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netcmc-package An R Package for Bayesian Social Network Modelling

Description

Implements a class of univariate and multivariate spatio-network generalised linear mixed models,
with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The
response variable can be binomial, Gaussian, and Poisson.

Details

Package: netcmc
Type: Package
Version: 1.0
Date: 2022-01-24
License: GPL (>= 2)

Author(s)

George Gerogiannis <g.gerogiannis.1@research.gla.ac.uk>

Examples

## See the examples in the function specific help files.

getAdjacencyMatrix A function that extracts valuable properties from a raw social network.
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Description

This function transforms a network, which is a data.frame type in a specified format, in to a resultant
n by n adjacency matrix, where aij = 0 if vertex i and j (i 6= j) are not adjacent i.e. vertex i and j
are not the head/tail of an edge e and aij = 1 if vertex i and j (i 6= j) are adjacent i.e. vertex i and j
are the head/tail of an edge e. aij = 0 when i = j.

Usage

getAdjacencyMatrix(rawNetwork)

Arguments

rawNetwork The data.frame which encodes information about the network. The dimensions
of the matrix are n by (l+1).The data.frame contains one column corresponding
to the labels for each of the n vertices in the network, the column name for
this should be ‘labels’. The other l columns corresponds to the corresponds to
the vertices which are adjacent to each of the n vertices in the network. It is
important to note that the label of a vertex should not be 0. The nth vertex can
be adjacent to a maximum of l other vertices.

Value
adjacencyMatrix

The resultant adjaceny matrix for the rawNetwork data.frame.

nonnominators The individuals in the social network who are nominees of at least one other
individual but were not in the set of individuals who did the nominating.

vertexNoOutdegrees

The individuals in the social network that have an outdegree of 0.
vertexNoIndegrees

The individuals in the social network that have an indegree of 0.
vertexIsolates

The individuals in the social network that have an outdegree and indegree of 0.

Author(s)

George Gerogiannis

Examples

rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c("A", "B", "C", "D")
rawNetwork[, 2] = c(0, "C", "D", 0)
rawNetwork[, 3] = c("B", 0, "A", "C")
getAdjacencyMatrix(rawNetwork)

rawNetwork = matrix(NA, 4, 3)



4 getMembershipMatrix

rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[2] = "labels"
rawNetwork[, 1] = c(NA, "Charlie", "David", 0)
rawNetwork[, 2] = c("Alistar", "Bob", "Charlie", "David")
rawNetwork[, 3] = c("Bob", NA, "Alistar", "Charlie")
getAdjacencyMatrix(rawNetwork)

rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c(245, 344, 234, 104)
rawNetwork[, 2] = c(NA, 234, 104, NA)
rawNetwork[, 3] = c(344, 0, 245, 234)
getAdjacencyMatrix(rawNetwork)

rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c(245, 344, 234, 104)
rawNetwork[, 2] = c(32, 234, 104, 0)
rawNetwork[, 3] = c(344, 20, 245, 234)
getAdjacencyMatrix(rawNetwork)

rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c("Alistar", "Bob", "Charlie", "David")
rawNetwork[, 2] = c(NA, "Charlie", "David", 0)
rawNetwork[, 3] = c("Bob", "Blaine", "Alistar", "Charlie")
getAdjacencyMatrix(rawNetwork)

rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c("Alistar", "Bob", "Charlie", "David")
rawNetwork[, 2] = c(0, "Charlie", 0, 0)
rawNetwork[, 3] = c("Bob", "Blaine", "Alistar", 0)
getAdjacencyMatrix(rawNetwork)

rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c(245, 344, 234, 104)
rawNetwork[, 2] = c(32, 0, 104, 0)
rawNetwork[, 3] = c(34, 0, 245, 234)
getAdjacencyMatrix(rawNetwork)

getMembershipMatrix A function that generates a data.frame that is the membership matrix
of the network.
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Description

A function that generates a data.frame that is the membership matrix of the network given individual
IDs and the alters that they have nominated.

Usage

getMembershipMatrix(individualID, alters)

Arguments

individualID A data.frame which stores the IDs of the individuals that nominate alters.

alters A data.frame which stores the alters of a given individual.

Value

membershipMatrix

The resultant data.frame.

Author(s)

George Gerogiannis

Examples

individualID = data.frame(c(1, 2, 3))
alters = data.frame(c(5, 3, 2), c(5, 6, 1))
getMembershipMatrix(individualID, alters)

individualID = data.frame(c(1, 2, 3))
alters = data.frame(c(NA, 3, 2), c(NA, NA, 1))
getMembershipMatrix(individualID, alters)

individualID = data.frame(c(1, 2, 3))
alters = data.frame(c(NA, 3, NA), c(NA, NA, 1))
getMembershipMatrix(individualID, alters)

individualID = data.frame(c(1, 2, 3))
alters = data.frame(c(NA, 3, NA), c(6, NA, 1))
getMembershipMatrix(individualID, alters)



6 getTotalAltersByStatus

getTotalAltersByStatus

A function that generates a data.frame that stores the number of alters
with a given level of a factor an individual has.

Description

This is a function that can be used to generates a data.frame that stores the number of alters with a
given level of a factor an individual has.

Usage

getTotalAltersByStatus(individualID, status, alters)

Arguments

individualID A data.frame which stores the IDs of the individuals that nominate alters.

status A data.frame which stores the levels of a variable.

alters A data.frame which stores the alters of a given individual.

Value
totalAltersByStatus

The resultant data.frame.

Author(s)

George Gerogiannis

Examples

individualID = data.frame(c(1, 2, 3, 4))
status = data.frame(c(10, 20, 30, 20))
alters = data.frame(c(4, 3, 2, 1), c(3, 4, 1, 2), c(2, 1, 4, 3))
totalAltersByStatus = getTotalAltersByStatus(individualID, status, alters)

individualID = data.frame(c(1, 2, 3, 4))
status = data.frame(c("RegularSmoke", "Nonsmoker", "CasualSmoker", "Nonsmoker"))
alters = data.frame(c(4, 3, 2, 1), c(3, 4, 1, 2), c(5, 1, 5, 3))
totalAltersByStatus = getTotalAltersByStatus(individualID, status, alters)

individualID = data.frame(c(1, 2, 3, 4))
status = data.frame(c(NA, "Nonsmoker", "CasualSmoker", "Nonsmoker"))
alters = data.frame(c(4, 3, 2, 1), c(3, 4, 1, 2), c(5, 1, 5, 3))
totalAltersByStatus = getTotalAltersByStatus(individualID, status, alters)

individualID = data.frame(c(10, 20))
status = data.frame(c(NA, "Nonsmoker"))
alters = data.frame(c(NA, 10), c(20, NA))
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totalAltersByStatus = getTotalAltersByStatus(individualID, status, alters)

individualID = data.frame(c(NA, 20))
status = data.frame(c("Smoker", "Nonsmoker"))
alters = data.frame(c(NA, 10), c(20, NA))
totalAltersByStatus = getTotalAltersByStatus(individualID, status, alters)

multiNet A function that generates samples for a multivariate fixed effects and
network model.

Description

This function that generates samples for a multivariate fixed effects and network model, which is
given by

Yisr|µisr ∼ f(yisr|µisr, σ
2
er) i = 1, . . . , Ns, s = 1, . . . , S, r = 1, . . . , R,

g(µisr) = x
>
isβr +

∑
j∈net(is)

wisjujr + w∗isu
∗
r ,

βr ∼ N(0, αI)

uj = (u1j , . . . , uRj) ∼ N(0,Σu),

u∗ = (u∗1, . . . , u
∗
R) ∼ N(0,Σu),

Σu ∼ Inverse-Wishart(ξu,Ωu),

σ2
er ∼ Inverse-Gamma(α3, ξ3).

The covariates for the ith individual in the sth spatial unit or other grouping are included in a p× 1
vector xis . The corresponding p × 1 vector of fixed effect parameters relating to the rth response
are denoted by βr, which has an assumed multivariate Gaussian prior with mean 0 and diagonal
covariance matrix αI that can be chosen by the user. A conjugate Inverse-Gamma prior is specified
for σ2

er, and the corresponding hyperparamaterers (α3, ξ3) can be chosen by the user.

The R × 1 vector of random effects for the jth alter is denoted by uj = (uj1, . . . , ujR)R×1, while
the R × 1 vector of isolation effects for all R outcomes is denoted by u∗ = (u∗1, . . . , u

∗
R), and

both are assigned multivariate Gaussian prior distributions. The unstructured covariance matrix
Σu captures the covariance between the R outcomes at the network level, and a conjugate Inverse-
Wishart prior is specified for this covariance matrix Σu. The corresponding hyperparamaterers (ξu,
Ωu) can be chosen by the user.

The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given be-
low:

Binomial: Yisr ∼ Binomial(nisr, θisr) and g(µisr) = ln(θisr/(1− θisr)),

Gaussian: Yisr ∼ N(µisr, σ
2
er) and g(µisr) = µisr,

Poisson: Yisr ∼ Poisson(µisr) and g(µisr) = ln(µisr).
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Usage

multiNet(formula, data, trials, family, W, numberOfSamples = 10, burnin = 0,
thin = 1, seed = 1, trueBeta = NULL, trueURandomEffects = NULL,
trueVarianceCovarianceU = NULL, trueSigmaSquaredE = NULL,
covarianceBetaPrior = 10^5, xi, omega, a3 = 0.001, b3 = 0.001,
centerURandomEffects = TRUE)

Arguments

formula A formula for the covariate part of the model using a similar syntax to that used
in the lm() function.

data An optional data.frame containing the variables in the formula.

trials A vector the same length as the response containing the total number of trials
nisr. Only used if family=“binomial".

family The data likelihood model that must be “gaussian", “poisson" or “binomial".

W A matrix W that encodes the social network structure and whose rows sum to
1.

numberOfSamples

The number of samples to generate pre-thin.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

seed A seed for the MCMC algorithm.

trueBeta If available, the true value of β1, . . . ,βR.
trueURandomEffects

If available, the true values of u1, . . . ,uJ ,u
∗.

trueVarianceCovarianceU

If available, the true value of Σu.
trueSigmaSquaredE

If available, the true value of σ2
e1, . . ., σ2

eR. Only used if family=“gaussian".
covarianceBetaPrior

A scalar prior α for the covariance parameter of the beta prior, such that the
covariance is αI .

xi The degrees of freedom parameter for the Inverse-Wishart distribution relating
to the network random effects ξu.

omega The scale parameter for the Inverse-Wishart distribution relating to the network
random effects Ωu.

a3 The shape parameter for the Inverse-Gamma distribution relating to the error
terms α3. Only used if family=“gaussian".

b3 The scale parameter for the Inverse-Gamma distribution relating to the error
terms ξ3. Only used if family=“gaussian".

centerURandomEffects

A choice to center the network random effects after each iteration of the MCMC
sampler.
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Value

call The matched call.

y The response used.

X The design matrix used.

standardizedX The standardized design matrix used.

W The network matrix used.

samples The matrix of simulated samples from the posterior distribution of each param-
eter in the model (excluding random effects).

betaSamples The matrix of simulated samples from the posterior distribution of β1, . . . ,βR

parameters in the model.
varianceCovarianceUSamples

The matrix of simulated samples from the posterior distribution of Σu in the
model.

uRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of network ran-
dom effects u1, . . . ,uJ ,u

∗ in the model.
sigmaSquaredESamples

The vector of simulated samples from the posterior distribution of σ2
e1, . . ., σ2

eR

in the model. Only used if family=“gaussian".
acceptanceRates

The acceptance rates of parameters in the model from the MCMC sampling
scheme .

uRandomEffectsAcceptanceRate

The acceptance rates of network random effects in the model from the MCMC
sampling scheme.

timeTaken The time taken for the model to run.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

DBar DBar for the model.
posteriorDeviance

The posterior deviance for the model.
posteriorLogLikelihood

The posterior log likelihood for the model.

pd The number of effective parameters in the model.

DIC The DIC for the model.

Author(s)

George Gerogiannis
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multiNetLeroux A function that generates samples for a multivariate fixed effects, spa-
tial, and network model.

Description

This function that generates samples for a multivariate fixed effects, spatial, and network model,
which is given by

Yisr|µisr ∼ f(yisr|µisr, σ
2
er) i = 1, . . . , Ns, s = 1, . . . , S, r = 1, . . . , R,

g(µisr) = x
>
isβr + φsr +

∑
j∈net(is)

wisjujr + w∗isu
∗
r ,

βr ∼ N(0, αI)

φr = (φ1r, . . . , φSr) ∼ N(0, τ2r (ρr(diag(A1)−A) + (1− ρr)I)−1),

uj = (u1j , . . . , uRj) ∼ N(0,Σu),

u∗ = (u∗1, . . . , u
∗
R) ∼ N(0,Σu),

τ2r ∼ Inverse-Gamma(a1, b1),

ρr ∼ Uniform(0, 1),

Σu ∼ Inverse-Wishart(ξu,Ωu),

σ2
er ∼ Inverse-Gamma(α3, ξ3).

The covariates for the ith individual in the sth spatial unit or other grouping are included in a p× 1
vector xis . The corresponding p × 1 vector of fixed effect parameters relating to the rth response
are denoted by βr, which has an assumed multivariate Gaussian prior with mean 0 and diagonal
covariance matrix αI that can be chosen by the user. A conjugate Inverse-Gamma prior is specified
for σ2

er, and the corresponding hyperparamaterers (α3, ξ3) can be chosen by the user.

Spatial correlation in these areal unit level random effects is most often modelled by a conditional
autoregressive (CAR) prior distribution. Using this model spatial correlation is induced into the
random effects via a non-negative spatial adjacency matrix A = (asl)S×S , which defines how
spatially close the S areal units are to each other. The elements of AS×S can be binary or non-
binary, and the most common specification is that asl = 1 if a pair of areal units (Gs, Gl) share a
common border or are considered neighbours by some other measure, and asl = 0 otherwise. Note,
ass = 0 for all s. τ2r measures the variance of these random effects for the rth response, where a
conjugate Inverse-Gamma prior is specified for τ2r and the corresponding hyperparamaterers (a1,
b1) can be chosen by the user. ρr controls the level of spatial autocorrelation. A non-conjugate
uniform prior is specified for ρr.

The R × 1 vector of random effects for the jth alter is denoted by uj = (uj1, . . . , ujR)R×1, while
the R × 1 vector of isolation effects for all R outcomes is denoted by u∗ = (u∗1, . . . , u

∗
R), and

both are assigned multivariate Gaussian prior distributions. The unstructured covariance matrix
Σu captures the covariance between the R outcomes at the network level, and a conjugate Inverse-
Wishart prior is specified for this covariance matrix Σu. The corresponding hyperparamaterers (ξu,
Ωu) can be chosen by the user.
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The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given be-
low:

Binomial: Yisr ∼ Binomial(nisr, θisr) and g(µisr) = ln(θisr/(1− θisr)),

Gaussian: Yisr ∼ N(µisr, σ
2
er) and g(µisr) = µisr,

Poisson: Yisr ∼ Poisson(µisr) and g(µisr) = ln(µisr).

Usage

multiNetLeroux(formula, data, trials, family, squareSpatialNeighbourhoodMatrix,
spatialAssignment, W, numberOfSamples = 10, burnin = 0, thin = 1, seed = 1,
trueBeta = NULL, trueSpatialRandomEffects = NULL, trueURandomEffects = NULL,
trueSpatialTauSquared = NULL, trueSpatialRho = NULL,
trueVarianceCovarianceU = NULL, trueSigmaSquaredE = NULL,
covarianceBetaPrior = 10^5, a1 = 0.001, b1 = 0.001, xi, omega, a3 = 0.001,
b3 = 0.001, centerSpatialRandomEffects = TRUE, centerURandomEffects = TRUE)

Arguments

formula A formula for the covariate part of the model using a similar syntax to that used
in the lm() function.

data An optional data.frame containing the variables in the formula.

trials A vector the same length as the response containing the total number of trials
nisr. Only used if family=“binomial".

family The data likelihood model that must be “gaussian", “poisson" or “binomial".
squareSpatialNeighbourhoodMatrix

An S × S symmetric and non-negative neighbourhood matrixA = (asl)S×S .

W A matrix W that encodes the social network structure and whose rows sum to
1.

spatialAssignment

The binary matrix of individual’s assignment to spatial area used in the model
fitting process.

numberOfSamples

The number of samples to generate pre-thin.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

seed A seed for the MCMC algorithm.

trueBeta If available, the true value of β1, . . . ,βR.
trueSpatialRandomEffects

If available, the true values of φ1, . . . ,φR.
trueURandomEffects

If available, the true values of u1, . . . ,uJ ,u
∗.

trueSpatialTauSquared

If available, the true values of τ21 , . . . , τ
2
R.
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trueSpatialRho If available, the true value of ρ1, . . . , ρR.
trueVarianceCovarianceU

If available, the true value of Σu.
trueSigmaSquaredE

If available, the true value of σ2
e1, . . ., σ2

eR. Only used if family=“gaussian".

covarianceBetaPrior

A scalar prior α for the covariance parameter of the beta prior, such that the
covariance is αI .

a1 The shape parameter for the Inverse-Gamma distribution relating to the spatial
random effects α1.

b1 The scale parameter for the Inverse-Gamma distribution relating to the spatial
random effects ξ1.

xi The degrees of freedom parameter for the Inverse-Wishart distribution relating
to the network random effects ξu.

omega The scale parameter for the Inverse-Wishart distribution relating to the network
random effects Ωu.

a3 The shape parameter for the Inverse-Gamma distribution relating to the error
terms α3. Only used if family=“gaussian".

b3 The scale parameter for the Inverse-Gamma distribution relating to the error
terms ξ3. Only used if family=“gaussian".

centerSpatialRandomEffects

A choice to center the spatial random effects after each iteration of the MCMC
sampler.

centerURandomEffects

A choice to center the network random effects after each iteration of the MCMC
sampler.

Value

call The matched call.

y The response used.

X The design matrix used.

standardizedX The standardized design matrix used.
squareSpatialNeighbourhoodMatrix

The spatial neighbourhood matrix used.
spatialAssignment

The spatial assignment matrix used.

W The network matrix used.

samples The matrix of simulated samples from the posterior distribution of each param-
eter in the model (excluding random effects).

betaSamples The matrix of simulated samples from the posterior distribution of β1, . . . ,βR

parameters in the model.



multiNetLeroux 13

spatialTauSquaredSamples

Type: matrix. The matrix of simulated samples from the posterior distribution
of τ21 , . . . , τ

2
R in the model.

spatialRhoSamples

The vector of simulated samples from the posterior distribution of ρ1, . . . , ρR in
the model.

varianceCovarianceUSamples

The matrix of simulated samples from the posterior distribution of Σu in the
model.

spatialRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of spatial ran-
dom effects φ1, . . . ,φR in the model.

uRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of network ran-
dom effects u1, . . . ,uJ ,u

∗ in the model.
sigmaSquaredESamples

The vector of simulated samples from the posterior distribution of σ2
e1, . . ., σ2

eR

in the model. Only used if family=“gaussian".
acceptanceRates

The acceptance rates of parameters in the model from the MCMC sampling
scheme .

spatialRandomEffectsAcceptanceRate

The acceptance rates of spatial random effects in the model from the MCMC
sampling scheme.

uRandomEffectsAcceptanceRate

The acceptance rates of network random effects in the model from the MCMC
sampling scheme.

timeTaken The time taken for the model to run.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

DBar DBar for the model.
posteriorDeviance

The posterior deviance for the model.

posteriorLogLikelihood

The posterior log likelihood for the model.

pd The number of effective parameters in the model.

DIC The DIC for the model.

Author(s)

George Gerogiannis
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multiNetRand A function that generates samples for a multivariate fixed effects,
grouping, and network model.

Description

This function that generates samples for a multivariate fixed effects, grouping, and network model,
which is given by

Yisr|µisr ∼ f(yisr|µisr, σ
2
er) i = 1, . . . , Ns, s = 1, . . . , S, r = 1, . . . , R,

g(µisr) = x
>
isβrvsr +

∑
j∈net(is)

wisjujr + w∗isu
∗
r ,

βr ∼ N(0, αI)

vs = (vs1, . . . , vsR) ∼ N(0,Σv)vs = (vs1, . . . , vsR) ∼ N(0,Σv),

uj = (u1j , . . . , uRj) ∼ N(0,Σu),

u∗ = (u∗1, . . . , u
∗
R) ∼ N(0,Σu),

Σv ∼ Inverse-Wishart(ξv,Ωv),

Σu ∼ Inverse-Wishart(ξu,Ωu),

σ2
er ∼ Inverse-Gamma(α3, ξ3).

The covariates for the ith individual in the sth spatial unit or other grouping are included in a p× 1
vector xis . The corresponding p × 1 vector of fixed effect parameters relating to the rth response
are denoted by βr, which has an assumed multivariate Gaussian prior with mean 0 and diagonal
covariance matrix αI that can be chosen by the user. A conjugate Inverse-Gamma prior is specified
for σ2

er, and the corresponding hyperparamaterers (α3, ξ3) can be chosen by the user.

The R × 1 vector of random effects for the $s$th group is denoted by vs = (vs1, . . . , vsR)R×1,
which is assigned a joint Gaussian prior distribution with an unstructured covariance matrix Σv that
captures the covariance between theR outcomes. A conjugate Inverse-Wishart prior is specified for
the random effects covariance matrix Σv . The corresponding hyperparamaterers (ξv , Ωv) can be
chosen by the user.

The R × 1 vector of random effects for the jth alter is denoted by uj = (uj1, . . . , ujR)R×1, while
the R × 1 vector of isolation effects for all R outcomes is denoted by u∗ = (u∗1, . . . , u

∗
R), and

both are assigned multivariate Gaussian prior distributions. The unstructured covariance matrix
Σu captures the covariance between the R outcomes at the network level, and a conjugate Inverse-
Wishart prior is specified for this covariance matrix Σu. The corresponding hyperparamaterers (ξu,
Ωu) can be chosen by the user.

The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given be-
low:

Binomial: Yisr ∼ Binomial(nisr, θisr) and g(µisr) = ln(θisr/(1− θisr)),
Gaussian: Yisr ∼ N(µisr, σ

2
er) and g(µisr) = µisr,

Poisson: Yisr ∼ Poisson(µisr) and g(µisr) = ln(µisr).
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Usage

multiNetRand(formula, data, trials, family, V, W, numberOfSamples = 10, burnin = 0,
thin = 1, seed = 1, trueBeta = NULL, trueVRandomEffects = NULL,
trueURandomEffects = NULL, trueVarianceCovarianceV = NULL,
trueVarianceCovarianceU = NULL, trueSigmaSquaredE = NULL,
covarianceBetaPrior = 10^5, xiV, omegaV, xi, omega, a3 = 0.001,
b3 = 0.001, centerVRandomEffects = TRUE, centerURandomEffects = TRUE)

Arguments

formula A formula for the covariate part of the model using a similar syntax to that used
in the lm() function.

data An optional data.frame containing the variables in the formula.

trials A vector the same length as the response containing the total number of trials
nisr. Only used if family=“binomial".

family The data likelihood model that must be “gaussian", “poisson" or “binomial".

V The binary matrix of individual’s assignment to groups used in the model fitting
process.

W A matrix W that encodes the social network structure and whose rows sum to
1.

numberOfSamples

The number of samples to generate pre-thin.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

seed A seed for the MCMC algorithm.

trueBeta If available, the true value of β1, . . . ,βR.
trueVRandomEffects

If available, the true values of v1, . . . ,vS .
trueURandomEffects

If available, the true values of u1, . . . ,uJ ,u
∗.

trueVarianceCovarianceV

If available, the true value of Σv .
trueVarianceCovarianceU

If available, the true value of Σu.
trueSigmaSquaredE

If available, the true value of σ2
e1, . . ., σ2

eR. Only used if family=“gaussian".
covarianceBetaPrior

A scalar prior α for the covariance parameter of the beta prior, such that the
covariance is αI .

xiV The degrees of freedom parameter for the Inverse-Wishart distribution relating
to the grouping random effects ξv .

omegaV The scale parameter for the Inverse-Wishart distribution relating to the grouping
random effects Ωv .
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xi The degrees of freedom parameter for the Inverse-Wishart distribution relating
to the network random effects ξu.

omega The scale parameter for the Inverse-Wishart distribution relating to the network
random effects Ωu.

a3 The shape parameter for the Inverse-Gamma distribution relating to the error
terms α3. Only used if family=“gaussian".

b3 The scale parameter for the Inverse-Gamma distribution relating to the error
terms ξ3. Only used if family=“gaussian".

centerVRandomEffects

A choice to center the spatial random effects after each iteration of the MCMC
sampler.

centerURandomEffects

A choice to center the network random effects after each iteration of the MCMC
sampler.

Value

call The matched call.

y The response used.

X The design matrix used.

standardizedX The standardized design matrix used.

V The grouping assignment matrix used.

W The network matrix used.

samples The matrix of simulated samples from the posterior distribution of each param-
eter in the model (excluding random effects).

betaSamples The matrix of simulated samples from the posterior distribution of β1, . . . ,βR

parameters in the model.
varianceCovarianceVSamples

The matrix of simulated samples from the posterior distribution of Σv in the
model.

varianceCovarianceUSamples

The matrix of simulated samples from the posterior distribution of Σu in the
model.

vRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of spatial ran-
dom effects v1, . . . ,vS in the model.

uRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of network ran-
dom effects u1, . . . ,uJ ,u

∗ in the model.
sigmaSquaredESamples

The vector of simulated samples from the posterior distribution of σ2
e1, . . ., σ2

eR

in the model. Only used if family=“gaussian".
acceptanceRates

The acceptance rates of parameters in the model from the MCMC sampling
scheme.
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vRandomEffectsAcceptanceRate

The acceptance rates of grouping random effects in the model from the MCMC
sampling scheme.

uRandomEffectsAcceptanceRate

The acceptance rates of network random effects in the model from the MCMC
sampling scheme.

timeTaken The time taken for the model to run.
burnin The number of MCMC samples to discard as the burn-in period.
thin The value by which to thin numberOfSamples.
DBar DBar for the model.
posteriorDeviance

The posterior deviance for the model.
posteriorLogLikelihood

The posterior log likelihood for the model.
pd The number of effective parameters in the model.
DIC The DIC for the model.

Author(s)

George Gerogiannis

plot.netcmc A function that plots visual MCMC diagnostics of the fitted model.

Description

This function takes a netcmc object of samples from the posterior distribution of a parameter(s) and
returns a visual convergence diaagnostics in the form of a density plot, trace plot, and ACF plot.

Usage

## S3 method for class 'netcmc'
plot(x, ...)

Arguments

x A netcmc object of samples from the posterior distribution of a parameter(s).
... Ignored.s

Value

Returns a trace plot, density plot and ACF plot for the posterior distribution of a parameter(s) in a
netcmc object.

Author(s)

George Gerogiannis
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print.netcmc A function that gets a summary of the fitted model.

Description

This function takes a netcmc object and returns a summary of the fitted model. The summary
includes, for selected parameters, posterior medians and 95 percent credible intervals, the effective
number of independent samples and the Geweke convergence diagnostic in the form of a Z-score.

Usage

## S3 method for class 'netcmc'
print(x, ...)

Arguments

x A netcmc fitted model object.

... Ignored.s

Value

Returns a model summary for a netcmc object.

Author(s)

George Gerogiannis

summary.netcmc A function that gets a summary of the fitted model.

Description

This function takes a netcmc object and returns a summary of the fitted model. The summary
includes, for selected parameters, posterior medians and 95 percent credible intervals, the effective
number of independent samples and the Geweke convergence diagnostic in the form of a Z-score.

Usage

## S3 method for class 'netcmc'
summary(object, ...)

Arguments

object A netcmc fitted model object.

... Ignored.s
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Value

Returns a model summary for a netcmc object.

Author(s)

George Gerogiannis

uni A function that generates samples for a univariate fixed effects model.

Description

This function generates samples for a univariate fixed effects model, which is given by

Yis |µis ∼ f(yis |µis , σ
2
e) i = 1, . . . , Ns, s = 1, . . . , S,

g(µis) = x
>
isβ,

β ∼ N(0, αI),

σ2
e ∼ Inverse-Gamma(α3, ξ3).

The covariates for the ith individual in the sth spatial unit or other grouping are included in a p× 1
vector xis . The corresponding p× 1 vector of fixed effect parameters are denoted by β, which has
an assumed multivariate Gaussian prior with mean 0 and diagonal covariance matrix αI that can
be chosen by the user. A conjugate Inverse-Gamma prior is specified for σ2

e , and the corresponding
hyperparamaterers (α3, ξ3) can be chosen by the user.

The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given be-
low:

Binomial: Yis ∼ Binomial(nis , θis) and g(µis) = ln(θis/(1− θis)),

Gaussian: Yis ∼ N(µis , σ
2
e) and g(µis) = µis ,

Poisson: Yis ∼ Poisson(µis) and g(µis) = ln(µis).

Usage

uni(formula, data, trials, family, numberOfSamples = 10, burnin = 0, thin = 1, seed = 1,
trueBeta = NULL, trueSigmaSquaredE = NULL, covarianceBetaPrior = 10^5,
a3 = 0.001, b3 = 0.001)
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Arguments

formula A formula for the covariate part of the model using a similar syntax to that used
in the lm() function.

data An optional data.frame containing the variables in the formula.

trials A vector the same length as the response containing the total number of trials
nis . Only used if family=“binomial".

family The data likelihood model that must be “gaussian" , “poisson" or “binomial".
numberOfSamples

The number of samples to generate pre-thin.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

seed A seed for the MCMC algorithm.

trueBeta If available, the true values of the β.
trueSigmaSquaredE

If available, the true value of σ2
e . Only used if family=“gaussian".

covarianceBetaPrior

A scalar prior α for the covariance parameter of the beta prior, such that the
covariance is αI .

a3 The shape parameter for the Inverse-Gamma distribution α3. Only used if
family=“gaussian".

b3 The scale parameter for the Inverse-Gamma distribution ξ3. Only used if family=“gaussian".

Value

call The matched call.

y The response used.

X The design matrix used.

standardizedX The standardized design matrix used.

samples The matrix of simulated samples from the posterior distribution of each param-
eter in the model (excluding random effects).

betaSamples The matrix of simulated samples from the posterior distribution of β parameters
in the model.

sigmaSquaredESamples

The vector of simulated samples from the posterior distribution of σ2
e in the

model.
acceptanceRates

The acceptance rates of parameters in the model from the MCMC sampling
scheme.

timeTaken The time taken for the model to run.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

DBar DBar for the model.
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posteriorDeviance

The posterior deviance for the model.
posteriorLogLikelihood

The posterior log likelihood for the model.

pd The number of effective parameters in the model.

DIC The DIC for the model.

Author(s)

George Gerogiannis

Examples

#################################################
#### Run the model on simulated data
#################################################

#### Generate the covariates and response data
observations <- 100
X <- matrix(rnorm(2 * observations), ncol = 2)
colnames(X) <- c("x1", "x2")
beta <- c(2, -2, 2)
logit <- cbind(rep(1, observations), X) %*% beta
prob <- exp(logit) / (1 + exp(logit))
trials <- rep(50, observations)
Y <- rbinom(n = observations, size = trials, prob = prob)
data <- data.frame(cbind(Y, X))

#### Run the model
formula <- Y ~ x1 + x2
## Not run: model <- uni(formula = formula, data = data, family="binomial",

trials = trials, numberOfSamples = 10000,
burnin = 10000, thin = 10, seed = 1)

## End(Not run)

uniNet A function that generates samples for a univariate network model.

Description

This function generates samples for a univariate network model, which is given by

Yis |µis ∼ f(yis |µis , σ
2
e) i = 1, . . . , Ns, s = 1, . . . , S,

g(µis) = x
>
isβ +

∑
j∈net(is)

wisjuj + w∗isu
∗,

β ∼ N(0, αI),
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uj ∼ N(0, σ2
u),

u∗ ∼ N(0, σ2
u),

σ2
u ∼ Inverse-Gamma(α2, ξ2),

σ2
e ∼ Inverse-Gamma(α3, ξ3).

The covariates for the ith individual in the sth spatial unit or other grouping are included in a p× 1
vector xis . The corresponding p× 1 vector of fixed effect parameters are denoted by β, which has
an assumed multivariate Gaussian prior with mean 0 and diagonal covariance matrix αI that can
be chosen by the user. A conjugate Inverse-Gamma prior is specified for σ2

e , and the corresponding
hyperparamaterers (α3, ξ3) can be chosen by the user.

The J × 1 vector of alter random effects are denoted by u = (u1, . . . , uJ)J×1 and modelled as
independently Gaussian with mean zero and a constant variance, and due to the row standardised
nature of W ,

∑
j∈net(is) wisjuj represents the average (mean) effect that the peers of individual i

in spatial unit or group s have on that individual. w∗isu
∗ is an isolation effect, which is an effect

for individuals who don’t nominate any friends. This is achieved by setting w∗is = 1 if individual
is nominates no peers and w∗is = 0 otherwise, and if w∗is = 1 then clearly

∑
j∈net(is) wisjujr = 0

as net(is) is the empty set. A conjugate Inverse-Gamma prior is specified for the random effects
variance σ2

u, and the corresponding hyperparamaterers (α2, ξ2) can be chosen by the user.

The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given be-
low:

Binomial: Yis ∼ Binomial(nis , θis) and g(µis) = ln(θis/(1− θis)),

Gaussian: Yis ∼ N(µis , σ
2
e) and g(µis) = µis ,

Poisson: Yis ∼ Poisson(µis) and g(µis) = ln(µis).

Usage

uniNet(formula, data, trials, family, W, numberOfSamples = 10, burnin = 0, thin = 1,
seed = 1, trueBeta = NULL, trueURandomEffects = NULL, trueSigmaSquaredU = NULL,
trueSigmaSquaredE = NULL, covarianceBetaPrior = 10^5, a2 = 0.001, b2 = 0.001,
a3 = 0.001, b3 = 0.001, centerURandomEffects = TRUE)

Arguments

formula A formula for the covariate part of the model using a similar syntax to that used
in the lm() function.

data An optional data.frame containing the variables in the formula.

trials A vector the same length as the response containing the total number of trials
nis . Only used if family=“binomial".

family The data likelihood model that must be “gaussian", “poisson" or “binomial".

W A matrix W that encodes the social network structure and whose rows sum to
1.

numberOfSamples

The number of samples to generate pre-thin.
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burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

seed A seed for the MCMC algorithm.

trueBeta If available, the true value of β.
trueURandomEffects

If available, the true value of u.
trueSigmaSquaredU

If available, the true value σ2
u.

trueSigmaSquaredE

If available, the true value σ2
e .

covarianceBetaPrior

A scalar prior α for the covariance parameter of the beta prior, such that the
covariance is αI .

a2 The shape parameter for the Inverse-Gamma distribution relating to the network
random effects α2.

b2 The scale parameter for the Inverse-Gamma distribution relating to the network
random effects ξ2.

a3 The shape parameter for the Inverse-Gamma distribution relating to the error
terms α3. Only used if family=“gaussian".

b3 The scale parameter for the Inverse-Gamma distribution relating to the error
terms ξ3. Only used if family=“gaussian".

centerURandomEffects

A choice to center the network random effects after each iteration of the MCMC
sampler.

Value

call The matched call.

y The response used.

X The design matrix used.

standardizedX The standardized design matrix used.

W The network matrix used.

samples The matrix of simulated samples from the posterior distribution of each param-
eter in the model (excluding random effects).

betaSamples The matrix of simulated samples from the posterior distribution of β parameters
in the model.

sigmaSquaredUSamples

The vector of simulated samples from the posterior distribution of σ2
u in the

model.
sigmaSquaredESamples

The vector of simulated samples from the posterior distribution of σ2
e in the

model.
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uRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of network ran-
dom effects u in the model.

acceptanceRates

The acceptance rates of parameters in the model (excluding random effects)
from the MCMC sampling scheme .

uRandomEffectsAcceptanceRate

The acceptance rates of network random effects in the model from the MCMC
sampling scheme.

timeTaken The time taken for the model to run.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

DBar DBar for the model.
posteriorDeviance

The posterior deviance for the model.
posteriorLogLikelihood

The posterior log likelihood for the model.

pd The number of effective parameters in the model.

DIC The DIC for the model.

Author(s)

George Gerogiannis

Examples

#################################################
#### Run the model on simulated data
#################################################
#### Load other libraries required
library(MCMCpack)

#### Set up a network
observations <- 200
numberOfMultipleClassifications <- 50
W <- matrix(rbinom(observations * numberOfMultipleClassifications, 1, 0.05),

ncol = numberOfMultipleClassifications)
numberOfActorsWithNoPeers <- sum(apply(W, 1, function(x) { sum(x) == 0 }))
peers <- sample(1:numberOfMultipleClassifications, numberOfActorsWithNoPeers,

TRUE)
actorsWithNoPeers <- which(apply(W, 1, function(x) { sum(x) == 0 }))
for(i in 1:numberOfActorsWithNoPeers) {

W[actorsWithNoPeers[i], peers[i]] <- 1
}
W <- t(apply(W, 1, function(x) { x / sum(x) }))

#### Generate the covariates and response data
X <- matrix(rnorm(2 * observations), ncol = 2)
colnames(X) <- c("x1", "x2")
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beta <- c(1, -0.5, 0.5)
sigmaSquaredU <- 1
uRandomEffects <- rnorm(numberOfMultipleClassifications, mean = 0,

sd = sqrt(sigmaSquaredU))

logTheta <- cbind(rep(1, observations), X) %*% beta + W %*% uRandomEffects
Y <- rpois(n = observations, lambda = exp(logTheta))
data <- data.frame(cbind(Y, X))

#### Run the model
formula <- Y ~ x1 + x2
## Not run: model <- uniNet(formula = formula, data = data, family="poisson",

W = W, numberOfSamples = 10000, burnin = 10000,
thin = 10, seed = 1)

## End(Not run)

uniNetLeroux A function that generates samples for a univariate network Leroux
model.

Description

This function generates samples for a univariate network Leroux model, which is given by

Yis |µis ∼ f(yis |µis , σ
2
e) i = 1, . . . , Ns, s = 1, . . . , S,

g(µis) = x
>
isβ + φs +

∑
j∈net(is)

wisjuj + w∗isu
∗,

β ∼ N(0, αI),

φs|φ−s ∼ N
(

ρ
∑S

l=1 aslφl

ρ
∑S

l=1 asl + 1− ρ
,

τ2

ρ
∑S

l=1 asl + 1− ρ

)
,

uj ∼ N(0, σ2
u),

u∗ ∼ N(0, σ2
u),

τ2 ∼ Inverse-Gamma(α1, ξ1),

ρ ∼ Uniform(0, 1),

σ2
u ∼ Inverse-Gamma(α2, ξ2),

σ2
e ∼ Inverse-Gamma(α3, ξ3).

The covariates for the ith individual in the sth spatial unit or other grouping are included in a p× 1
vector xis . The corresponding p× 1 vector of fixed effect parameters are denoted by β, which has
an assumed multivariate Gaussian prior with mean 0 and diagonal covariance matrix αI that can
be chosen by the user. A conjugate Inverse-Gamma prior is specified for σ2

e , and the corresponding
hyperparamaterers (α3, ξ3) can be chosen by the user.
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Spatial correlation in these areal unit level random effects is most often modelled by a conditional
autoregressive (CAR) prior distribution. Using this model spatial correlation is induced into the ran-
dom effects via a non-negative spatial adjacency matrixA = (asl)S×S , which defines how spatially
close the S areal units are to each other. The elements ofAS×S can be binary or non-binary, and the
most common specification is that asl = 1 if a pair of areal units (Gs, Gl) share a common border or
are considered neighbours by some other measure, and asl = 0 otherwise. Note, ass = 0 for all s.
φ−s = (φ1, . . . , φs−1, φs+1, . . . , φS). Here τ2 is a measure of the variance relating to the spatial
random effects φ, while ρ controls the level of spatial autocorrelation, with values close to one and
zero representing strong autocorrelation and independence respectively. A non-conjugate uniform
prior on the unit interval is specified for the single level of spatial autocorrelation ρ. In contrast, a
conjugate Inverse-Gamma prior is specified for the random effects variance τ2, and corresponding
hyperparamaterers (α1, ξ1) can be chosen by the user.

The J × 1 vector of alter random effects are denoted by u = (u1, . . . , uJ)J×1 and modelled as
independently Gaussian with mean zero and a constant variance, and due to the row standardised
nature of W ,

∑
j∈net(is) wisjuj represents the average (mean) effect that the peers of individual i

in spatial unit or group s have on that individual. w∗isu
∗ is an isolation effect, which is an effect

for individuals who don’t nominate any friends. This is achieved by setting w∗is = 1 if individual
is nominates no peers and w∗is = 0 otherwise, and if w∗is = 1 then clearly

∑
j∈net(is) wisjujr = 0

as net(is) is the empty set. A conjugate Inverse-Gamma prior is specified for the random effects
variance σ2

u, and the corresponding hyperparamaterers (α2, ξ2) can be chosen by the user.

The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given be-
low:

Binomial: Yis ∼ Binomial(nis , θis) and g(µis) = ln(θis/(1− θis)),

Gaussian: Yis ∼ N(µis , σ
2
e) and g(µis) = µis ,

Poisson: Yis ∼ Poisson(µis) and g(µis) = ln(µis).

Usage

uniNetLeroux(formula, data, trials, family,
squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSamples = 10,
burnin = 0, thin = 1, seed = 1, trueBeta = NULL,
trueSpatialRandomEffects = NULL, trueURandomEffects = NULL,
trueSpatialTauSquared = NULL, trueSpatialRho = NULL, trueSigmaSquaredU = NULL,
trueSigmaSquaredE = NULL, covarianceBetaPrior = 10^5, a1 = 0.001, b1 = 0.001,
a2 = 0.001, b2 = 0.001, a3 = 0.001, b3 = 0.001,
centerSpatialRandomEffects = TRUE, centerURandomEffects = TRUE)

Arguments

formula A formula for the covariate part of the model using a similar syntax to that used
in the lm() function.

data An optional data.frame containing the variables in the formula.

trials A vector the same length as the response containing the total number of trials
nis . Only used if family=“binomial".

family The data likelihood model that must be “gaussian", “poisson" or “binomial".
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squareSpatialNeighbourhoodMatrix

An S × S symmetric and non-negative neighbourhood matrixA = (asl)S×S .
W A matrix W that encodes the social network structure and whose rows sum to

1.
spatialAssignment

The binary matrix of individual’s assignment to spatial area used in the model
fitting process.

numberOfSamples

The number of samples to generate pre-thin.
burnin The number of MCMC samples to discard as the burn-in period.
thin The value by which to thin numberOfSamples.
seed A seed for the MCMC algorithm.
trueBeta If available, the true value of β.
trueSpatialRandomEffects

If available, the true value of φ.
trueURandomEffects

If available, the true value of u.
trueSpatialTauSquared

If available, the true value of τ2.
trueSpatialRho If available, the true value ofρ.
trueSigmaSquaredU

If available, the true value of σ2
u.

trueSigmaSquaredE

If available, the true value of σ2
e .

covarianceBetaPrior

A scalar prior α for the covariance parameter of the beta prior, such that the
covariance is αI .

a1 The shape parameter for the Inverse-Gamma distribution relating to the spatial
random effects α1.

b1 The scale parameter for the Inverse-Gamma distribution relating to the spatial
random effects ξ1.

a2 The shape parameter for the Inverse-Gamma distribution relating to the network
random effects α2.

b2 The scale parameter for the Inverse-Gamma distribution relating to the network
random effects ξ2.

a3 The shape parameter for the Inverse-Gamma distribution relating to the error
terms α3. Only used if family=“gaussian".

b3 The scale parameter for the Inverse-Gamma distribution relating to the error
terms ξ3. Only used if family=“gaussian".

centerSpatialRandomEffects

A choice to center the spatial random effects after each iteration of the MCMC
sampler.

centerURandomEffects

A choice to center the network random effects after each iteration of the MCMC
sampler.
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Value

call The matched call.

y The response used.

X The design matrix used.

standardizedX The standardized design matrix used.
squareSpatialNeighbourhoodMatrix

The spatial neighbourhood matrix used.
spatialAssignment

The spatial assignment matrix used.

W The network matrix used.

samples The matrix of simulated samples from the posterior distribution of each param-
eter in the model (excluding random effects).

betaSamples The matrix of simulated samples from the posterior distribution of β parameters
in the model.

spatialTauSquaredSamples

The vector of simulated samples from the posterior distribution of τ2 in the
model.

spatialRhoSamples

The vector of simulated samples from the posterior distribution of ρ in the
model.

sigmaSquaredUSamples

The vector of simulated samples from the posterior distribution of σ2
u in the

model.
sigmaSquaredESamples

The vector of simulated samples from the posterior distribution of σ2
e in the

model.
spatialRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of spatial/grouping
random effects φ in the model.

uRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of network ran-
dom effects u in the model.

acceptanceRates

The acceptance rates of parameters in the model (excluding random effects)
from the MCMC sampling scheme .

spatialRandomEffectsAcceptanceRate

The acceptance rates of spatial/grouping random effects in the model from the
MCMC sampling scheme.

uRandomEffectsAcceptanceRate

The acceptance rates of network random effects in the model from the MCMC
sampling scheme.

timeTaken The time taken for the model to run.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.
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DBar DBar for the model.
posteriorDeviance

The posterior deviance for the model.
posteriorLogLikelihood

The posterior log likelihood for the model.

pd The number of effective parameters in the model.

DIC The DIC for the model.

Author(s)

George Gerogiannis

Examples

#################################################
#### Run the model on simulated data
#################################################
#### Load other libraries required
library(MCMCpack)

#### Set up a network
observations <- 200
numberOfMultipleClassifications <- 50
W <- matrix(rbinom(observations * numberOfMultipleClassifications, 1, 0.05),

ncol = numberOfMultipleClassifications)
numberOfActorsWithNoPeers <- sum(apply(W, 1, function(x) { sum(x) == 0 }))
peers <- sample(1:numberOfMultipleClassifications, numberOfActorsWithNoPeers,
TRUE)
actorsWithNoPeers <- which(apply(W, 1, function(x) { sum(x) == 0 }))
for(i in 1:numberOfActorsWithNoPeers) {

W[actorsWithNoPeers[i], peers[i]] <- 1
}
W <- t(apply(W, 1, function(x) { x / sum(x) }))

#### Set up a spatial structure
numberOfSpatialAreas <- 100
factor = sample(1:numberOfSpatialAreas, observations, TRUE)
spatialAssignment = matrix(NA, ncol = numberOfSpatialAreas,

nrow = observations)
for(i in 1:length(factor)){
for(j in 1:numberOfSpatialAreas){

if(factor[i] == j){
spatialAssignment[i, j] = 1

} else {
spatialAssignment[i, j] = 0

}
}

}

gridAxis = sqrt(numberOfSpatialAreas)
easting = 1:gridAxis
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northing = 1:gridAxis
grid = expand.grid(easting, northing)
numberOfRowsInGrid = nrow(grid)
distance = as.matrix(dist(grid))
squareSpatialNeighbourhoodMatrix = array(0, c(numberOfRowsInGrid,

numberOfRowsInGrid))
squareSpatialNeighbourhoodMatrix[distance==1] = 1

#### Generate the covariates and response data
X <- matrix(rnorm(2 * observations), ncol = 2)
colnames(X) <- c("x1", "x2")
beta <- c(2, -2, 2)

spatialRho <- 0.5
spatialTauSquared <- 2
spatialPrecisionMatrix = spatialRho *

(diag(apply(squareSpatialNeighbourhoodMatrix, 1, sum)) -
squareSpatialNeighbourhoodMatrix) + (1 - spatialRho) *
diag(rep(1, numberOfSpatialAreas))

spatialCovarianceMatrix = solve(spatialPrecisionMatrix)
spatialPhi = mvrnorm(n = 1, mu = rep(0, numberOfSpatialAreas),

Sigma = (spatialTauSquared * spatialCovarianceMatrix))

sigmaSquaredU <- 2
uRandomEffects <- rnorm(numberOfMultipleClassifications, mean = 0,

sd = sqrt(sigmaSquaredU))

logit <- cbind(rep(1, observations), X) %*% beta +
spatialAssignment %*% spatialPhi + W %*% uRandomEffects

prob <- exp(logit) / (1 + exp(logit))
trials <- rep(50, observations)
Y <- rbinom(n = observations, size = trials, prob = prob)
data <- data.frame(cbind(Y, X))

#### Run the model
formula <- Y ~ x1 + x2
## Not run: model <- uniNetLeroux(formula = formula, data = data,

family="binomial", W = W,
spatialAssignment = spatialAssignment,
squareSpatialNeighbourhoodMatrix = squareSpatialNeighbourhoodMatrix,
trials = trials, numberOfSamples = 10000,
burnin = 10000, thin = 10, seed = 1)

## End(Not run)

uniNetRand A function that generates samples for a univariate network group
model.

Description

This function generates samples for a univariate network group model, which is given by
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Yis |µis ∼ f(yis |µis , σ
2
e) i = 1, . . . , Ns, s = 1, . . . , S,

g(µis) = x
>
isβ + vs +

∑
j∈net(is)

wisjuj + w∗isu
∗,

β ∼ N(0, αI),

vs ∼ N(0, τ2),

uj ∼ N(0, σ2
u),

u∗ ∼ N(0, σ2
u),

τ2 ∼ Inverse-Gamma(α1, ξ1),

σ2
u ∼ Inverse-Gamma(α2, ξ2),

σ2
e ∼ Inverse-Gamma(α3, ξ3).

The covariates for the ith individual in the sth spatial unit or other grouping are included in a p× 1
vector xis . The corresponding p× 1 vector of fixed effect parameters are denoted by β, which has
an assumed multivariate Gaussian prior with mean 0 and diagonal covariance matrix αI that can
be chosen by the user. A conjugate Inverse-Gamma prior is specified for σ2

e , and the corresponding
hyperparamaterers (α3, ξ3) can be chosen by the user.

The S×1 vector of random effects for the groups are collectively denoted by v = (v1, . . . , vS)S×1,
and each element is assigned an independent zero-mean Gaussian prior distribution with a constant
variance τ2. A conjugate Inverse-Gamma prior is specified for τ2. The corresponding hyperpara-
materers (α1, ξ1) can be chosen by the user.

The J × 1 vector of alter random effects are denoted by u = (u1, . . . , uJ)J×1 and modelled as
independently Gaussian with mean zero and a constant variance, and due to the row standardised
nature of W ,

∑
j∈net(is) wisjuj represents the average (mean) effect that the peers of individual i

in spatial unit or group s have on that individual. w∗isu
∗ is an isolation effect, which is an effect

for individuals who don’t nominate any friends. This is achieved by setting w∗is = 1 if individual
is nominates no peers and w∗is = 0 otherwise, and if w∗is = 1 then clearly

∑
j∈net(is) wisjujr = 0

as net(is) is the empty set. A conjugate Inverse-Gamma prior is specified for the random effects
variance σ2

u, and the corresponding hyperparamaterers (α2, ξ2) can be chosen by the user.

The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given be-
low:

Binomial: Yis ∼ Binomial(nis , θis) and g(µis) = ln(θis/(1− θis)),
Gaussian: Yis ∼ N(µis , σ

2
e) and g(µis) = µis ,

Poisson: Yis ∼ Poisson(µis) and g(µis) = ln(µis).

Usage

uniNetRand(formula, data, trials, family, groupAssignment, W, numberOfSamples = 10,
burnin = 0, thin = 1, seed = 1, trueBeta = NULL,
trueGroupRandomEffects = NULL, trueURandomEffects = NULL,
trueTauSquared = NULL, trueSigmaSquaredU = NULL,
trueSigmaSquaredE = NULL, covarianceBetaPrior = 10^5, a1 = 0.001, b1 = 0.001,
a2 = 0.001, b2 = 0.001, a3 = 0.001, b3 = 0.001,
centerGroupRandomEffects = TRUE, centerURandomEffects = TRUE)
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Arguments

formula A formula for the covariate part of the model using a similar syntax to that used
in the lm() function.

data An optional data.frame containing the variables in the formula.

trials A vector the same length as the response containing the total number of trials
nis . Only used if family=“binomial".

family The data likelihood model that must be “gaussian", “poisson" or “binomial".

W A matrix W that encodes the social network structure and whose rows sum to
1.

groupAssignment

The binary matrix of individual’s assignment to groups used in the model fitting
process.

numberOfSamples

The number of samples to generate pre-thin.

burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

seed A seed for the MCMC algorithm.

trueBeta If available, the true value of β.
trueGroupRandomEffects

If available, the true value of v.
trueURandomEffects

If available, the true value of u.

trueTauSquared If available, the true value τ2.
trueSigmaSquaredU

If available, the true value σ2
u.

trueSigmaSquaredE

If available, the true value σ2
e .

covarianceBetaPrior

A scalar prior α for the covariance parameter of the beta prior, such that the
covariance is αI .

a1 The shape parameter for the Inverse-Gamma distribution relating to the group
random effects α1.

b1 The shape parameter for the Inverse-Gamma distribution relating to the group
random effects ξ1.

a2 The shape parameter for the Inverse-Gamma distribution relating to the network
random effects α2.

b2 The scale parameter for the Inverse-Gamma distribution relating to the network
random effects ξ2.

a3 The shape parameter for the Inverse-Gamma distribution relating to the error
terms α3. Only used if family=“gaussian".

b3 The scale parameter for the Inverse-Gamma distribution relating to the error
terms ξ3. Only used if family=“gaussian".
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centerGroupRandomEffects

A choice to center the group random effects after each iteration of the MCMC
sampler.

centerURandomEffects

A choice to center the network random effects after each iteration of the MCMC
sampler.

Value

call The matched call.

y The response used.

X The design matrix used.

standardizedX The standardized design matrix used.
groupAssignment

The group assignment matrix used.

W The network matrix used.

samples The matrix of simulated samples from the posterior distribution of each param-
eter in the model (excluding random effects).

betaSamples The matrix of simulated samples from the posterior distribution of β parameters
in the model.

tauSquaredSamples

The vector of simulated samples from the posterior distribution of τ2 in the
model.

sigmaSquaredUSamples

The vector of simulated samples from the posterior distribution of σ2
u in the

model.
sigmaSquaredESamples

The vector of simulated samples from the posterior distribution of σ2
e in the

model.
groupRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of spatial/grouping
random effects v in the model.

uRandomEffectsSamples

The matrix of simulated samples from the posterior distribution of network ran-
dom effects u in the model.

acceptanceRates

The acceptance rates of parameters in the model (excluding random effects)
from the MCMC sampling scheme .

groupRandomEffectsAcceptanceRate

The acceptance rates of spatial/grouping random effects in the model from the
MCMC sampling scheme.

uRandomEffectsAcceptanceRate

The acceptance rates of network random effects in the model from the MCMC
sampling scheme.

timeTaken The time taken for the model to run.
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burnin The number of MCMC samples to discard as the burn-in period.

thin The value by which to thin numberOfSamples.

DBar DBar for the model.
posteriorDeviance

The posterior deviance for the model.
posteriorLogLikelihood

The posterior log likelihood for the model.

pd The number of effective parameters in the model.

DIC The DIC for the model.

Author(s)

George Gerogiannis

Examples

#################################################
#### Run the model on simulated data
#################################################
#### Load other libraries required
library(MCMCpack)

#### Set up a network
observations <- 200
numberOfMultipleClassifications <- 50
W <- matrix(rbinom(observations * numberOfMultipleClassifications, 1, 0.05),

ncol = numberOfMultipleClassifications)
numberOfActorsWithNoPeers <- sum(apply(W, 1, function(x) { sum(x) == 0 }))
peers <- sample(1:numberOfMultipleClassifications, numberOfActorsWithNoPeers,

TRUE)
actorsWithNoPeers <- which(apply(W, 1, function(x) { sum(x) == 0 }))
for(i in 1:numberOfActorsWithNoPeers) {

W[actorsWithNoPeers[i], peers[i]] <- 1
}
W <- t(apply(W, 1, function(x) { x / sum(x) }))

#### Set up a single level classification
numberOfSingleClassifications <- 20
factor = sample(1:numberOfSingleClassifications, observations, TRUE)
V = matrix(NA, ncol = numberOfSingleClassifications, nrow = observations)
for(i in 1:length(factor)){

for(j in 1:numberOfSingleClassifications){
if(factor[i] == j){

V[i, j] = 1
} else {

V[i, j] = 0
}

}
}
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#### Generate the covariates and response data
X <- matrix(rnorm(2 * observations), ncol = 2)
colnames(X) <- c("x1", "x2")
beta <- c(1, -0.5, 0.5)
tauSquared <- 0.5
vRandomEffects <- rnorm(numberOfSingleClassifications, mean = 0,

sd = sqrt(tauSquared))
sigmaSquaredU <- 1
uRandomEffects <- rnorm(numberOfMultipleClassifications, mean = 0,

sd = sqrt(sigmaSquaredU))

logTheta <- cbind(rep(1, observations), X) %*% beta + V %*% vRandomEffects
+ W %*% uRandomEffects

Y <- rpois(n = observations, lambda = exp(logTheta))
data <- data.frame(cbind(Y, X))

#### Run the model
formula <- Y ~ x1 + x2
## Not run: model <- uniNetRand(formula = formula, data = data, family="poisson",

W = W, groupAssignment = V,
numberOfSamples = 10000, burnin = 10000,
thin = 10, seed = 1)

## End(Not run)
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