Package 'multiROC'

October 13, 2022

Title Calculating and Visualizing ROC and PR Curves Across Multi-Class Classifications

Version 1.1.1

Description

Tools to solve real-world problems with multiple classes classifications by computing the areas under ROC and PR curve via micro-averaging and macro-averaging. The vignettes of this package can be found via <https://github.com/WandeRum/multiROC>. The methodology is described in V. Van Asch (2013) <https:

//www.clips.uantwerpen.be/~vincent/pdf/microaverage.pdf> and Pedregosa et al. (2011) <http: //scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html>.

License GPL-3

Encoding UTF-8

LazyData true

Imports zoo, magrittr, boot, stats

Suggests dplyr, ggplot2

NeedsCompilation no

Repository CRAN

Date/Publication 2018-06-26 20:24:05 UTC

RoxygenNote 6.0.1.9000

Author Runmin Wei [aut, cre], Jingye Wang [aut], Wei Jia [ctb]

Maintainer Runmin Wei <runmin@hawaii.edu>

R topics documented:

cal_auc .					•	•	•					•	•	•				•	•	•		•			2
cal_confus					•	•	•					•	•	•				•	•	•		•			3
multi_pr .				•	•	•	•	•				•		•			 •	•	•	•		•			4
multi_roc							•	•					•	•			 •			•				•	5

plot_pr_data	6
plot_roc_data	6
pr_auc_with_ci	7
pr_ci	8
roc_auc_with_ci	9
roc_ci 1	10
test_data	11
1	13

Index

cal_auc

Area under ROC curve

Description

This function calculates the area under ROC curve

Usage

 $cal_auc(X, Y)$

Arguments

Х	A vector of true positive rate
Υ	A vector of false positive rate, same length with TPR

Details

This function calculates the area under ROC curve.

Value

A numeric value of AUC will be returned.

References

https://www.r-bloggers.com/calculating-auc-the-area-under-a-roc-curve/

See Also

cal_confus()

Examples

```
data(test_data)
true_vec <- test_data[, 1]
pred_vec <- test_data[, 5]
confus_res <- cal_confus(true_vec, pred_vec)
AUC_res <- cal_auc(confus_res$TPR, confus_res$FPR)</pre>
```

cal_confus

Description

This function calculates the confusion matrices across different cutoff points.

Usage

cal_confus(true_vec, pred_vec, force_diag=TRUE)

Arguments

true_vec	A binary vector of real labels
pred_vec	A continuous predicted score(probabilities) vector, must be the same length with true_vec
force_diag	If TRUE, TPR and FPR will be forced to across $(0, 0)$ and $(1, 1)$

Details

This function calculates the TP, FP, FN, TN, TPR, FPR and PPV across different cutoff points of pred_vec. TPR and FPR are forced to across (0, 0) and (1, 1) if force_diag=TRUE.

Value

TP	True positive
FP	False positive
FN	False negative
TN	True negative
TPR	True positive rate
FPR	False positive rate
PPV	Positive predictive value

References

https://en.wikipedia.org/wiki/Confusion_matrix

Examples

```
data(test_data)
true_vec <- test_data[, 1]
pred_vec <- test_data[, 5]
confus_res <- cal_confus(true_vec, pred_vec)</pre>
```

multi_pr

Description

This function calculates the Precision, Recall and AUC of multi-class classifications.

Usage

multi_pr(data, force_diag=TRUE)

Arguments

data	A data frame contain true labels of multiple groups and corresponding predictive
	scores
force_diag	If TRUE, TPR and FPR will be forced to across (0, 0) and (1, 1)

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF), thus this function allows calcluating ROC on multiple classifiers.

Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won't affect results.

Recall, Precision, AUC for each group and each method will be calculated. Macro/Micro-average AUC for all groups and each method will be calculated.

Micro-average ROC/AUC was calculated by stacking all groups together, thus converting the multiclass classification into binary classification. Macro-average ROC/AUC was calculated by averaging all groups results (one vs rest) and linear interpolation was used between points of ROC.

AUC will be calculated using function cal_auc().

Value

Recall	A list of recalls for each group, each method and micro-/macro- average
Precision	A list of precisions for each group, each method and micro-/macro- average
AUC	A list of AUCs for each group, each method and micro-/macro- average
Methods	A vector contains the name of different classifiers
Groups	A vector contains the name of different groups

Examples

data(test_data)
pr_test <- multi_pr(test_data)
pr_test\$AUC</pre>

multi_roc

Description

This function calculates the Specificity, Sensitivity and AUC of multi-class classifications.

Usage

```
multi_roc(data, force_diag=TRUE)
```

Arguments

data	A data frame contain true labels of multiple groups and corresponding predictive
	scores
force_diag	If TRUE, TPR and FPR will be forced to across (0, 0) and (1, 1)

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF), thus this function allows calcluating ROC on multiple classifiers.

Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won't affect results.

Specificity, Sensitivity, AUC for each group and each method will be calculated. Macro/Microaverage AUC for all groups and each method will be calculated.

Micro-average ROC/AUC was calculated by stacking all groups together, thus converting the multiclass classification into binary classification. Macro-average ROC/AUC was calculated by averaging all groups results (one vs rest) and linear interpolation was used between points of ROC.

AUC will be calculated using function cal_auc().

Value

Specificity	A list of specificities for each group, each method and micro-/macro- average
Sensitivity	A list of sensitivities for each group, each method and micro-/macro- average
AUC	A list of AUCs for each group, each method and micro-/macro- average
Methods	A vector contains the name of different classifiers
Groups	A vector contains the name of different groups

References

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

Examples

```
data(test_data)
roc_test <- multi_roc(test_data)
roc_test$AUC</pre>
```

plot_pr_data Generate PR plotting data

Description

This function generates plotting PR data for following data visualization.

Usage

plot_pr_data(pr_res)

Arguments

pr_res A list of results from multi_pr function.

Value

pr_res_df The dataframe of results from multi_pr function, which is easy be visualized by ggplot2.

Examples

```
data(test_data)
pr_res <- multi_pr(test_data)
pr_res_df <- plot_pr_data(pr_res)</pre>
```

plot_roc_data Generate ROC plotting data

Description

This function generates plotting ROC data for following data visualization.

Usage

plot_roc_data(roc_res)

Arguments

roc_res A list of results from multi_roc function.

6

pr_auc_with_ci

Value

roc_res_df The dataframe of results from multi_roc function, which is easy be visualized by ggplot2.

Examples

```
data(test_data)
roc_res <- multi_roc(test_data)
roc_res_df <- plot_roc_data(roc_res)</pre>
```

pr_auc_with_ci Output of PR bootstrap confidence intervals

Description

This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of PR-AUC with different required percentages and output a dataframe with AUCs, lower CIs, and higher CIs of all methods and groups.

Usage

```
pr_auc_with_ci(data, conf= 0.95, type='bca', R = 100)
```

Arguments

data	A data frame contains true labels of multiple groups and corresponding predic- tive scores.
conf	A scalar contains the required level of confidence intervals, and the default number is 0.95.
type	A vector of character strings includes five different types of equi-tailed two- sided nonparametric confidence intervals (e.g., "norm", "basic", "stud", "perc", "bca").
R	A scalar contains the number of bootstrap replicates, and the default number is 100.

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won't affect results.

Value

norm	Using the normal approximation to calculate the confidence intervals.
basic	Using the basic bootstrap method to calculate the confidence intervals.
stud	Using the studentized bootstrap method to calculate the confidence intervals.
perc	Using the bootstrap percentile method to calculate the confidence intervals.
bca	Using the adjusted bootstrap percentile method to calculate the confidence in- tervals.

Examples

```
## Not run: data(test_data)
pr_auc_with_ci_res <- pr_auc_with_ci(test_data, conf= 0.95, type='bca', R = 100)
## End(Not run)</pre>
```

pr_ci

PR bootstrap confidence intervals

Description

This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of PR-AUC with different required percentages.

Usage

```
pr_ci(data, conf= 0.95, type='basic', R = 100, index = 4)
```

Arguments

data	A data frame contains true labels of multiple groups and corresponding predic- tive scores.
conf	A scalar contains the required level of confidence intervals, and the default number is 0.95.
type	A vector of character strings includes five different types of equi-tailed two- sided nonparametric confidence intervals (e.g., "norm", "basic", "stud", "perc", "bca", "all").
R	A scalar contains the number of bootstrap replicates, and the default number is 100.
index	A scalar contains the position of the variable of interest.

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won't affect results.

Value

norm	Using the normal approximation to calculate the confidence intervals.
basic	Using the basic bootstrap method to calculate the confidence intervals.
stud	Using the studentized bootstrap method to calculate the confidence intervals.
perc	Using the bootstrap percentile method to calculate the confidence intervals.
bca	Using the adjusted bootstrap percentile method to calculate the confidence in- tervals.
all	Using all previous bootstrap methods to calculate the confidence intervals.

Examples

```
## Not run: data(test_data)
pr_ci_res <- pr_ci(test_data, conf= 0.95, type='basic', R = 1000, index = 4)
## End(Not run)</pre>
```

roc_auc_with_ci *Output of ROC bootstrap confidence intervals*

Description

This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of ROC-AUC with different required percentages and output a dataframe with AUCs, lower CIs, and higher CIs of all methods and groups.

Usage

roc_auc_with_ci(data, conf= 0.95, type='bca', R = 100)

Arguments

data	A data frame contains true labels of multiple groups and corresponding predic- tive scores.
conf	A scalar contains the required level of confidence intervals, and the default number is 0.95.
type	A vector of character strings includes five different types of equi-tailed two- sided nonparametric confidence intervals (e.g., "norm", "basic", "stud", "perc", "bca").
R	A scalar contains the number of bootstrap replicates, and the default number is 100.

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won't affect results.

Value

norm	Using the normal approximation to calculate the confidence intervals.
basic	Using the basic bootstrap method to calculate the confidence intervals.
stud	Using the studentized bootstrap method to calculate the confidence intervals.
perc	Using the bootstrap percentile method to calculate the confidence intervals.
bca	Using the adjusted bootstrap percentile method to calculate the confidence in- tervals.

Examples

```
## Not run: data(test_data)
roc_auc_with_ci_res <- roc_auc_with_ci(test_data, conf= 0.95, type='bca', R = 100)
## End(Not run)</pre>
```

		٠
roc	0	п.
100	L	т.

ROC bootstrap confidence intervals

Description

This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of ROC-AUC with different required percentages.

Usage

roc_ci(data, conf= 0.95, type='basic', R = 100, index = 4)

Arguments

data	A data frame contains true labels of multiple groups and corresponding predic- tive scores.
conf	A scalar contains the required level of confidence intervals, and the default number is 0.95.
type	A vector of character strings includes five different types of equi-tailed two- sided nonparametric confidence intervals (e.g., "norm", "basic", "stud", "perc", "bca", "all").
R	A scalar contains the number of bootstrap replicates, and the default number is 100.
index	A scalar contains the position of the variable of interest.

test_data

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won't affect results.

Value

norm	Using the normal approximation to calculate the confidence intervals.
basic	Using the basic bootstrap method to calculate the confidence intervals.
stud	Using the studentized bootstrap method to calculate the confidence intervals.
perc	Using the bootstrap percentile method to calculate the confidence intervals.
bca	Using the adjusted bootstrap percentile method to calculate the confidence intervals.
all	Using all previous bootstrap methods to calculate the confidence intervals.

Examples

```
## Not run: data(test_data)
roc_ci_res <- roc_ci(test_data, conf= 0.95, type='basic', R = 1000, index = 4)
## End(Not run)</pre>
```

test_data	Example dataset		
-----------	-----------------	--	--

Description

This example dataset contains two classifiers (m1, m2), and three groups (G1, G2, G3).

Usage

data("test_data")

Format

A data frame with 85 observations on the following 9 variables.

G1_true true labels of G1 (0 - Negative, 1 - Positive)

G2_true true labels of G2 (0 - Negative, 1 - Positive)

G3_true true labels of G3 (0 - Negative, 1 - Positive)

G1_pred_m1 predictive scores of G1 in the classifier m1

G2_pred_m1 predictive scores of G2 in the classifier m1

G3_pred_m1 predictive scores of G3 in the classifier m1

G1_pred_m2 predictive scores of G1 in the classifier m2 G2_pred_m2 predictive scores of G2 in the classifier m2 G3_pred_m2 predictive scores of G3 in the classifier m2

Examples

data(test_data)

Index

* cal_auc cal_auc, 2 * cal_confus cal_confus, 3 * datasets test_data, 11 * multi_pr $\texttt{multi_pr}, 4$ * multi_roc multi_roc, 5 * plot_pr_data plot_pr_data, 6 * plot_roc_data $\texttt{plot_roc_data, 6}$ * pr_auc_with_ci_res pr_auc_with_ci,7 * pr_ci pr_ci,8 * roc_auc_with_ci_res roc_auc_with_ci,9 * roc_ci roc_ci, 10 cal_auc, 2 cal_confus, 3 cal_confus(), 2 multi_pr,4 multi_roc, 5 plot_pr_data, 6 plot_roc_data, 6 pr_auc_with_ci,7 pr_ci,8 roc_auc_with_ci,9 roc_ci, 10

 $test_data, 11$