R simultaneously.

Items reserved during the loading process include:

(1) Position: Carousel position;

(2) Grain: Grain number;

(3) Run: Run number;

(4) Set: Set number;

36 loadBINdata

```
(5) DType: Data type, includes: Natural, N+dose, bleach, Bleach+dose,
Natural(Bleach), N+dose(Bleach), Dose, Background;
(6) IRRTime: Irradiation time;
(7) NPoints: number of data points;
(8) LType: Luminescence type, includes: TL, OSL, IRSL, M-IR, M-VIS,
TOL, TRPOSL, RIR, RBR, USER, POSL, SGOSL, RL, XRF;
(9) Low: Low (temperature, time, wavelength);
(10) High: High (temperature, time, wavelength);
(11) Rate: Rate (temperature, time, wavelength);
(12) Temperature: Sample temperature;
(13) Delay: TOL "delay" channels;
(14) On: TOL "on" channels;
(15) Off: TOL "off" channels;
(16) LightSource: Light source, includes: None, Lamp, IRDiodes,
CalibraitionLED, BlueDiodes, WhiteLight, GreenLaser, IRLaser;
(17) AnTemp: Annealing temperature;
(18) TimeSinceIrr: Time since irradiation;
(19) Time: Data collection time;
(20) Date: Data collection date.
```

Value

Return an invisible list of S3 class object "loadBIN" containing the following elements:

records a list containing loaded data records

tab a table (data.frame) summarizing items of loaded data records

Note

We would like to appreciate Dr Lei Gao who prompts us to write this function and provides measured data sets to test this procedure.

References

Duller GAT, 2016. Analyst (v4.31.9), User Mannual.

See Also

pickBINdata; analyseBINdata; BIN

1sNORM 37

Examples

```
### Not run.
### Ensure that file "foo.bin" is available
### from the current working directory.
# obj_loadBIN <- loadBINdata("foo.bin", view=TRUE)
# class(obj_loadBIN)
# obj_loadBIN$records</pre>
```

1sNORM

Regenerative-dose signal optimization using the LS-normalisation procedure

Description

Optimizing standardised regenerative-dose signals according to the least-squares normalisation (LS-normalisation) procedure using an iterative scaling and fitting procedure proposed by Li et al. (2016).

Usage

```
lsNORM(SARdata, model = "gok", origin = FALSE,
    weight = FALSE, natural.rm = TRUE,
    norm.dose = NULL, maxiter = 10,
    plot = TRUE)
```

Arguments

SARdata	matrix(required): SAR data used for performing the LS-normalisation procedure, it should contain five columns (i.e., NO, SAR.Cycle, Dose, Signal, and Signal.Err), see SARdata for details
model	character(with default): model used for growth curve fitting, see fitGrowth for available models
origin	logical(with default): logical value indicating if the growth curve should be forced to pass the origin
weight	logical(with default): logical value indicating if the growth curve should be fitted using a weighted procedure, see function fitGrowth for details
natural.rm	logical(with default): logical value indicating if the standardised natural-dose signal should be removed from SARdata
norm.dose	numeric(optional): regenerative-dose used for re-scaling established gSGC. For example, if norm. dose=100, then the signal value for a dose value of 100 (Gyls) will be re-scaled to unity
maxiter	integer(with default): allowed maximum number of iterations during the LS-normalisation optimization process
plot	logical(with default): logical value indicating if the results should be plotted

38 IsNORM

Details

Function lsNORM is used for optimizing regenerative-dose signal data from a number of grains (aliquots) according to the least-squares normalisation (LS-normalisation) procedure outlined by Li et al. (2016) using an iterative scaling and fitting procedure.

The LS-normalisation procedure for growth curve optimization involves the following steps:

- (1) Fit standardised regenerative-dose signals from all of the aliquots;
- (2) Re-scale the individual growth curve from each aliquot using a scaling factor. The scaling factor for each aliquot is determined in a way such that the sum of squared residuals is minimized. Each aliquots is treated individually, and different scaling factors are calculated for different aliquots.
- (3) Iterate the fitting (step 1) and re-scaling (step 2). The iterative procedure is performed repeatedly until there is negligible change in the relative standard deviation of the normalised growth curve data.

Value

Return an invisible list that contains the following elements:

norm.SARdata	SAR data sets optimized using the LS-normalisation procedure
sf	scaling factor of standardised regenerative-dose signals
iter	number of iterations required
LMpars1	optimized parameters for the growth curve before LS-normalisation
value1	minimized objective for the growth curve before LS-normalisation
avg.error1	average fit error for the growth curve before LS-normalisation
RCS1	reduced chi-square value for the growth curve before LS-normalisation
FOM1	figure of merit value for the growth curve before LS-normalisation in percent
LMpars2	optimized parameters for the growth curve after LS-normalisation
value2	minimized objective for the growth curve after LS-normalisation
avg.error2	average fit error for the growth curve after LS-normalisation
RCS2	reduced chi-square value for the growth curve after LS-normalisation
FOM2	figure of merit value for the growth curve after LS-normalisation in percent

References

Li B, Jacobs Z, Roberts RG, 2016. Investigation of the applicability of standardised growth curves for OSL dating of quartz from Haua Fteah cave, Libya. Quaternary Geochronology, 35: 1-15.

See Also

analyseBINdata; fitGrowth; SARdata; scaleSGCN; calSGCED

mcFMM 39

Examples

```
### Example 1:
data(SARdata)
# Use only the first five aliquots of SARdata.
Data <- SARdata[1:40,]</pre>
res_lsNORM <- lsNORM(Data, model="gok")</pre>
res_lsNORM$norm.SARdata
### Example 2 (not run):
# data(BIN)
# obj_pickBIN <- pickBINdata(BIN, Position=1:48, Grain=0,</pre>
                              LType="OSL", view=FALSE)
# obj_analyseBIN <- analyseBINdata(obj_pickBIN, nfchn=3, nlchn=20)</pre>
# lsNORM(obj_analyseBIN$SARdata, norm.dose=300)
```

mcFMM

Finite mixture age model optimization (using a Markov chain Monte Carlo method)

Description

Sampling from the joint-likelihood functions of finite mixture age models (include the central age model) using a Markov chain Monte Carlo (MCMC) method.

Usage

```
mcCAM(EDdata, addsigma = 0, iflog = TRUE,
      nsim = 50000, inis = list(), control.args = list())
mcFMM(EDdata, ncomp = 2, addsigma = 0, iflog = TRUE,
      nsim = 50000, inis = list(), control.args = list())
```

Arguments

EDdata	matrix(required): a two-column matrix (i.e., equivalent dose values and associated standard errors)
ncomp	integer(with default): number of components
addsigma	numeric(with default): additional uncertainty, i.e., the sigmab value
iflog	logical(with default): transform equivalent dose values to log-scale or not
nsim	integer(with default): deseried number of iterations
inis	<pre>list(with default): initial state of parameters. Example: inis=list(p1=1,p2=1,mu1=5,mu2=10) in FMM2 (the sum of p1 and p2 will be normalized to 1 during the simulation)</pre>
control.args	list(with default): arguments used in the Slice Sampling algorithm, see details

40 mcFMM

Details

Function mcFMM is used for sampling from the joint-likelihood functions of finite mixture age models (include the central age model) using a Markov chain Monte Carlo sampling algorithm called Slice Sampling (Neal, 2003). Three arguments (control.args) are used for controling the sampling process:

- (1) w: size of the steps for creating an interval from which to sample, default w=1;
- (2) m: limit on steps for expanding an interval, m<=1 means no limit on the expandation, m>1 means the interval is expanded with a finite number of iterations, default m=-100;
- (3) *nstart*: maximum number of trials for updating a variable in an iteration. It can be used for monitoring the stability of the simulation. For example, a MAM4 is likely to crash down for data sets with small numbers of data points or less dispersed distributions (see section 8.3 of Galbraith and Roberts, 2012 for a discussion), and sometimes more than one trial (i.e., using nstart>1) is required to complete the sampling process, default nstart=1.

Value

Return an invisible list of S3 class object "mcAgeModels" including the following elements:

EDdata equivalent dose values addsigma additional uncertainty

model fitting model

iflog transform equivalent dose values to log-scale or not

nsim number of iterations

chains simulated samples of parameters

References

Galbraith RF, Green P, 1990. Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17: 197-206.

Neal RM, 2003. "Slice sampling" (with discussion). Annals of Statistics, 31(3): 705-767. Software is freely available at https://glizen.com/radfordneal/slice.software.html.

Peng J, Dong ZB, Han FQ, 2016. Application of slice sampling method for optimizing OSL age models used for equivalent dose determination. Progress in Geography, 35(1): 78-88. (In Chinese).

See Also

mcMAM; reportMC; RadialPlotter; optimSAM; sensSAM; EDdata

```
# Not run.
# data(EDdata)
# Construct a MCMC chain for CAM.
# obj<-mcCAM(EDdata$gl11,nsim=5000)
# reportMC(obj,thin=2,burn=1e3)</pre>
```

mcMAM 41

```
# Construct a MCMC chain for FMM3.
# obj<-mcFMM(EDdata$gl11,ncomp=3,nsim=5000)
# reportMC(obj,thin=2,burn=1e3)</pre>
```

mcMAM Optimization of the minimum (maximum) age model (using a Markov chain Monte Carlo method)

Description

Sampling from the joint-likelihood function of the minimum (maximum) age model using a Markov chain Monte Carlo (MCMC) method.

Usage

Arguments

EDdata	matrix(required): a two-column matrix (i.e., equivalent dose values and associated standard errors)
ncomp	<pre>integer(with default): number of components, ncomp=-1, ncomp=-2, ncomp=-3, or ncomp=-4 indicate fitting the "MAM3", "MAM4", "MXAM3", and "MXAM4", re- spectively</pre>
addsigma	numeric(with default): additional uncertainty, i.e., the sigmab value
iflog	logical(with default): transform equivalent dose values to log-scale or not
nsim	integer(with default): deseried number of iterations
inis	list(with default): initial state of parameters. Example: inis=list(p=0.1,gamma=20,sigma=0.3) when ncomp=-1
control.args	list(with default): arguments used by the Slice Sampling algorithm, see function mcFMM for details

Value

Return an invisible list of S3 class object "mcAgeModels". See mcFMM for details.

References

Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM, 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry, 41(2): 339-364.

Neal RM, 2003. "Slice sampling" (with discussion). Annals of Statistics, 31(3): 705-767. Software is freely available at https://glizen.com/radfordneal/slice.software.html.

Peng J, Dong ZB, Han FQ, 2016. Application of slice sampling method for optimizing OSL age models used for equivalent dose determination. Progress in Geography, 35(1): 78-88. (In Chinese).

42 optimSAM

See Also

mcFMM; reportMC; RadialPlotter; EDdata; optimSAM; sensSAM

Examples

```
# Not run.
# data(EDdata)
# Construct a MCMC chain for MAM3.
# obj<-mcMAM(EDdata$al3,ncomp=-1,addsigma=0.1,nsim=5000)</pre>
# reportMC(obj,burn=1e3,thin=2)
# The convergence of the simulations may be diagnosed with
# the Gelman and Rubin's convergence diagnostic.
# library(coda) # Only if package "coda" has been installed.
# args<-list(nstart=50)</pre>
# inis1<-list(p=0.01,gamma=26,mu=104,sigma=0.01)
# inis2<-list(p=0.99,gamma=100,mu=104,sigma=4.99)
# obj1<-mcMAM(EDdata$al3,ncomp=-2,nsim=3000,inis=inis1,control.args=args)</pre>
# obj2<-mcMAM(EDdata$al3,ncomp=-2,nsim=3000,inis=inis2,control.args=args)</pre>
# chain1<-mcmc(obj1$chains)</pre>
# chain2<-mcmc(obj2$chains)</pre>
# chains<-mcmc.list(chain1,chain2)</pre>
# gelman.plot(chains)
```

optimSAM

Optimization of statistical age models

Description

Estimating the parameters of statistical age models, including the common age model (COM), the central age model (CAM), the minimum age model (MAM), the maximum age model (MXAM), and the finite mixture age model (FMM), using the Maximum Likelihood Estimation method.

Usage

```
optimSAM(EDdata, model = "cam", addsigma = 0, iflog = TRUE, maxcomp = 6)
```

Arguments

EDdata	matrix(required): a two-column matrix (i.e., equivalent dose values and associated standard errors)
mode1	<pre>character(with default): the fitting model, one of "com", "cam", "mam3", "mam4", "mxam3", "mxam4", "fmm0", "fmm1", "fmm2",, "fmm9"</pre>
addsigma	numeric(with default): additional uncertainty, i.e., the sigmab value
iflog	logical(with default): transform equivalent dose values to log-scale or not
maxcomp	integer(with default): the maximum number of components in FMM

optimSAM 43

Value

Return a list that contains the following elements:

optimized parameters, the name of the parameter of COM is "COM.De", that of CAM are c("CAM.OD", "CAM.De"), that of MAM3 are c("Prop", "MAM3.De", "Sigma"), that of MXAM3 are c("Prop", "MXAM3.De", "Sigma"), that of MAM4 are c("Prop", "MAM4.De", "Mu", "Sigma"), that of MXAM4 are c("Prop", "MXAM4.De", "Mu", "Sigma"), and that of FMM are c("Prop", "FMM.De") optimized maximum logged likelihood value calculated Bayesian Information Criterion (BIC) value

References

Galbraith RF, 1988. Graphical display of estimates having differing standard errors. Technometrics, 30(3): 271-281.

Galbraith RF, 1990. The radial plot: Graphical assessment of spread in ages. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3): 207-214.

Galbraith RF, Green P, 1990. Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17: 197-206.

Galbraith RF, Laslett GM, 1993. Statistical models for mixed fission track ages. Nuclear Tracks And Radiation Measurements, 21(4): 459-470.

Galbraith RF, 1994. Some applications of radial plots. Journal of the American Statistical Association, 89(428): 1232-1242.

Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM, 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry, 41(2): 339-364.

Galbraith RF, 2005. Statistics for fission track analysis. Chapman & Hall/CRC Press.

Galbraith RF, 2010. On plotting OSL equivalent doses. Ancient TL, 28(1): 1-10.

Galbraith RF, Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology, 11: 1-27.

See Also

```
mcMAM; mcFMM; dbED; psRadialPlot; RadialPlotter; EDdata
```

```
data(EDdata)
### Fitting a 3-component FMM.
optimSAM(EDdata$al3, model="fmm3", addsigma=0)
### Fitting a 4-parameter MXAM.
optimSAM(EDdata$al3, model="mxam4", addsigma=0.1)
```

44 pickBINdata

pickBINdata	BIN data set selection
-------------	------------------------

Description

Extracting data sets from a loaded BIN (BINX) file.

Usage

Arguments

obj_loadBIN list(required): an object of S3 class "loadBIN" produced by

function loadBINdata

Position vector(optional): carousel position, Example: Position=1:48

Grain vector(optional): grain number

Run vector(optional): run number

Set vector(optional): set number

DType character(optional): a character vector indicating data type,

Example: DType=c("Natural", "N+dose")

IRRTime vector(optional): irradiation time

NPoints vector(optional): number of data points

LType character(optional): a character vector indicating luminescence types,

Example: LType="0SL"

Low vector(optional): lower limit on temperature, time, or wavelength

High vector(optional): upper limit on temperature, time, or wavelength

Rate vector(optional): increasing rate of temperature, time, or wavelength

Temperature vector(optional): a vector indicating the sample temperatures

Delay vector(optional): TOL "delay" channels
On vector(optional): TOL "on" channels
Off vector(optional): TOL "off" channels

LightSource character(optional): a character vector indicating light source,

Example: LightSource="BlueDiodes"

AnTemp vector(optional): annealing temperature

pickBINdata 45

TimeSinceIrr vector(optional): time since irradiation

view logical(with default): logical value indicating if the loaded data should be

visualized in a Summary Table

manual.select logical(with default): logical value indicating if the loaded data should be

selected manually using a Summary Table

force.matrix logical(with default): logical value indicating if the picked data sets of an aliquot

(grain) should be transformed into a matrix

Details

Function pickBINdata is used for pick up data sets from an object of S3 class "loadBIN" generated using function loadBINdata. Set force.matrix=TRUE will transform data sets of an aliquot (grain) into a matrix, the transformation fails if data sets have different x (temperature, time, or wavelength) coordinates. Transformed data sets stored in a matrix can be visualize via matplot (see examples).

Value

Return an invisible list of S3 class object "pickBIN" containing two elements:

BINdata selected BIN data

agID Aliquot or grain ID (i.e., c("NO", "Position", "Grain")) of selected data sets,

it returns NULL if force.matrix=TRUE

References

Duller GAT, 2016. Analyst (v4.31.9), User Mannual.

See Also

loadBINdata; analyseBINdata; BIN; decomp; fastED

```
### Example 1 (visualize decay curves for Position=2):
 data(BIN)
 obj_pickBIN <- pickBINdata(BIN, Position=2, view=FALSE,
                            LType="OSL", force.matrix=TRUE)
 matplot(obj_pickBIN$BINdata[[1]][,1],
         obj_pickBIN$BINdata[[1]][,-1],
         main="Decay curves",
         xlab="Stimulation time (s)",
         ylab="Photon counts",
         type="l", log="xy")
### Example 2 (visualize test-dose decay curves for Position=2):
obj_pickBIN <- pickBINdata(BIN, Position=2, Run=c(5,11,17,23,29,34,40),</pre>
                           view=FALSE, LType="OSL", force.matrix=TRUE)
matplot(obj_pickBIN$BINdata[[1]][,1],
        obj_pickBIN$BINdata[[1]][,-1],
        main="Test-dose decay curves",
```

46 pickSARdata

pickSARdata

SAR data set selection

Description

Selecting SAR data sets (growth curves) in a batch model according to specified rejection criteria.

Usage

Arguments

obj_analyseBIN	list(required): an object of S3 class "analyseBIN" produced by function analyseBINdata or as_analyseBIN
model	character(with default): model used for growth curve fitting, see fitGrowth for available models
origin	logical(with default): logical value indicating if the growth curve should be forced to pass the origin
weight	logical(with default): logical value indicating if the growth curve should be fitted using a weighted procedure, see function fitGrowth for details
trial	logical(with default): logical value indicating if the growth curve should be fitted using other models if the given model fails, see function fitGrowth for details
nofit.rgd	<pre>integer(optional): regenerative doses that will not be used during the fitting. For example, if nofit.rgd=2 then the second regenerative dose will not be used during growth curve fitting</pre>

pickSARdata 47

Tn.above.3BG	logical(with default): logical value indicating if aliquot (grain) with Tn below 3 sigma BG should be rejected
TnBG.ratio.low	numeric(optional): lower limit on ratio of initial Tn signal to BG
rseTn.up	numeric(optional): upper limit on relative standard error of Tn in percent
FR.low	numeric(optional): lower limit on fast ratio of Tn
rcy1.range	$\frac{vector(optional):}{vector(optional):} \ a \ two-element \ vector \ indicating \ the \ lower \ and \ upper \ limits \ on \ recycling \ ratio \ 1, \ Example: \ rcy1.range=c(0.9,1.1)$
rcy2.range	$\ensuremath{\text{vector}}\xspace(\ensuremath{\text{optional}}\xspace)\xspace:$ a two-element vector indicating the lower and upper limits on recycling ratio 2
rcy3.range	$\ensuremath{\text{vector}}\xspace(\ensuremath{\text{optional}}\xspace)\xspace:$ a two-element vector indicating the lower and upper limits on recycling ratio 3
rcp1.up	numeric(optional): upper limit on recuperation 1 (i.e., ratio of the sensitivity-corrected zero-dose signal to natural-dose signal) in percent
rcp2.up	numeric(optional): upper limit on recuperation 2 (i.e., ratio of the sensitivity-corrected zero-dose signal to maximum regenerative-dose signal) in percent
fom.up	<pre>numeric(optional): upper limit on figure of merit (FOM) values of growth curves in percent</pre>
rcs.up	numeric(optional): upper limit on reduced chi-square (RCS) values of growth curves
use.se	logical(with default): logical value indicating if standard errors of values should be used during application of rejection criteria
norm.dose	numeric(optional): dose value used for SAR data set re-normalisation, for example, if norm. dose=100, then sensitivity-corrected signal for Redose=100 obtained through growth curve fitting will be used to re-normalise a SAR data set
outpdf	<pre>character(optional): if specified, results of growth curve fitting will be written to a PDF file named "outpdf" and saved to the current work directory</pre>
outfile	<pre>character(optional): if specified, SAR data related quantities will be written to a CSV file named "outfile" and saved to the current work directory</pre>

Value

Return an invisible list that contains the following elements:

LMpars a list containing optimized parameters of growth curves of selected SAR data

sets

SARdata a data.frame containing selected SAR data sets norm. SARdata a data.frame containing re-normalised SAR data sets,

it returns NULL if norm.dose=NULL

agID aliquot or grain ID (i.e., c("NO", "Position", "Grain")) of selected SAR data

 $summary.in fo \qquad a \ summary \ of the \ SAR \ data \ selection$

See Also

analyseBINdata; fitGrowth; lsNORM; calSARED

48 psRadialPlot

Examples

psRadialPlot

Pseudo radial plot drawing

Description

Drawing a pseudo (simplified) radial plot.

Usage

Arguments

EDdata	matrix(required): a two-column matrix (i.e., equivalent dose values and associated standard errors)
addsigma	numeric(with default): additional uncertainty
dose	vector(optional): dose population(s) to be drawn
zmin	numeric(with default): lower limit on z-axis
zmax	numeric(with default): upper limit on z-axis
ntick	integer(with default): desired number of ticks in z-axis
digits	integer(with default): number of decimal places or significant digits for values shown in z-axis
pcolor	<pre>character(with default): color of a data point, input colors() to see more available colors</pre>
psize	numeric(with default): size of a data point
rg	<pre>integer(with default): range of a dose population, 0=dose, 1=dose+/-sigma, 2=dose+/-2sigma</pre>
zlabel	character(with default): title for the z-axis

Details

Function psRadialPlot is used for drawing a simplified radial plot in which the z-axis is a straight line. The pseudo radial plot is easier to construct compared to the regular radial plot. This function can be adopted to display estimates that have different error estimates in any field of the analytical sciences. Note that the function handles datasets in log-scale, so any minus observation is not allowed.

RadialPlotter 49

Value

Return a pseudo radial plot

References

Galbraith RF, 1988. Graphical display of estimates having differing standard errors. Technometrics, 30(3): 271-281.

Galbraith RF, 1994. Some applications of radial plots. Journal of the American Statistical Association, 89(428): 1232-1242.

Galbraith RF, 2010. On plotting OSL equivalent doses. Ancient TL, 28(1): 1-10.

Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM, 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry, 41(2): 339-364.

See Also

```
dbED; RadialPlotter; EDdata
```

Examples

RadialPlotter

Statistical age model optimization (with a Maximum Likelihood Estimation method)

Description

Depending on the specified number of components, this function performs statistical age models analysis reviewed in Galbraith and Roberts (2012) dynamically using a Maximum Likelihood Estimation method. Age models that can be applied include: central age model (CAM), minimum age model (MAM), and finite mixture age model (FMM).

Usage

50 RadialPlotter

Arguments

EDdata matrix(required): a two-column matrix (i.e., equivalent dose values and

associated standard errors)

ncomp integer(with default): number of components, ncomp=-1, ncomp=-2, and ncomp=1

mean respectively fitting "MAM3", "MAM4", and "CAM", ncomp=0 means fitting "FMM" with an automatically optimized number of components, and ncomp=k

(k>=2) means fitting "FMM" with k components

addsigma
numeric(with default): additional uncertainty, i.e., the sigmab value
maxcomp
integer(with default): maximum number of components in FMM
algorithm
character(with default): algorithm used for optimizing MAM,

default algorithm="port"

plot logical(with default): draw a radial plot or not

pcolor character(with default): color of a data point, input colors() to see more available

colors

psize numeric(with default): size of a data point

kratio numeric(with default): argument controlling the shape of zscale

vector(optional): argument controlling the scale of z-axis.

Example: zscale=seq(min(EDdata), max(EDdata), by=3L)

Details

zscale

Both CAM and FMM are fitted using a iterative Maximum Likelihood Estimation procedure outlined by Galbraith (1988), while MAM can be estimated using either the "L-BFGS-B" algorithm (*R* function optim in package *stats*) or the "port" algorithm (*R* function nlminb in package *stats*).

Value

Return an object of S3 class "RadialPlotter" that contains the following elements:

pars optimized parameters, the names of CAM parameters are c("CAM.OD", "CAM.De"),

those of MAM3 paramters are c("Prop", "MAM3.De", "Sigma"), those of MAM4 parameters are c("Prop", "MAM4.De", "Mam4.De", "Sigma"), and those of FMM pa-

rameters are c("Prop", "FMM.De")

maxlik optimized maximum logged likelihood value

bic calculated Bayesian Information Criterion (BIC) value

Note

Function RadialPlotter was given the same name as the *Java* package *RadialPlotter* written by Pieter Vermeesch (Vermeesch, 2009). Note that this function fits a model in log-scale, hence any minus equivalent dose value is not allowed, and that the procedure will return an error if any standard error of a parameter cannot be estimated by numerical difference-approximation.

The original S code for drawing a radial plot was written by Rex Galbraith and was transformed to R by Sebastian Kreutzer. The code for drawing radial plot in this function was modified from package

RadialPlotter 51

Luminescence written by Kreutzer et al. (2012). We thank Dr Rex Galbraith for his permission to modify and bundle the code to this function. We also thank Dr Silke Schmidt, Dr Helena Rodnight, Dr Xian-Jiao Ou, and Dr Amanda Keen-Zebert for providing published OSL data sets to test this routine.

This function only considered the optimization of statistical age models (including CAM, MAM, and FMM) in a log-scale and will not be updated in future. The newly developed function optim-SAM allows the optimization of age models (including COM, MAM, MXAM, and FMM) in either log- or unlog-scale, and the accompanied function sensSAM allows the optimization of these age models with a number of different sizes of additional uncertainty (sigmab).

References

Galbraith RF, 1988. Graphical display of estimates having differing standard errors. Technometrics, 30(3): 271-281.

Galbraith RF, 1990. The radial plot: Graphical assessment of spread in ages. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3): 207-214.

Galbraith RF, Green P, 1990. Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17: 197-206.

Galbraith RF, Laslett GM, 1993. Statistical models for mixed fission track ages. Nuclear Tracks And Radiation Measurements, 21(4): 459-470.

Galbraith RF, 1994. Some applications of radial plots. Journal of the American Statistical Association, 89(428): 1232-1242.

Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM, 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry, 41(2): 339-364.

Galbraith RF, 2005. Statistics for fission track analysis. Chapman & Hall/CRC Press.

Galbraith RF, 2010. On plotting OSL equivalent doses. Ancient TL, 28(1): 1-10.

Galbraith RF, Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology, 11: 1-27.

Further reading

Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas, 37(4): 589-612.

Kreutzer S, Schmidt C, Fuchs MC, Dietze M, Fischer M, Fuchs M, 2012. Introducing an R package for luminescence dating analysis. Ancient TL, 30(1): 1-8. Software is freely available at https://CRAN.R-project.org/package=Luminescence.

Rodnight H, 2008. How many equivalent dose values are needed to obtain a reproducible distribution? Ancient TL, 26(1): 3-10.

Rodnight H, Duller GAT, Wintle AG, Tooth S, 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology, 1(2): 109-120.

52 reportMC

Schmidt S, Tsukamoto S, Salomon E, Frechen M, Hetzel R, 2012. Optical dating of alluvial deposits at the orogenic front of the andean precordillera (Mendoza, Argentina). Geochronometria, 39(1): 62-75.

Vermeesch P, 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiation Measurements, 44: 409-410. Software is freely available at https://www.ucl.ac.uk/~ucfbpve/radialplotter/.

Peng J, Li B, Jacobs Z, 2020. Modelling heterogeneously bleached single-grain equivalent dose distributions: Implications for the reliability of burial dose determination. Quaternary Geochronology, 60: 101108.

Peng J, Li B, Jacobs Z, Gliganic LA, 2023. Optical dating of sediments affected by post-depositional mixing: Modelling, synthesizing and implications. Catena, 232: 107383.

See Also

mcMAM; mcFMM; dbED; psRadialPlot; EDdata; optimSAM; sensSAM

Examples

```
data(EDdata)
# Find out the appropriate number of components
# in FMM and fit automatically.
RadialPlotter(EDdata$al3,zscale=seq(24,93,7))
# Fit MAM3 (not run).
# RadialPlotter(EDdata$gl11,ncomp=-1,zscale=seq(20,37,3))
```

reportMC

Reporting MCMC outputs for statistical age models

Description

Summarizing distributions of parameters simulated from statistical age models using a Markov Chain Monte Carlo method.

Usage

Arguments

obj	list(required): an object of S3 class "mcAgeModels", which is produced by function mcFMM or mcMAM
burn	<pre>integer(with default): number of iterations (i.e., the initial, non-stationary portion of the chain) to be discarded</pre>
thin	integer(with default): take every thin-th iteration

SARdata 53

plot logical(with default): plot the MCMC output or not

outfile character(optional): if specified, simulated parameters will be written to a CSV

file named "outfile" and saved to the current work directory

... do not use

Details

Function reportMC summarizes the output of a Markov Chain (the mean values, the standard deviations, the mode values, and the 2.5, 25, 50, 75, 97.5 quantiles of the simulated parameters). The initial i (burn=i) samples may have been affected by the initial state and has to be discarded ("burn-in"). Autocorrelation of simulated samples can be reduced by taking every j-th (thin=j) iteration ("thining").

Value

Return a list that contains the following elements:

pars means, standard deviations, and modes of simulated parameters

quantile quantiles of simulated parameters

maxlik maximum logged likelihood values calculated using the means and modes of

simulated parameters

bic Bayesian Information Criterion (BIC) values calculated using the means and

modes of simulated parameters

References

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D, 2013. The BUGS book: a practical introduction to bayesian analysis. Chapman & Hall/CRC Press.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB, 2013. Bayesian data analysis. Chapman & Hall/CRC Press.

Peng J, Dong ZB, Han FQ, 2016. Application of slice sampling method for optimizing OSL age models used for equivalent dose determination. Progress in Geography, 35(1): 78-88. (In Chinese).

See Also

mcFMM; mcMAM

SARdata Data sets used for SAR equivalent dose calculation

Description

SAR data sets for individual aliquots from the "later" group of sample HF11 from Haua Fteah cave, Libya (Li et al., 2016).

54 scaleSGCN

Usage

```
data(SARdata)
```

Format

A data.frame with 840 observations containing the following 5 variables:

```
NO aliquot (grain) number
```

SAR.Cycle SAR cycles

Dose regenerative doses

Signal OSL signals

Signal.Err standard error of OSL signals

References

Li B, Jacobs Z, Roberts RG, 2016. Investigation of the applicability of standardised growth curves for OSL dating of quartz from Haua Fteah cave, Libya. Quaternary Geochronology, 35: 1-15.

See Also

```
fitGrowth; lsNORM; calSGCED; as_analyseBIN
```

Examples

- # Not run.
- # data(SARdata)
- # head(SARdata)

scaleSGCN

Natural-dose signal re-scaling

Description

Re-scaling sensitivity-corrected natural-dose signals according to the "global standardised growth curve" (gSGC) method suggested by Li et al. (2015, 2016).

Usage

scaleSGCN 55

Arguments

obj_analyseBIN	list(required): an object of S3 class "analyseBIN" produced by
	function analyseBINdata or as_analyseBIN
SGCpars	vector(required): optimized parameters of the SGC obtained using function
	fitGrowth or lsNORM
model	character(required): fitting model used for obtaining SGCpars
origin	logical(required): logical value indicating if established SGC passes the origin
SAR.Cycle	character(required): a two-element character vector containing SAR cycles
	used for natural-dose signal re-scaling. Example: SAR.Cycle=c("N", "R3")
Tn.above.3BG	logical(with default): logical value indicating if aliquot (grain) with Tn below 3
	sigma BG should be rejected
${\tt TnBG.ratio.low}$	numeric(optional): lower limit on ratio of initial Tn signal to BG
rseTn.up	numeric(optional): upper limit on relative standard error of Tn in percent
FR.low	numeric(optional): lower limit on fast ratio of Tn
use.se	logical(with default): logical value indicating if standard errors of values should
	be used during application of rejection criteria
outfile	character(optional): if specified, scaled SGC data related quantities will be writ-
	ten to a CSV file named "outfile" and saved to the current work directory

Details

Sensitivity-corrected natural-dose signals are re-scaled according to Eqn. (10) of Li et al. (2015).

Value

Return an invisible list that contains the following elements:

scale.Ltx scaled natural-dose signals and associated standard errors agID aliquot (grain) ID of scaled natural-dose signals

References

Li B, Roberts RG, Jacobs Z, Li SH, 2015. Potential of establishing a "global standardised growth curve" (gSGC) for optical dating of quartz from sediments. Quaternary Geochronology, 27: 94-104. Li B, Jacobs Z, Roberts RG, 2016. Investigation of the applicability of standardised growth curves for OSL dating of quartz from Haua Fteah cave, Libya. Quaternary Geochronology, 35: 1-15.

See Also

IsNORM; calSGCED

56 sensSAM

sensSAM	Investigate of the sensitivity of a statistical age model to the additional uncertainty (sigmab)

Description

Estimate of the parameters of a statistical age model using a number of sigmab values.

Usage

Arguments

EDdata	<pre>matrix(required): a two-column matrix (i.e., equivalent dose values and associated standard errors)</pre>
mode1	<pre>character(with default): the fitting model, one of "com", "cam", "mam3", "mam4", "mxam3", "mxam4", "fmm0", "fmm1", "fmm2",, "fmm9"</pre>
sigmaVEC	<pre>vector(with default): a series of sigmab values that will be used as inputs for the model. For example, sigmaVEC=seq(from=0, to=0.3, by=0.01)</pre>
iflog	logical(with default): transform equivalent dose values to log-scale or not
maxcomp	integer(with default): the maximum number of components in the FMM
plot	logical(with default): logical value indicating if the results should be plotted
outfile	<pre>character(optional): if specified, the results will be written to a CSV file named "outfile" and saved to the current work directory</pre>

Value

Return an invisible list that contains the following elements:

pars	a list that contains the optimized parameters for each sigmab value
mat	a matrix that contains the optimized parameters, the maximum logged likelihood
	value, and the corresponding Bayesian Information Criterion (BIC) value

References

Peng J, Li B, Jacobs Z, 2020. Modelling heterogeneously bleached single-grain equivalent dose distributions: Implications for the reliability of burial dose determination. Quaternary Geochronology, 60: 101108.

Peng J, Li B, Jacobs Z, Gliganic LA, 2023. Optical dating of sediments affected by post-depositional mixing: Modelling, synthesizing and implications. Catena, 232: 107383.

See Also

RadialPlotter; EDdata; optimSAM

Signaldata 57

Examples

```
# Not run.
# data(EDdata)
# sensSAM(EDdata$al3, model="mam4", iflog=TRUE)
```

Signaldata

Decay curves datasets

Description

CW-OSL and LM-OSL decay curves.

Usage

data(Signaldata)

Format

A list that contains CW-OSL and LM-OSL decay curves:

cw a number of CW-OSL decay curves of a sand sample from the Tengger Desert in northern china (Peng and Han, 2013)

lm a LM-OSL decay curve from Li and Li (2006)

References

Li SH, Li B, 2006. Dose measurement using the fast component of LM-OSL signals from quartz. Radiation Measurements, 41(5): 534-541.

Peng J, Han FQ, 2013. Selections of fast-component OSL signal using sediments from the south edge of Tengger Desert. Acta Geoscientica Sinica, 34(6): 757-762.

See Also

decomp; fastED

```
# Not run.
```

- # data(Signaldata)
- # names(Signaldata)

Index

* Alpha dose rate	* Minimum Age Model
calDA, 9	mcMAM, 41
* Annual dose rate	optimSAM, 42
calDA, 9	RadialPlotter, 49
* BIN file	reportMC, 52
analyseBINdata, 3	sensSAM, 56
BIN, 8	* OSL dating
loadBINdata, 35	BIN, 8
numOSL-package, 2	EDdata, 27
pickBINdata, 44	numOSL-package, 2
* Beta dose rate	SARdata, 53
calDA, 9	Signaldata, <mark>57</mark>
* Central Age Model	* batch analysis
mcFMM, 39	calSARED, 18
optimSAM, 42	calSGCED, 20
RadialPlotter, 49	numOSL-package, 2
reportMC, 52	pickSARdata, <mark>46</mark>
sensSAM, 56	* data extraction
* Cosmic dose rate	calSARED, 18
calDA, 9	pickBINdata,44
* Finite Mixture Age Model	pickSARdata, 46
mcFMM, 39	* data importing
optimSAM, 42	loadBINdata, 35
RadialPlotter, 49	* decay curve
reportMC, 52	decomp, 24
sensSAM, 56	fastED, 28
* Gamma dose rate	numOSL-package, 2
calDA, 9	Signaldata, <mark>57</mark>
* LS-normalisation	* dose rate
calSGCED, 20	numOSL-package, 2
1sNORM, 37	* equivalent dose
scaleSGCN, 54	calED, 13
* Markov chain Monte Carlo	calSARED, 18
mcFMM, 39	calSGCED, 20
mcMAM, 41	dbED, 23
reportMC, 52	EDdata, 27
* Maximum Age Model	fastED, 28
optimSAM, 42	mcFMM, 39
sensSAM, 56	mcMAM, 41

INDEX 59

numOSL-package, 2	colors, 23, 48, 50	
optimSAM, 42		
psRadialPlot, 48	data.frame, 5, 7, 8, 36, 47, 54	
RadialPlotter, 49	dbED, 23, 28, 43, 49, 52	
reportMC, 52	decomp, 24, 25, 26, 28, 29, 31, 45, 57	
SARdata, 53		
scaleSGCN, 54	EDdata, 24, 27, 40, 42, 43, 49, 52, 56	
sensSAM, 56	footED 16 17 27 20 20 25 45 57	
* growth curve	fastED, 16, 17, 27, 28, 29, 35, 45, 57	
analyseBINdata,3	fitGrowth, 6, 14–16, 18, 20–22, 29, 31, 32,	
as_analyseBIN, 7	33, 37, 38, 46, 47, 54, 55	
calED, 13	integer, 4, 10, 11, 14, 18, 23, 24, 28, 29, 32,	
calRcyRcp, 17	37, 39, 41, 42, 46, 48, 50, 52, 56	
calSARED, 18	37, 39, 41, 42, 40, 40, 50, 52, 50	
calSGCED, 20	list, 3, 5, 7, 8, 12, 14, 15, 17–19, 21, 23, 24,	
fastED, 28	26, 28, 30, 33, 34, 36, 38–41, 43–47,	
fitGrowth, 32	52, 53, 55, 56	
1sNORM, 37	loadBINdata, 6, 8, 35, 35, 44, 45	
numOSL-package, 2	logical, 10, 14, 18, 19, 21, 23–25, 28, 29, 32,	
pickSARdata, 46	35, 37, 39, 41, 42, 45–47, 50, 53, 55,	
SARdata, 53	56	
* radial plot	1sNORM, 6, 21, 22, 35, 37, 38, 47, 54, 55	
psRadialPlot, 48	ISNORM, 0, 21, 22, 33, 37, 38, 47, 34, 33	
	matplot, 45	
RadialPlotter, 49	matrix, 7, 12, 14, 17, 23, 24, 28, 32, 37, 39,	
* statistical age models	41, 42, 48, 50, 56	
mcFMM, 39	mcCAM (mcFMM), 39	
mcMAM, 41	mcFMM, 28, 39, 40–43, 52, 53	
numOSL-package, 2	mcMAM, 28, 40, 41, 43, 52, 53	
optimSAM, 42	IIICHAH, 20, 40, 41, 43, 32, 33	
RadialPlotter, 49	nlminb, <i>50</i>	
reportMC, 52 sensSAM, 56	numeric, 4, 9, 10, 14, 18, 19, 21, 23, 25, 29, 32, 37, 39, 41, 42, 47, 48, 50, 55	
analyseBINdata, 3, 4, 6–8, 16, 18, 20, 21, 35, 36, 38, 45–47, 55	numOSL-package, 2	
analyseBINdata0 (analyseBINdata), 3	optim, <i>50</i>	
as_analyseBIN, 7, 7, 18, 21, 46, 54, 55	optimize, 15	
as_anarysesin, 7, 7, 10, 21, 70, 57, 55	optimSAM, 28, 40, 42, 42, 51, 52, 56	
BIN, 6, 8, 36, 45		
10. 0 11 12	pickBINdata, 3, 6, 8, 27, 28, 31, 36, 44, 45	
calDA, 9, 11, 12	pickSARdata, 6, 7, 17, 20, 35, 46	
calDAbatch, 11, 12	psRadialPlot, 24, 28, 43, 48, 48, 52	
calDAbatch (calDA), 9		
calED, 6, 13, 15–18, 20, 22, 29, 31, 35	RadialPlotter, 24, 28, 40, 42, 43, 49, 49, 50,	
calRcyRcp, <i>16</i> , 17	56	
calSARED, 6, 7, 16, 17, 18, 22, 35, 47	reportMC, 40, 42, 52, 53	
calSGCED, 6, 16, 20, 20, 35, 38, 54, 55		
character, 4, 10, 11, 14, 18, 19, 21, 23–25,	SARdata, 7, 22, 35, 37, 38, 53	
29, 32, 35, 37, 42, 44, 46–48, 50, 53,	scaleSGCN, 22, 38, 54	
55, 56	sensSAM, 28, 40, 42, 51, 52, 56	

60 INDEX

```
Signaldata, 27, 31, 57
```