Package ‘monoClust’
October 13, 2022

Title Perform Monothetic Clustering with Extensions to Circular Data
Version 1.2.1

Description Implementation of the Monothetic Clustering
algorithm (Chavent, 1998 <doi:10.1016/S0167-8655(98)00087-7>) on
continuous data sets. A lot of extensions are included in the package,
including applying Monothetic clustering on data sets with circular
variables, visualizations with the results, and permutation and
cross-validation based tests to support the decision on the number of
clusters.

License GPL (>=2)

URL https://vinhtantran.github.io/monoClust/,
https://github.com/vinhtantran/monoClust

BugReports https://github.com/vinhtantran/monoClust/issues
Depends R (>=3.3.0)

Imports cluster (>= 2.0.5), doParallel, dplyr (>= 1.0.0), foreach,
ggplot2, graphics, grDevices, parallel, permute, purrr (>=
0.3.0), rlang (>= 0.3.0), stats, stringr (>= 0.5), tibble (>=
3.0.0), tidyr (>=1.0.0)

Suggests knitr, mice, rmarkdown, covr, testthat (>= 3.0.0)
VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Config/testthat/edition 3

NeedsCompilation no

Author Tan Tran [aut, cre] (<https://orcid.org/0000-0001-9881-6339>),
Brian McGuire [aut],
Mark Greenwood [aut] (<https://orcid.org/0000-0001-6933-1201>)

Maintainer Tan Tran <vinhtantran@gmail.com>
Repository CRAN
Date/Publication 2021-02-15 15:00:02 UTC

https://doi.org/10.1016/S0167-8655(98)00087-7
https://vinhtantran.github.io/monoClust/
https://github.com/vinhtantran/monoClust
https://github.com/vinhtantran/monoClust/issues
https://orcid.org/0000-0001-9881-6339
https://orcid.org/0000-0001-6933-1201

2 as_MonoClust

R topics documented:
as_MonoClust L e 2
circ_arith e 3
circ_diSt s, 3
CVABSE . v o v o e e e e e e e e 4
BECV o v v e e e e e 6
CEPCP o o e e e e e e e e e e e e e e e e e e e 7
inertia_calc L. e 9
1S_MonoClust e e e 10
medoid L e e e 10
MonoClust o 11
MonoClust.object o e e e e e 12
PEIMLIESt . . . o . o e e e e e e e e e e e 14
plotcv.MonoClust. L 16
plotMonoClust e e 17
predict.t MonoClust e 19
print.ecv.MonoClust L e e e 20
print MonoClust e e e 20
to_deg rad e 21
wind_sensit_ 2007 L s 22
wind_sensit_ 2008 L e 23

Index 24

as_MonoClust Coerce Similar Object to MonoClust
Description

The function turns a MonoClust-similar object into MonoClust object so it can use supported func-
tions for MonoClust such as print.MonoClust() and plot.MonoClust().

Usage

as_MonoClust(x, ...)

Default S3 method:
as_MonoClust(x, ...)

Arguments
X An object that can be coerced to MonoClust object.
For extensibility.
Details

as_MonoClust() is an S3 generic. The function itself doesn’t run unless it is implemented for
another similar object. Currently, this function is not implemented within monoClust package.

circ_arith 3

circ_arith Add/Subtract Circular Values in Degrees/Radian

Description

Add/subtract two circular variables in degrees (%cd+% and %cd-%) and radian (%cr+% and %cr-%).
Usage

X %cd+% y

X %cd-% y

X %Cr+% y

X %Cr=%y

Arguments

X,y Circular values in degrees/radians.

Value

A value between [0, 360) in degrees or [0, 2*pi) in radian.

Examples

90 %cd+% 90
250 %cd+% 200
25 %cd-% 80

pi %cr+% (pi/2)

circ_dist Distance Matrix of Circular Variables

Description

Calculates the distance matrix of observations with circular variables using an adapted version of
Gower’s distance. This distance should be compatible with the Gower’s distance for other variable

types.

4 cv.test

Usage

circ_dist(frame)

Arguments

frame A data frame with all columns are circular measured in degrees.

Details

The distance between two observations i and j of a circular variable q is suggested to be

_ 180 — [180 — [yiqg — Yyl
(Yigs Yjq) = 120 .

Value

Object of class "dist".

References

e Tran, T. V. (2019). Chapter 3. Monothetic Cluster Analysis with Extensions to Circular and
Functional Data. Montana State University - Bozeman.

See Also

stats::dist()

Examples

Make a sample data set of 20 observations with 2 circular variables
data <- data.frame(varl = sample.int(359, 20),

var2 = sample.int(359, 20))
circ_dist(data)

cv.test Cross-Validation Test on MonoClust

Description

Perform cross-validation test for different different number of clusters of Monothetic Clustering.

Usage

cv.test(data, fold = 10L, minnodes = 2L, maxnodes = 10L, ncores = 1L, ...)

cv.test 5

Arguments
data Data set to be partitioned.
fold Number of folds (k). fold =1 is the special case, when the function performs a
Leave-One-Out Cross-Validation (LOOCYV).
minnodes Minimum number of clusters to be checked.
maxnodes Maximum number of clusters to be checked.
ncores Number of CPU cores on the current host. When set to NULL, all available
cores are used.
Other parameters transferred to MonoClust ().
Details

The k-fold cross-validation randomly partitions data into k subsets with equal (or close to equal)
sizes. k — 1 subsets are used as the training data set to create a tree with a desired number of leaves
and the other subset is used as validation data set to evaluate the predictive performance of the
trained tree. The process repeats for each subset as the validating set (m = 1, ..., k) and the mean
squared difference,

Q
1 .
MSE,, = ~ > N A2 Wig B-i)q):
™M g=1iem

is calculated, where 7J(_;), is the cluster mean on the variable g of the cluster created by the training
data where the observed value, y;,, of the validation data set will fall into, and d2,,.(vig, U(—i)q)
is the squared Euclidean distance (dissimilarity) between two observations at variable q. This
process is repeated for the k subsets of the data set and the average of these test errors is the
cross-validation-based estimate of the mean squared error of predicting a new observation,

M
[1
CVx = MSE = 7 m; MSE,,.

Value

A MonoClust. cv class containing a data frame of mean sum of square error and its standard devia-
tion.

Note

This function supports parallel processing with foreach: :foreach(). It distributes MonoClust
calls to processes.

See Also

plot.cv.MonoClust(), MonoClust(), predict.MonoClust()

Examples

library(cluster)
data(ruspini)

ggcv

Leave-one-out cross-validation
cv.test(ruspini, fold = 1, minnodes = 2, maxnodes = 4)

5-fold cross-validation

cv.test(ruspini, fold = 5, minnodes = 2, maxnodes

4

ggev

GGPlot the Mean Square Error with Error Bar for +/- 1 Standard
Error

Description

GGPlot the Mean Square Error with Error Bar for +/- 1 Standard Error

Usage

ggev(
cv.obj,

title = "MSE for CV of monothetic clustering”,

xlab = "Number of clusters”,
ylab = "MSE +/- 1 SE”,
type = Ilp”’ Hlll)y
linetype = 2,
err.col = "red",
err.width = 0.2
)
Arguments
cv.obj A cv.MonoClust object (output of cv.test()).
title Overall title for the plot.
xlab Title for x axis.
ylab Title for y axis.
type What type of plot should be drawn. Choosing between "1" (line only), "p"
(point only), and "b" (both line and point).
linetype The line type. See vignette("ggplot2-specs”).
err.col Color of the error bars.

err.width

Width of the bars.

ggpep 7

Value

A ggplot2 object.

See Also

Plot using base R plot.cv.MonoClust()

Examples

library(cluster)
data(ruspini)

10-fold cross-validation
cptable <- cv.test(ruspini, minnodes = 2, maxnodes = 4)
ggcv(cptable)

ggpcp Parallel Coordinates Plot with Circular Variables

Description

Making a parallel coordinates plot with the circular variables are plotted as ellipses. The function
currently works well with data with one circular variable.

Usage

ggpep(
data,
circ.var = NULL,
is.degree = TRUE,
rotate = 0,
north = 0,
cw = FALSE,
order.appear = NULL,
linetype = 1,
size = 0.5,
alpha = 0.5,
clustering,
medoids = NULL,
cluster.col = NULL,
show.medoids = FALSE,
labelsize = 4,

xlab = "Variables”,
ylab = NULL,
legend.cluster = "groups”

Arguments

data
circ.var

is.degree

rotate

north

Cw

order.appear

linetype
size

alpha
clustering

medoids

cluster.col

show.medoids
labelsize
xlab

ylab

legend.cluster

Value

A ggplot2 object.

Examples

g8pcp

Data set.
Circular variable(s) in the data set, indicated by names or index in the data set.

Whether the unit of the circular variables is degree or not (radian). Default is
TRUE.

The rotate (offset, shift) of the circular variable, in radians. Default is 0 (no
rotation).

‘What value of the circular variable is labeled North. Default is O radian.

Which direction of the circular variable is considered increasing in value, clock-
wise (TRUE) or counter-clockwise (FALSE). Default is TRUE.

The order of appearance of the variables, listed by a vector of names or index.
If set, length has to be equal to the number of variables in the data set.

Line type. Default is solid line. See details in vignette("ggplot2-specs”).

Size of a line is its width in mm. Defaultis 0.5. See detailsin vignette("ggplot2-specs”).
The transparency of the lines. Default is 0.1.

Cluster membership.

Vector of medoid observations of cluster. Only required when show.medoids =
TRUE.

Color of clusters, indicating by a vector. If set, the length of this vector must be
equal to the number of clusters in clustering.

Whether to highlight the median lines or not. Default is FALSE.
The size of labels on the plot. Default is 4.

Labels for x-axis.

Labels for y-axis.

Labels for group membership. Implemented by setting label for ggplot color
aesthetics.

Set color constant
COLOR4 <- c("#e41alc", "#377eb8", "#4daf4a", "#984ea3")
Reduce the size of the data for for sake of example speed

set.seed(12345)

wind_reduced <- wind_sensit_2007[sample.int(nrow(wind_sensit_2007), 50), 1]

s0142007 <- MonoClust(wind_reduced, cir.var = 3, nclusters = 4)

library(ggplot2)

ggpcp(data = wind_reduced,

inertia_calc 9

circ.var = "WDIR",

To improve aesthetics

rotate = pi*3/4-0.3,

order.appear = c("WDIR", "has.sensit”, "WS"),

alpha = 0.5,

clustering = s0l1420073%membership,

medoids = s0142007%$medoids,

cluster.col = COLOR4,

show.medoids = TRUE) +

theme(panel.background = element_rect(color = "white"),

panel.border = element_rect(color = "white", fill = NA),
panel.grid.major = element_line(color = "#fofofo"),
panel.grid.minor = element_blank(),

axis.line = element_line(color = "black"),

legend.key = element_rect(color = NA),

legend.position = "bottom”,

legend.direction = "horizontal”,

legend.title = element_text(face = "italic"),

legend. justification = "center")
inertia_calc Cluster Inertia Calculation

Description
Calculate inertia for a given subset of the distance matrix from the original data set provided to x.
Assumes that distance matrices are stored as matrices and not distance objects.

Usage

inertia_calc(x)

Arguments

X Distance matrix, not an object of some distance measure.

Value

Inertia value of the matrix, formula in Chavent (1998). If x is a single number, return 0.

Examples
data(iris)
Euclidean distance on first 20 rows of the 4 continuous variables

dist_mat <- as.matrix(dist(iris[1:20, 1:41))
inertia_calc(dist_mat)

10 medoid
is_MonoClust Test If The Object is A MonoClust
Description
This function returns TRUE for MonoClust, and FALSE for all other objects.
Usage
is_MonoClust(mono_obj)
Arguments
mono_obj An object.
Value
TRUE if the object inherits from the MonoClust class.
medoid Find Medoid of the Cluster
Description
Medoid is the point that has minimum distance to all other points in the cluster.
Usage
medoid(members, dist_mat)
Arguments
members index vector indicating which observation belongs to the cluster.
dist_mat distance matrix of the whole data set. A class of dist object must be coerced to
a matrix before using.
Value

index of the medoid point in the members vector.

MonoClust

Examples

library(cluster)

data(ruspini)

11

ruspini4sol <- MonoClust(ruspini, nclusters = 4)

ruspini4sol

medoid(which(ruspini4sol$membership == 4), ruspini4sol$dist)

Check with the output with "4" label
ruspini4sol$medoids

MonoClust

Monothetic Clustering

Description

Creates a MonoClust object after partitioning the data set using Monothetic Clustering.

Usage

MonoClust(
toclust,

cir.var = NULL,

variables =

NULL,

distmethod = NULL,
digits = getOption("digits"),

nclusters =

2L,

minsplit = 5L,
minbucket = round(minsplit/3),

ncores = 1L

Arguments

toclust
cir.var

variables

distmethod

digits

nclusters

Data set as a data frame.
Index or name of the circular variable in the data set.

List of variables selected for clustering procedure. It could be a vector of vari-
able indexes, or a vector of variable names.

Distance method to use with the data set. Can be chosen from "euclidean"
(for Euclidean distance), "mahattan" (for Manhattan distance), or "gower" (for
Gower distance). If not set, Euclidean distance is used unless cir.var is set,
then it is Gower distance is used by default. Abbreviations can be used.

Significant decimal number printed in the output.

Number of clusters created. Default is 2.

12 MonoClust.object

minsplit The minimum number of observations that must exist in a node in order for a
split to be attempted. Default is 5.

minbucket The minimum number of observations in any terminal leaf node. Default is
minsplit/3.
ncores Number of CPU cores on the current host. If greater than 1, parallel process-

ing with foreach: : foreach() is used to distribute cut search on variables to
processes. When set to NULL, all available cores are used.

Value

A MonoClust object. See MonoClust.object.

References

1. Chavent, M. (1998). A monothetic clustering method. Pattern Recognition Letters, 19(11),
989-996. doi: 10.1016/S01678655(98)000877.

2. Tran, T. V. (2019). Monothetic Cluster Analysis with Extensions to Circular and Functional
Data. Montana State University - Bozeman.

Examples

Very simple data set

library(cluster)

data(ruspini)

ruspini4sol <- MonoClust(ruspini, nclusters = 4)
ruspini4sol

data with circular variable
library(monoClust)
data(wind_sensit_2007)

Use a small data set

set.seed(12345)

wind_reduced <- wind_sensit_2007[sample.int(nrow(wind_sensit_2007), 10), 1]
circular_wind <- MonoClust(wind_reduced, cir.var = 3, nclusters = 2)
circular_wind

MonoClust.object Monothetic Clustering Tree Object

Description

The structure and objects contained in MonoClust, an object returned from the MonoClust () func-
tion and used as the input in other functions in the package.

https://doi.org/10.1016/S0167-8655(98)00087-7

MonoClust.object 13

Value

frame Data frame in the form of a tibble::tibble() representing a tree structure with one row
for each node. The columns include:
number Index of the node. Depth of a node can be derived by number %/% 2.
var Name of the variable used in the split at a node or "<leaf>" if it is a leaf node.

cut Splitting value, so values of var that are smaller than that go to left branch while values
greater than that go to the right branch.

n Cluster size, the number of observations in that cluster.
inertia Inertia value of the cluster at that node.

bipartsplitrow Position of the next split row in the data set (that position will belong to left
node (smaller)).

bipartsplitcol Position of the next split variable in the data set.
inertiadel Proportion of inertia value of the cluster at that node to the inertia of the root.
medoid Position of the data point regarded as the medoid of its cluster.

loc y-coordinate of the splitting node to facilitate showing on the tree. See plot.MonoClust()
for details.

split.order Order of the splits with root is 0.
inertia_explained Percent inertia explained as described in Chavent (2007). Itis 1 - (sum(current inertia)/inert

alt A nested tibble of alternate splits at a node. It contains bipartsplitrowandbipartsplitcol
with the same meaning above. Note that this is only for information purpose. Currently
monoClust does not support choosing an alternate splitting route. Running MonoClust ()
with nclusters = 2 step-by-step can be run if needed.

membership Vector of the same length as the number of rows in the data, containing the value of
frame$number corresponding to the leaf node that an observation falls into.

dist Distance matrix calculated using the method indicated in distmethod argument of MonoClust ().
terms Vector of variable names in the data that were used to split.

centroids Data frame with one row for centroid value of each cluster.

medoids Named vector of positions of the data points regarded as medoids of clusters.

alt Indicator of having an alternate splitting route occurred when splitting.

circularroot List of values designed for circular variable in the data set. var is the name of circular
variable and cut is its first best split value. If circular variable is not available, both objects
are NULL.

References

e Chavent, M., Lechevallier, Y., & Briant, O. (2007). DIVCLUS-T: A monothetic divisive
hierarchical clustering method. Computational Statistics & Data Analysis, 52(2), 687-701.
doi: 10.1016/j.csda.2007.03.013.

See Also

MonoClust().

https://doi.org/10.1016/j.csda.2007.03.013

14

perm.test

perm. test

Permutation Test on Monothetic Tree

Description

Testing the significance of each monothetic clustering split by permutation methods. The "simple-
withhold" method ("sw") shuffles the observations between two groups without the splitting vari-
able. The other two methods shuffle the values in the splitting variable to create a new data set,
then it either splits again on that variable ("resplit-limit", "r1") or use all variables as the splitting
candidates ("resplit-nolimit", "rn"

Usage

perm. test(

object,
data,

auto.pick = FALSE,
sig.val = 0.05,
method = c("sw", "rl", "rn"),

rep = 1000L,

stat = c("f", "aw"),
bon.adj = TRUE,

ncores

Arguments

object
data
auto.pick
sig.val

method

rep

stat

bon.adj

ncores

The MonoClust object as the result of the clustering.
The data set which is being clustered.

Whether the algorithm stops when p-value becomes larger than sig.val or
keeps testing and let the researcher pick the final splitting tree. Default value
is FALSE.

Significance value to decide when to stop splitting. This option is ignored if
auto.pick = FALSE, and is 0.05 by default when auto.pick = TRUE.

Can be chosen between sw (simple-withhold, default), rl (resplit-limit), or rn
(resplit-nolimit). See Details.

Number of permutations required to calculate test statistic.

Statistic to use. Choosing between "f" (Calinski-Harabasz’s pseudo-F (Calinski
and Harabasz, 1974)) or "aw” (Average silhoutte width by Rousseeuw (1987)).

Whether to adjust for multiple testing problem using Bonferroni correction.

Number of CPU cores on the current host. When set to NULL, all available
cores are used.

perm.test 15

Details

Permutation Methods:

Simple-Withhold: Shuffle the observations between two proposed clusters:

The stat calculated from the shuffles create the reference distribution to find the p-value. Be-
cause the splitting variable that was chosen is already the best in terms of reduction of inertia,
that variable is withheld from the distance matrix used in the permutation test.

Resplit-Limit: Shuffle splitting variable, split again on that variable:

This method shuffles the values of the splitting variables while keeping other variables fixed
to create a new data set, then the chosen stat is calculated for each rep to compare with the
observed stat.

Resplit-Nolimit: Shuffle splitting variable, split on all variables:
Similar to Method 2 but all variables are splitting candidates.

Bonferroni Correction:

A hypothesis test occurred lower in the monothetic clustering tree could have its p-value corrected
for multiple tests happened before it in order to reach that node. The formula is

adj.p = unadj.p x depth,

with depth is 1 at the root node.

Value

The same MonoClust object with an extra column (p-value), as well as the numofclusters object
if auto.pick = TRUE.

Note

This function uses foreach::foreach() to facilitate parallel processing. It distributes reps to
processes.

References

Calinski, T. and Harabasz, J (1974). "A dendrite method for cluster analysis". en. In: Communica-
tions in Statistics 3.1, pp. 1-27. doi: 10.1080/03610927408827101.

Rousseeuw, P. J. (1987). "Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis". In: Journal of Computational and Applied Mathematics 20, pp. 53-65. ISSN: 03770427.
doi: 10.1016/03770427(87)901257.

Examples

library(cluster)
data(ruspini)

ruspini6sol <- MonoClust(ruspini, nclusters = 6)

ruspini6.p_value <- perm.test(ruspini6sol, data = ruspini, method = "sw",
rep = 1000)

ruspini6.p_value

https://doi.org/10.1080/03610927408827101
https://doi.org/10.1016/0377-0427(87)90125-7

16

plot.cv.MonoClust

plot.cv.MonoClust Plot the Mean Square Error with Error Bar for +/- 1 Standard Error

Description

Plot the Mean Square Error with Error Bar for +/- 1 Standard Error

Usage

S3 met
plot(
X,
main =
xlab =
ylab =
type =
1ty = 2
err.col

hod for class 'cv.MonoClust'

"MSE for CV of monothetic clustering”,
"Number of clusters”,

"MSE +/- 1 SE",

"y

- "Fed",

err.width = 0.1,

Arguments

X
main
xlab
ylab
type
1ty
err.col

err.width

Value

A cv.MonoClust object (output of cv.test()).

Overall title for the plot.

Title for x axis.

Title for y axis.

What type of plot should be drawn. See graphics: :par().
The line type.

Color of the error bars.

Width of the bars.

Arguments to be passed to graphics: :plot.default().

A line plot with error bars.

See Also

Plot using ggplot2 ggcv ()

plot.MonoClust 17
Examples
library(cluster)
data(ruspini)
10-fold cross-validation
cptable <- cv.test(ruspini, minnodes = 2, maxnodes = 4)
plot(cptable)
plot.MonoClust Plot MonoClust Splitting Rule Tree
Description
Print the MonoClust tree in the form of dendrogram.
Usage
S3 method for class 'MonoClust'
plot(
X ’
uniform = FALSE,
branch = 1,
margin = c(0.12, .02, 0, 0.05),
minbranch = 0.3,
text = TRUE,
which = 4,
stats = TRUE,
abbrev = c("no"”, "short”, "abbreviate”),
digits = getOption("digits") - 2,
cols = NULL,
CO]. X type = C(”l” , upn , an) ,
rel.loc.x = TRUE,
show.pval = TRUE,
)
Arguments
X MonoClust result object.
uniform If TRUE, uniform vertical spacing of the nodes is used; this may be less cluttered
when fitting a large plot onto a page. The default is to use a non-uniform spacing
proportional to the inertia in the fit.
branch Controls the shape of the branches from parent to child node. Any number from

0 to 1 is allowed. A value of 1 gives square shouldered branches, a value of 0

give V shaped branches, with other values being intermediate.

18 plot.MonoClust

margin An extra fraction of white space to leave around the borders of the tree. (Long
labels sometimes get cut off by the default computation).

minbranch Set the minimum length for a branch to minbranch times the average branch
length. This parameter is ignored if uniform = TRUE. Sometimes a split will
give very little improvement, or even no improvement at all. A tree with branch
lengths strictly proportional to improvement leaves no room to squeeze in node

labels.
text Whether to print the labels on the tree.
which Labeling modes, which are:

* 1: only splitting variable names are shown, no splitting rules.
* 2: only splitting rules to the left branches are shown.
* 3: only splitting rules to the right branches are shown.
* 4 (default): splitting rules are shown on both sides of branches.
stats Whether to show statistics (cluster sizes and medoid points) on the tree.
abbrev Whether to print the abbreviated versions of variable names. Can be either "no"
(default), "short", or "abbreviate". Short forms of them can also be used.
If "no", the labels recorded in x$1abels are used.
If "short", variable names will be turned into "V1", "V2", ...
If "abbreviate", abbreviate() function will be used. Use the optional argu-
ments for this function.
digits Number of significant digits to print.

cols Whether to shown color bars at leaves or not. It helps matching this tree plot
with other plots whose cluster membership were colored. It only works when
text is TRUE. Either NULL, a vector of one color, or a vector of colors matching
the number of leaves.

col.type When cols is set, choose whether the color indicators are shown in a form of
solid lines below the leaves ("1"), or big points ("p"), or both ("b").

rel.loc.x Whether to use the relative distance between clusters as x coordinate of the
leaves. Default is TRUE.

show.pval If MonoClust object has been run through perm. test(), whether to show p-

value on the tree.

Arguments to be passed to graphics: :plot.default() and graphics::1lines().

Value

A plot of splitting rule.

Examples

library(cluster)
data(ruspini)

MonoClust tree
ruspini4sol <- MonoClust(ruspini, nclusters = 4)
plot(ruspini4sol)

predict. MonoClust 19

MonoClust tree after permutation test is run
ruspini6ésol <- MonoClust(ruspini, nclusters = 6)
ruspini6_test <- perm.test(ruspini6sol,

data = ruspini,

method = "sw",

rep = 1000)
plot(ruspini6_test, branch = 1, uniform = TRUE)

predict.MonoClust Predictions from a MonoClust Object

Description

Predict the cluster memberships of a new data set from a MonoClust object.

Usage
S3 method for class 'MonoClust’
predict(object, newdata, type = c("centroid”, "medoid"”), ...)
Arguments
object MonoClust result object.
newdata Data frame containing the values to be predicted. If missing, the memberships

of the MonoClust object are returned.

type Type of returned cluster representatives. Either "centroid” to return the cen-
troid values of the terminal clusters, or "medoid” to return the index of the
medoid observations in the clustered data set.

Further arguments passed to or from other methods.

Value

A tibble of cluster index in cname and either centroid values or medoid observations index based on
the value of type argument.

Examples

library(cluster)
data(ruspini)

set.seed(1234)

test_index <- sample(1:nrow(ruspini), nrow(ruspini)/5)
train_index <- setdiff(1:nrow(ruspini), test_index)
ruspini_train <- ruspini[train_index,]

ruspini_test <- ruspini[test_index,]

ruspini_train_4sol <- MonoClust(ruspini_train, nclusters = 4)
predict(ruspini_train_4sol, newdata = ruspini_test)

20 print. MonoClust

print.cv.MonoClust Print MonoClust Cross-Validation Result

Description

Print MonoClust Cross-Validation Result

Usage

S3 method for class 'cv.MonoClust'
print(x, ...)

Arguments

X A cv.MonoClust object (output of cv.test()).

Further arguments passed to or from other methods.

Examples

library(cluster)
data(ruspini)

10-fold cross-validation
cp_table <- cv.test(ruspini, minnodes = 2, maxnodes = 4)
print(cp_table)

print.MonoClust Print Monothetic Clustering Results

Description

Render the MonoClust split tree in an easy to read format with important information such as
terminal nodes, p-value (if possible), etc.

Usage
S3 method for class 'MonoClust'’
print(
X,
abbrev = c("no"”, "short", "abbreviate"),
spaces = 2L,
digits = getOption("digits"),

to_deg_rad 21

Arguments
X MonoClust result object.
abbrev Whether to print the abbreviated versions of variable names. Can be either "no"
(default), "short", or "abbreviate". Short forms of them can also be used.
If "no", the labels recorded in x$1abels are used.
If "short", variable names will be turned into "V1", "V2", ...
If "abbreviate", abbreviate() function will be used. Use the optional argu-
ments for this function.
spaces Spaces indent between 2 tree levels.
digits Number of significant digits to print.
Optional arguments to abbreviate().
Value

A nicely displayed MonoClust split tree.

See Also

abbreviate()

Examples

library(cluster)

data(ruspini)

ruspini4sol <- MonoClust(ruspini, nclusters = 4)
print(ruspini4sol, digits = 2)

to_deg_rad Transform Between Degree and Radian

Description

This function transforms a circular angle from degree to radian or from radian to degree.

Usage

torad(x)

todeg(x)

Arguments

X A degree value if torad or radian value if todeg.

Value

A radian value if torad or degree value if todeg.

22 wind_sensit_2007

Examples

torad(90)
torad(-45)

todeg(pi/2)

wind_sensit_2007 Existence of Microorganisms Carried in Wind

Description

Data set is a part of a study on microorganisms carried in strong f\"ohn winds at the Bonney Riegel
location of Taylor Valley, an ice free area in the Antarctic continent. Wind direction and wind
speed data were obtained from the meteorological station. Wind direction was recorded every 30
seconds and wind speeds every 4 seconds at 1.15 meters above the ground surface. The recorded
wind directions and speeds were averaged at 15 minute intervals. For wind direction, as discussed
previously, winds from the north are defined as 0/360 degrees and from the east as 90 degrees. 2007
data were collected from August 4—11, 2007.

Usage

wind_sensit_2007

Format

A data frame with 671 rows and 3 variables:

has.sensit A binary variable of the existence of particles in the wind (1) or not (0).
WS Wind speed measured in m/s.

WDIR Wind direction in degree with O indicates "from the north" and 90 degrees indicate "from
the east".

Source

Sabacka, M., Priscu, J. C., Basagic, H. J., Fountain, A. G., Wall, D. H., Virginia, R. A., and Green-
wood, M. C. (2012). "Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica". In:
Geomorphology 155-156, pp. 102-111. issn: 0169555X. doi: 10.1016/j.geomorph.2011.12.009.

https://doi.org/10.1016/j.geomorph.2011.12.009

wind_sensit_2008 23

wind_sensit_2008 Existence of Microorganisms Carried in Wind

Description

Data set is a part of a study on microorganisms carried in strong f\"ohn winds at the Bonney Riegel
location of Taylor Valley, an ice free area in the Antarctic continent. Wind direction and wind
speed data were obtained from the meteorological station. Wind direction was recorded every 30
seconds and wind speeds every 4 seconds at 1.15 meters above the ground surface. The recorded
wind directions and speeds were averaged at 15 minute intervals. For wind direction, as discussed
previously, winds from the north are defined as 0/360 degrees and from the east as 90 degrees. 2008
data were collected from July 7-14, 2008.

Usage

wind_sensit_2008

Format
A data frame with 673 rows and 3 variables:
has.sensit A binary variable of the existence of particles in the wind (1) or not (0).

WS Wind speed measured in m/s.

WDIR Wind direction in degree with O indicates "from the north" and 90 degrees indicate "from
the east".

Source

Sabacka, M., Priscu, J. C., Basagic, H. J., Fountain, A. G., Wall, D. H., Virginia, R. A., and Green-
wood, M. C. (2012). "Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica". In:
Geomorphology 155-156, pp. 102-111. issn: 0169555X. doi: 10.1016/j.geomorph.2011.12.009.

https://doi.org/10.1016/j.geomorph.2011.12.009

Index

+ datasets print.cv.MonoClust, 20
wind_sensit_2007, 22 print.MonoClust, 20
wind_sensit_2008, 23 print.MonoClust(), 2

%cd+% (circ_arith), 3

%cd-% (circ_arith), 3 stats::dist(), 4

%cr+% (circ_arith), 3))

%er-% (cir‘c_ar‘ith), 3 tibble: 2tlbble(), 13

to_deg_rad, 21

abbreviate(), 18, 21 todeg (to_deg_rad), 21

as_MonoClust, 2 torad (to_deg_rad), 21

circ_arith, 3 wind_sensit_2007, 22

circ_dist, 3 wind_sensit_2008, 23

cv.test, 4

cv.test(), 6, 16, 20
foreach: :foreach(), 5, 12, 15

ggev, 6

ggev(), 16

ggpep, 7

graphics::lines(), I8
graphics::par(), 16
graphics::plot.default(), 16, I8

inertia_calc, 9
is_MonoClust, 10

medoid, 10

MonoClust, 11
MonoClust(), 5, 12, 13
MonoClust.object, 12, 12

perm.test, 14
perm.test(), I8
plot.cv.MonoClust, 16
plot.cv.MonoClust(), 5,7
plot.MonoClust, 17
plot.MonoClust(), 2, I3
predict.MonoClust, 19
predict.MonoClust(), 5

24

	as_MonoClust
	circ_arith
	circ_dist
	cv.test
	ggcv
	ggpcp
	inertia_calc
	is_MonoClust
	medoid
	MonoClust
	MonoClust.object
	perm.test
	plot.cv.MonoClust
	plot.MonoClust
	predict.MonoClust
	print.cv.MonoClust
	print.MonoClust
	to_deg_rad
	wind_sensit_2007
	wind_sensit_2008
	Index

