Use of the package nlstools to help the fit and
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The package nlstools provides several tools that help to fit of a gaussian
nonlinear model [1] using the fonction nls and to assess its quality of fit.

y=f(0,x)+e, e~N(0,0)

The aim of this document is to provide examples showing how to use these
tools that help to fit a model to data using the fonction nls, to check the
validity of the assumptions of the model, to assess its quality of fit, to evaluate
the precision of parameters estimates by use of confidence intervals or regions, ...
For details, see the documentation of each function, using the R help command
(e.g. 7?nlsResiduals). Do not forget to load the library using the function
library before testing the following examples.

> library(nlstools)
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1 Help to fit a model

1.1 Help to define starting values for parameters

To fit a nonlinear model, it is necessary to specify starting estimates for param-
eters. The function preview may be used to facilitate the choice of these values.
It provides a superimposed plot of observed (black circles) and predicted (red
crosses) values of the dependent variable versus one of the independent variables
with the model evaluated at specified values of the parameters. The residual
sum-of-squares (RSS) give an indication of the distance between observed and
predicted values (the lower, the better). It is then easy to use it repeatedly
to reach a good approximation of the starting estimates as in the following
example. This example uses a dataset and a model available in the package
nlstools.

e First iteration with arbitrary values of parameters

> library(nlsMicrobio)
> data(survivalcurveZ2)
> preview(formula = mafart, data = survivalcurve2, start = list(p = 1,

+ delta = 1, LOGIONO = 7))
RSS: 2780
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e Second iteration with adjusted values of parameters

> preview(formula = mafart, data = survivalcurve2, start = list(p = 1,
+ delta = 10, LOG10NO = 7))



RSS: 45.1
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Last iteration with reasonable approximate values of parameters

> preview(formula = mafart, data = survivalcurve2, start = list(p = 2,

+ delta = 10, LOG1ONO = 7.5))

RSS: 7.11



Predicted
+

1.2 Fit and plot of fit

When reasonable starting estimates are available for parameters, the model may
be fitted using the function nls, and the fitted model may be plotted together
with the observed data points using the function plotfit. Its argument smooth
enables to draw a smooth line for the fitted model.

> nlsmaf <- nls(mafart, survivalcurve2, list(p = 2, delta = 10,
+ LOG10NO = 7.5))
> plotfit(nlsmaf, smooth = TRUE)



LOG10N

Previous example uses a model predefined in nlstools. However, any model
may be fitted by explicitly defining its formula. Beware that the names of
variables in the model formula must exactly match those in the dataset.

> model <- LOG1ON ~ LOG10NO - (t/delta) p
> nlsmaf <- nls(model, survivalcurve2, list(p = 2, delta = 10,
+ LOG10NO = 7.5))

For the plot of a model with more than one independent variable, it is
necessary to specify the argument variable of the function plotfit to indicate
which variable is plotted on the x-axis. In that case, it is not possible to use the
argument smooth to plot a smooth line for the fitted model. In the following
example, a model with 4 independent variables is fitted and the dependent
variable is plotted first versus the first independent variable, and then versus
the second one.

> data(ross)

> d6 <- subset(ross, select = c(T, pH, aw, sqrtmumax))

> nls6 <- nls(cpm_T_pH_aw, d6, list(muopt = 2, Tmin = 4, Topt = 40,
+ Tmax = 49, pHmin = 4, pHopt = 6.5, pHmax = 9, awmin = 0.95,
+ awopt = 0.995))

> plotfit(nls6, variable = 1)
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> plotfit(nls6, variable = 2)
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An extended summary of the fit (giving more information than summary (nls))



may be printed using the function overview, as below.

> overview(nlsmaf)

Formula: LOG1ON ~ LOG1ONO - (t/delta)”p

Parameters:
Estimate Std. Error t value Pr(>|tl)
P 2.6690 0.2256 11.83 1.75e-10 *%**
delta 11.2956 0.6477 17.44 1.45e-13 *x*
LOG1ONO  7.6717 0.1269 60.44 < 2e-16 *xx
Signif. codes: 0 “***’ 0.001 ‘*x’ 0.01 ‘*’> 0.056 ¢.” 0.1 ¢ > 1

Residual standard error: 0.3601 on 20 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 6.174e-06

t-based confidence interval:
2.5% 97.5%

P 2.198435 3.139585

delta  9.944589 12.646691

LOG10ONO 7.406874 7.936456

Correlation matrix:

P delta LOG10NO
P 1.0000000 0.9687776 -0.6264922
delta 0.9687776 1.0000000 -0.7327828
LOG10NO -0.6264922 -0.7327828 1.0000000

2 Analysis of residuals

2.1 Graphics of residuals

Several plots may help to check the validity of the assumptions of the error
model based on the analysis of residuals. The plot of the result of the func-
tion nlsResiduals provides, by default, four classic plots of residuals (see fol-
lowing example): non-transformed residuals against fitted values, standardized
residuals against fitted values, auto-correlation plot of residuals (i+1th residual
against ith residual), and qqg-plot of the residuals. See 7nlsResiduals to have
more details or view other possibilities.

> resmaf <- nlsResiduals(nlsmaf)
> plot(resmaf)
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2.2 Residuals tests

The normality of residuals may be tested by the Shapiro-Wilk test and their
independence by the runs test using the function test.nlsResiduals as below.

> test.nlsResiduals (resmaf)

Shapiro-Wilk normality test

data: stdres
W = 0.96798, p-value = 0.6407

Runs Test

data: as.factor(run)
Standard Normal = -0.20455, p-value = 0.8379
alternative hypothesis: two.sided



3 Confidence region

The package nltools provides two different methods for the representation of
1 — « confidence region for model parameters as defined by Beale [1, 2]:

SCE(8) < SCEmin |1+ Fia(p,n =)

The function nlsContourRSS provides sections of that confidence region on each
plane defined by two parameters, while the function nlsConfRegions provides
projections of that region on the same planes.

3.1 Residual sum of squares contours or likelihood con-
tours

The function n1sContourRSS enables to plot the Residual Sum of Squares (RSS)
contours which also correspond to the likelihood contours for a Gaussian model.
One of these contours, plotted in red, corresponds to the section of the 95 percent
Beale’s confidence region in each plane of two parameters. The argument nlev
corresponds to the number of contours to be plotted, in addition to the red one.

> contmaf <- nlsContourRSS(nlsmaf)

> plot(contmaf, col = FALSE, nlev = 10)
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3.2 Projections of the 95 percent Beale’s confidence region

A second method is proposed to represent the 95 percent Beale’s confidence
region, also named the joint parameter likelihood region [1]. This method first
requires to sample points belonging to this region. The method consists in
randomly sampling the parameter values in a hypercube centered on the least
squares estimate and to accept only the sampled values whose residual sum of
squares verify the Beale criterion. As soon as the specified number of points
to draw in the confidence region is reached (corresponding to the argument
length of the function nlsConfRegions), the iterative sampling is stopped. The
algorithm does converge to the confidence region in a reasonable time only if the
hypercube defined for sampling is not to small, in order to contain the whole
confidence region, but also not too big, so that the probability of a sampling
point to be in the confidence region is not too small.

The confidence region is then plotted by projection of the sampled points in
each plane defined by a couple of parameters. The bounds of the hypercube in
which random values of parameters are drawn may be plotted in order to check
if the true confidence region is totally included in the hypercube defined by
default. If not, the hypercube should be expanded (by increasing the argument
exp, fixed by default at 1.5) in order to obtain the full confidence region. It
is often necessary to make two or three trials for adjusting the value of the
argument exp in order to obtain enough points in the whole confidence region
in a reasonable time, as in the next example.

In this example, the function nlsConfRegions is first called with the argu-
ment exp fixed at 1, which corresponds to a hypercube delimited by the limits
of the asymptotic confidence intervals of each parameter. The obtained region
is then plotted, fixing the argument bounds at TRUE in order to visualize the
sampling hypercube.

> rcmaf <- nlsConfRegions(nlsmaf, length = 500, exp = 1)

> plot(rcmaf, bounds = T)
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Since the whole region does not seem to be included in the sampling hyper-
cube, the function nlsConfRegions is recalled with the argument exp fixed at
2.

> rcmaf <- nlsConfRegions(nlsmaf, length = 500, exp = 2)

> plot(rcmaf, bounds = T)
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This value of the argument exp seems reasonable. The function n1sConfRegions
may be recalled specifying a greater number of points drawn in the region (ar-
gument length), and the region may be plotted without showing the bounds of
the hypercube.

> rcmaf <- nlsConfRegions(nlsmaf, length=2000, exp=2)

> plot(rcmaf, bounds = F)
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3.3 Comparison of both representations of the confidence
region

It must be noticed that the representation of the confidence region in sections
using nlsContourRSS does not give the same information as its representation
by projections using nlsConfRegions when the number of parameters is greater
than two. Sections of multidimensional (at least 3D) objects are smaller than
projections and the representation of a confidence region in sections tends to
underestimate its size in comparison to its representation by projections. The
perception of structural correlations between parameters from graphical rep-
resentation of the confidence region may also be very different between both
representations. Let us see below such a difference with the previous exam-
ple, for which both the section and the projection of the confidence region was
plotted on the same plane.

13



7.8

LOG10N

7.4

We recommend to use the representation of RSS contours to detect non
linearities and /or the presence of more than one minimum in the neighbourhood
of the estimate, and the representation of projections of the confidence region
to evaluate the uncertainty on the estimated parameters and to judge of their
structural correlations.

4 Resampling

4.1 Jackknife

The function nlsJack may be used to obtain, for a data set with n observations,
n resampled data sets of n—1 observations and the n corresponding new estima-
tions for each parameter of the model. The jackknife estimates with confidence
intervals are then calculated as described by Seber and Wild [3].

> jackmaf <- nlsJack(nlsmaf)

> summary (jackmaf)

Jackknife statistics
Estimates Bias
P 2.632607 0.03640284
delta 11.260269 0.03537127
LOG10ONO 7.669289 0.00237599

14



Jackknife confidence intervals
Low Up

P 2.155147 3.110067

delta 9.916902 12.603635

LOG10ONO 7.497483 7.841096

Influential values

* Observation 15 is influential on p
Observation 18 is influential on p
Observation 22 is influential on p
Observation 15 is influential on delta
Observation 18 is influential on delta

* ¥ X ¥

The leave-one-out procedure may also be employed to assess the influence
of each observation on each parameter estimate, as in the end of the previous
summary or in the following representation.

> plot(jackmaf)
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4.2 Bootstrap

The function nlsBoot uses non-parametric bootstrapping of mean centered
residuals [3] to obtain a chosen number (argument niter) of bootstrap esti-
mates. Ponctual estimations (resp. confidence intervals) of parameters are then
provided using medians (resp. the 2.5 and 97.5 percentiles) of the bootstrap
sample of estimates.

15



> boomaf <- nlsBoot(nlsmaf, niter = 2000)

> summary (boomaf)

Bootstrap statistics
Estimate Std. error
P 2.676133 0.2141901
delta  11.284234 0.6076574
LOG10ONO 7.676410 0.1192036

Median of bootstrap estimates and percentile confidence intervals
Median 2.5% 97.5%

P 2.669720 2.285737 3.117516

delta 11.291186 10.108111 12.433099

LOG10ONO 7.674431 7.441959 7.904562

The boostrap sample of estimates may be visualized by projection on each
plane defined by a couple of parameters, as below. This representation is gen-
erally close to the representation of the 95 percent Beale’s confidence region
provided by nlsConfRegions.

> plot(boomaf, type = "pairs")
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