
Introduction to mpmi

Chris Pardy

March 28, 2022

1 Using the mpmi package

The following vignette will provide a brief introduction to the mpmi package,
showing the use of the two main functions (cmi() and mmi()) as well as explicit
parallelisation of their pairwise versions(cmi.pw() and mmi.pw()).

First we load the library

> library(mpmi)

1.1 Continuous vs continuous comparisons

We demonstrate the calculation of MI and BCMI for all pairs of a group of
continuous variables using a simulated dataset included in the mpmi package.
The dataset, mpmidata contains a matrix of continuous data cts and a matrix
of categorical data disc. The continuous data consists of 50 subjects with 100

variables following a multivariate normal distribution (note that this is done
for simplicity as our approach is designed to work for a much wider class of
distributions). The continuous data were simulated to have an association that
decays linearly as the distance between each pair of variables’ indices increases.
For reference this was created as follows (note that this requires the MASS library
to be loaded):

> # library(MASS)

> # mu <- 1:100

> # S <- toeplitz((100:1)/100)

> # set.seed(123456789)

> # dat <- mvrnorm(50, mu, S)

> # cts <- scale(dat)

The data are loaded and the cmi() function is then applied:

> data(mpmidata)

> ctsresult <- cmi(cts)

Below we show the structure of the results object. It is a list containing 3
matrices. For a set of continuous variables these are square symmetric matrices
of a similar form to a correlation matrix.

> str(ctsresult)

1

List of 3

$ mi : num [1:100, 1:100] 0.863 0.759 0.737 0.684 0.673 ...

$ bcmi : num [1:100, 1:100] 0.88 0.772 0.748 0.694 0.682 ...

$ zvalues: num [1:100, 1:100] 11.85 10.28 9.74 8.93 8.39 ...

The raw MI values:

> round(ctsresult$mi[1:5,1:5], 2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.86 0.76 0.74 0.68 0.67

[2,] 0.76 0.74 0.72 0.68 0.67

[3,] 0.74 0.72 0.76 0.71 0.68

[4,] 0.68 0.68 0.71 0.71 0.69

[5,] 0.67 0.67 0.68 0.69 0.73

Jackknife bias corrected MI values:

> round(ctsresult$bcmi[1:5,1:5], 2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.88 0.77 0.75 0.69 0.68

[2,] 0.77 0.75 0.74 0.69 0.68

[3,] 0.75 0.74 0.78 0.72 0.70

[4,] 0.69 0.69 0.72 0.73 0.70

[5,] 0.68 0.68 0.70 0.70 0.74

We can check the results against the pairwise function. In this case we
calculate the MI between the first variable and itself, which estimates its entropy.

> cmi.pw(cts[,1], cts[,1])

$mi

[1] 0.862821

$bcmi

[1] 0.8795766

$zvalue

[1] 11.85451

This agrees with the results above (i.e., the [1,1] element of each results ma-
trix).

We can use the mp() function to plot an MI (or correlation) matrix. This
plots the matrix with points corresponding to the same order that they are
displayed in a numerical matrix (i.e, the usual mathematical way). It is scaled
so that red is the largest value and white is the smallest. When applied to
the results above we can see the larger values along the diagonal of the BCMI
matrix, decaying as the difference between i and j increases.

> mp(ctsresult$bcmi)

2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.2 Discrete vs continuous comparisons

To demonstrate MI for mixed comparisons we generate 75 random SNP variables
and create a new set of continuous data where some of the values have been
shifted according to the categories.

> # set.seed(987654321)

> # disc <- rep(c("A", "H", "B"), ceiling(50 * 75 / 3))

> # disc <- matrix(disc, nrow = 50, ncol = 75)

> # disc <- apply(disc, 2, sample)

This shuffles a fairly even set of A, H, and B for each variable. We then
introduce a fairly strong U-shaped shift to continuous variable i based on the
value of discrete variable k, but only for cases where i = k.

> cts2 <- cts

> for (variable in 1:75)

+ {

+ for (subject in 1:50)

+ {

+ if (disc[subject, variable] == "A")

+ {

+ cts2[subject, variable] <- cts[subject, variable] - 2

+ }

+ if (disc[subject, variable] == "B")

+ {

+ cts2[subject, variable] <- cts[subject, variable] - 2

3

+ }

+ }

+ }

We run the mmi() function on the discrete and continuous data:

> mixedresult <- mmi(cts2, disc)

The results object for mixed comparisons have the same form as the results
object for continuous comparisons. The only difference is that now instead of
square symmetric matrices (for continuous data) the results are nc×nd matrices
where nc is the number of continuous variables and nd is the number of discrete
variables. The row index refers to continuous variables and the column index
refers to discrete variables.

> str(mixedresult, width = 60, strict.width = "cut")

List of 3

$ mi : num [1:100, 1:75] 0.35235 0.09735 0.00692 0.09..

$ bcmi : num [1:100, 1:75] 0.3246 0.03786 -0.05755 0.00..

$ zvalues: num [1:100, 1:75] 4.353 0.623 -2.112 0.159 0.1..

As before we have the raw MI values:

> round(mixedresult$mi[1:5,1:5], 2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.35 0.07 0.03 0.07 0.18

[2,] 0.10 0.28 0.00 0.07 0.05

[3,] 0.01 0.04 0.32 0.02 0.05

[4,] 0.10 0.11 0.07 0.35 0.16

[5,] 0.07 0.04 0.02 0.09 0.26

And jackknife bias corrected MI values:

> round(mixedresult$bcmi[1:5,1:5], 2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.32 0.00 -0.04 0.01 0.12

[2,] 0.04 0.25 -0.06 0.01 -0.01

[3,] -0.06 -0.03 0.29 -0.04 -0.01

[4,] 0.01 0.03 -0.04 0.32 0.08

[5,] 0.01 -0.01 -0.04 0.04 0.23

Once again we can check by using the pairwise function:

> mmi.pw(cts2[,1], disc[,1])

$mi

[1] 0.3523501

$bcmi

[1] 0.3245981

$zvalue

[1] 4.353068

4

We can use mp() to plot the BCMI values and see the strong associations
we’ve induced for cases where i = j (note that the BCMI matrix is not square):

> mp(mixedresult$bcmi)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.3 Explicit parallelisation

The pairwise functions are provided to allow the user to explicitly control par-
allelisation. Here we demonstrate how to parallelise in R using the parallel

package (based on the older multicore) package. As this package makes use
of the POSIX fork() system function it can only be run on POSIX systems
(i.e., Linux and MacOS; note that the implicit OpenMP parallelisation works
on all three platforms, Linux, MacOS and Windows). For portability we will
not actually run the code in this section, although it should work fine on Linux
and Mac.

To apply this approach we need to create a function that will be run in
parallel. Each application of this function will be sent to a processor core, so
we must decide on ‘packaging’ groups of MI calculations such that this is done
in an efficient way. Details are given below.

The pairwise functions mmi.pw(), cmi.pw() and dmi.pw() are provided to
facilitate explicit parallelisation. Each of these functions calculates MI and
BCMI values for comparisons between two variables with appropriate types.

1.3.1 Mixed comparisons

We first show how to parallelise the mixed comparisons as this is more straight-
forward than the continuous comparisons. Performance may be further im-

5

proved by using the R bytecode compiler. First we must load the parallel and
compiler libraries:

> # library(parallel) # Commented for portability

> library(compiler)

The mmi.pw() function will calculate appropriate smoothing bandwidths as
required. This will result in a lot of unnecessary computational repetition, so it
is much faster to pre-compute the bandwidths before running the comparisons
in parallel:

> hs <- apply(cts2, 2, dpik, level = 3L, kernel = "epanech")

Now we must choose how to parallelise. The simplest approach is to write
a function that calculates all comparisons between continuous variables and a
single discrete variable (or vice versa). This is the same approach implemented
by OpenMP in mmi(). For each SNP i we apply the following function:

> fi <- function(i)

+ {

+ bcmis <- rep(NaN, 100)

+ for (j in 1:100)

+ {

+ bcmis[j] <- mmi.pw(cts2[,j], disc[,i], h = hs[j])$bcmi

+ }

+ return(bcmis)

+ }

> fi <- cmpfun(fi)

This returns a vector containing the BCMI values for SNP i. Modifying fi()

to also keep the raw MI scores is straightforward.
We now use the mcmapply() function from the parallel package (which is

now a part of base R). This will calculate the vectors returned by the fi() and
bind them as columns in a matrix.

> # parmmi <- mcmapply(fi, 1:75)

We can check that the results are equal to those calculated using implicit par-
allelisation:

> # sum(abs(mixedresult$bcmi - parmmi))

1.3.2 Continuous comparisons

Once again we pre-compute the smoothing parameters:

> hs2 <- apply(cts, 2, dpik, level = 3L, kernel = "epanech")

For the continuous comparisons we only need to calculate each comparison
once to fill the lower (or upper) triangle of the results matrix. This requires a
slight modification to the range of the loop in fi():

> fi <- function(i)

+ {

6

+ bcmis <- rep(NaN, 100)

+ for (j in i:100)

+ {

+ bcmis[j] <- cmi.pw(cts[,i], cts[,j], h = hs2[c(i,j)])$bcmi

+ }

+ return(bcmis)

+ }

> fi <- cmpfun(fi)

We smooth each of the two continuous variables by a different amount, so
the cmi.pw() function requires two additional parameters which are input as a
vector. These will be automatically calculated if not explicitly given. We run
this in parallel in the same way as above:

> # parcmi <- mcmapply(fi, 1:100)

Now we check the results. The parcmi matrix contains an upper triangle full of
missing values which would usually need to be symmetrised (the cmi() wrapper
function takes care of this). In general, an MI matrix for continuous variables
is symmetric (much like a correlation matrix) and has entropy estimates along
the diagonal. So to check these results we simply need to check that the lower
triangle of parcmi is equal to the lower triangle of ctsresult$bcmi. A simple
approach for this check is to define a convenience function lt() to extract the
lower triangle of a matrix, and observe that the sum of the absolute differences
is computationally zero:

> lt <- function(x) x[lower.tri(x, diag = TRUE)]

> # sum(abs(lt(ctsresult$bcmi) - lt(parcmi)))

1.4 Parallelisation across multiple machines

The parallel version can be run across multiple machines in a cluster in a similar
manner, by using the snowfall R package. This requires helper functions to be
written that are identical to the fi() above.

1.5 A note about z-values

The functions in this package also return z-scores from the jackknife test for
the hypothesis of no association (i.e., zero MI). We have found p-values and
confidence intervals based on these z-scores to be highly variable and often quite
wrong. Do not use these for statistical inference. The jackknife bias correction
however does work quite well to reduce error in estimation of MI values (which
we report as BCMI).

Since we essentially get the z-scores for free after calculating the bias cor-
rection we have decided to report them. They are useful for giving some idea
of the strength of an observed association and can be considered as a heuristic
transformation of the BCMI values that may aid interpretation. A permutation
test is a much better choice for inference.

7

