Package ‘mlr’

June 12, 2024

Title Machine Learning in R
Version 2.19.2

Description Interface to a large number of classification and regression
techniques, including machine-readable parameter descriptions. There
is also an experimental extension for survival analysis, clustering
and general, example-specific cost-sensitive learning. Generic
resampling, including cross-validation, bootstrapping and subsampling.
Hyperparameter tuning with modern optimization techniques, for single-
and multi-objective problems. Filter and wrapper methods for feature
selection. Extension of basic learners with additional operations
common in machine learning, also allowing for easy nested resampling.
Most operations can be parallelized.

License BSD_2_clause + file LICENSE
URL https://mlr.mlr-org.com, https://github.com/mlr-org/mlr

BugReports https://github.com/mlr-org/mlr/issues
Depends ParamHelpers (>=1.10), R (>=3.0.2)

Imports backports (>= 1.1.0), BBmisc (>= 1.11), checkmate (>= 1.8.2),
data.table (>= 1.12.4), ggplot2, methods, parallelMap (>= 1.3),
stats, stringi, survival, utils, XML

Suggests ada, adabag, batchtools, bit64, brnn, bst, C50, care, caret
(>=6.0-57), class, clue, cluster, ClusterR, clusterSim (>=
0.44-5), cmaes, cowplot, crs, Cubist, deepnet, DiceKriging,
e1071, earth, elasticnet, emoa, evtree, fda.usc, FDboost, FNN,
forecast (>= 8.3), fpc, frbs, FSelector, FSelectorRcpp (>=
0.3.5), gbm, GenSA, ggpubr, glmnet, GPfit, h20 (>= 3.6.0.8),
Hmisc, irace (>= 2.0), kernlab, kknn, klaR, knitr, 1aGP,
LiblineaR, lintr (>= 1.0.0.9001), MASS, mboost, mco, mda,
memoise, mlbench, mldr, mirMBO, modeltools, mRMRe, neuralnet,
nnet, numDeriv, pamr, pander, party, pec, penalized (>=
0.9-47), pls, PMCMRplus, praznik (>= 5.0.0), randomForest,
ranger (>= 0.8.0), rappdirs, refund, rex, rFerns, rgenoud,
rmarkdown, Rmpi, ROCR, rotationForest, rpart, RRF, rsm, RSNNS,
rucrdtw, RWeka, sda, sf, smoof, sparseLDA, stepPlIr, survAUC,

1

https://mlr.mlr-org.com
https://github.com/mlr-org/mlr
https://github.com/mlr-org/mlr/issues

svglite, testthat, tgp, TH.data, tidyr, tsfeatures, vdiffr,
wavelets, xgboost (>= 0.7)

VignetteBuilder knitr
ByteCompile yes
Config/testthat/edition 3
Config/testthat/parallel true

Config/testthat/start-first
featsel_plotFilterValues,base_plotResiduals,base_generateHyperParsEffect,
tune_tunelrace, featsel_filters, learners_all*, regr_h2ogbm

Encoding UTF-8
LazyData yes
RoxygenNote 7.3.1

SystemRequirements gdal (optional), geos (optional), proj (optional),
udunits (optional), gsl (optional), gmp (optional), glu
(optional), jags (optional), mpfr (optional), openmpi
(optional)

NeedsCompilation yes

Author Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>),
Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>),
Lars Kotthoff [aut],

Patrick Schratz [aut] (<https://orcid.org/0000-0003-0748-6624>),
Julia Schiffner [aut],

Jakob Richter [aut],

Zachary Jones [aut],

Giuseppe Casalicchio [aut] (<https://orcid.org/0000-0001-5324-5966>),
Mason Gallo [aut],

Jakob Bossek [ctb] (<https://orcid.org/0000-0002-4121-4668>),
Erich Studerus [ctb] (<https://orcid.org/0000-0003-4233-0182>),
Leonard Judt [ctb],

Tobias Kuehn [ctb],

Pascal Kerschke [ctb] (<https://orcid.org/0000-0003-2862-1418>),
Florian Fendt [ctb],

Philipp Probst [ctb] (<https://orcid.org/0000-0001-8402-6790>),
Xudong Sun [ctb] (<https://orcid.org/0000-0003-3269-2307>),
Janek Thomas [ctb] (<https://orcid.org/0000-0003-4511-6245>),
Bruno Vieira [ctb],

Laura Beggel [ctb] (<https://orcid.org/0000-0002-8872-8535>),
Quay Au [ctb] (<https://orcid.org/0000-0002-5252-8902>),
Martin Binder [aut, cre],

Florian Pfisterer [ctb],

Stefan Coors [ctb],

Steve Bronder [ctb],

Alexander Engelhardt [ctb],

Christoph Molnar [ctb],

Annette Spooner [ctb]

https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-0748-6624
https://orcid.org/0000-0001-5324-5966
https://orcid.org/0000-0002-4121-4668
https://orcid.org/0000-0003-4233-0182
https://orcid.org/0000-0003-2862-1418
https://orcid.org/0000-0001-8402-6790
https://orcid.org/0000-0003-3269-2307
https://orcid.org/0000-0003-4511-6245
https://orcid.org/0000-0002-8872-8535
https://orcid.org/0000-0002-5252-8902

Contents 3

Maintainer Martin Binder <mlr.developer@mb706.com>
Repository CRAN
Date/Publication 2024-06-12 10:50:02 UTC

Contents
mlr-package 8
addRRMeasure e e e e e 10
AGEregation e e 11
AEIEZALIONS . .« . v vt e e e e e e e e e e e e e e e e 11
agrictask e 12
analyzeFeatSelResult L 12
asROCRPrediction e 13
batchmark 13
betask . . . oL L e 15
benchmark 15
BenchmarkResult 17
bhitask e 18
cache_helpers 18
calculateConfusionMatrix e e e e e e e 19
calculateROCMEeasures v v v i e i e e e e e e e e e e e e e 20
capLargeValues L 22
configureMIr L 23
ConfusionMatriX e e e e e e e e 25
convertBMRToRankMatrix e 26
convertMLBenchObjToTask 27
costiris.task L e e e e 27
createDummyFeatures L oL L 28
createSpatialResamplingPlots 0oL oo 29
CIOSSOVET &« v v v e v e 32
downsample e 32
dropFeatures 33
estimateRelativeOverfitting 34
estimateResidualVariance 35
extractFDABsignal 36
extractFDADTWKernel e 36
extractFDAFeatures e 37
extractFDAFourier 39
extractFDAFPCA e e 39
extractFDAMultiResFeatures e 40
extractFDATsfeatures 41
extractFDAWavelets e e 42
FailureModel e 43
FeatSelControl e 44
FeatSelResult e e 47
filterFeatures e e e e 48

friedmanPostHocTestBMR 50

Contents

friedmanTestBMR 51
fuelsubset.task 52
generateCalibrationData oL 52
generateCritDifferencesData L o 54
generateFeaturelmportanceData L o oo 56
generateFilterValuesData 58
generateHyperParsEffectData L oo 60
generateLearningCurveData 61
generatePartialDependenceDatao oL oo 63
generateThreshVsPerfData 66
getBMRAggrPerformances oo 67
getBMRFeatSelResults 68
getBMRFilteredFeatures 70
getBMRLearnerlds 71
getBMRLearners e 72
getBMRLearnerShortNames Lo 72
getBMRMeasurelds 73
getBMRMeasures e e e e e e e 74
getBMRModels 74
getBMRPerformances 75
getBMRPredictions 76
getBMRTaskDescriptions L e 78
getBMRTaskDescs 78
getBMRTaskIds 79
getBMRTuneResults e 80
getCaretParamSet L 81
getClassWeightParam 82
getConfMatrix L e 83
getDefaultMeasure e 84
getFailureModelDump oL 84
getFailureModelMsg 85
getFeatSelResult L 85
getFeatureImportanceo 86
getFilteredFeatures 87
getFunctionalFeatures L 88
getHomogeneousEnsembleModels, 89
getHyperPars 89
getLearnerld 90
getLearnerModel L. L e 91
getLearnerNote 91
getLearnerPackages L 92
getLearnerParamSet 92
getLearnerParVals L 93
getLearnerPredictType L oo 94
getLearnerShortName oL 94
getLearnerType L. e e 95
getMIrOptions 96

getMultilabelBinaryPerformances oL 96

Contents

5
getNestedTuneResultsOptPathDf 97
getNestedTuneResultsX 98
getOOBPreds 98
getParamSet 99
getPredictionDump L 100
getPredictionProbabilities oL oL o 100
getPredictionResponse 101
getPredictionTaskDesc 102
getProbabilities 103
getResamplinglndices 103
getRRDump e 104
getRRPredictionList 105
getRRPredictions 105
getRRTaskDesc 106
getRRTaskDescription e 107
getStackedBaseLearnerPredictions o oL 000 107
getTaskClassLevels e 108
getTaskCosts e e e 108
getTaskData e 109
getTaskDesc oL 110
getTaskDescription e 111
getTaskFeatureNames e 111
getTaskFormula 112
getTaskld 113
getTaskNFeats e 113
getTaskSize e 114
getTaskTargetNames o i 114
getTaskTargets e 115
getTaskType o e e 116
getTuneResult 116
getTuneResultOptPath 117
gunpoint.task L e 117
hasFunctionalFeatures 118
hasProperties L 118
helpLearner L e 119
helpLearnerParam 119
IMPULAtionS e e e e e e e e e e 120
IMPULE oo o e e e 122
irisstask . . . oL 124
isFailureModel L 124
joinClassLevels e 125
learnerArgsToControl 125
LearnerProperties e 126
learners L e e e 127
listFilterEnsembleMethods oo 127
listFilterMethods 128
listLearnerProperties L 129

listLearners e e 129

Contents

listMeasureProperties L e e e e 131
LHStMeasures o oo e e e e e 132
listTaskTypes o o 132
lung.task L 133
makeAggregation e e e e e e 133
makeBaggingWrapper L 134
makeClassificationViaRegressionWrapper 135
makeClassifTask 137
makeClusterTask L 138
makeConstantClassWrapper 139
makeCostMeasure e e 140
makeCostSensClassifWrapper 141
makeCostSensRegrWrapper 142
makeCostSensTask 143
makeCostSensWeightedPairsWrapper, 144
makeCustomResampledMeasure L 0oL 145
makeDownsampleWrapper L L 146
makeDummyFeaturesWrapper 147
makeExtractFDAFeatMethod o oL oo 148
makeExtractFDAFeatsWrapper oL o 149
makeFeatSelWrapper 150
makeFilter 152
makeFilterEnsemble Lo 153
makeFilterWrapper 154
makeFixedHoldoutInstance Lo 157
makeFunctionalData L 157
makelmputeMethod L. 158
makelmputeWrapper 159
makelLearner 160
makelearners L. e e e 164
makeMeasure e e 165
makeModelMultiplexer e e 167
makeModelMultiplexerParamSet o oL oo 169
makeMulticlassWrapper 170
makeMultilabelBinaryRelevanceWrapper 171
makeMultilabelClassifierChainsWrapper 172
makeMultilabelDBRWrappero 173
makeMultilabelNestedStackingWrapper 175
makeMultilabelStackingWrapper 176
makeMultilabelTask L 177
makeOverBaggingWrapper 179
makePreprocWrapper L. e e 180
makePreprocWrapperCaret 182
makeRegrTask 183
makeRemoveConstantFeaturesWrapper 184
makeResampleDesc L. 185
makeResamplelnstance 0oL 188

makeRLearner.classif.fdausc.glm Lo oL 189

Contents

7
makeRLearner.classif fdausc.kernel L 0oL 189
makeRLearner.classiffdauscnpo oL oo 190
makeSMOTEWrapper 190
makeStackedLearner 191
makeSurvTask L 194
makeTuneControlCMAES 195
makeTuneControlDesign 197
makeTuneControlGenSA L 198
makeTuneControlGrid L 200
makeTuneControllrace L 202
makeTuneControIMBO L 204
makeTuneControlRandom Lo 206
makeTuneWrapper L 207
makeUndersampleWrapper 209
makeWeightedClassesWrapper e 210
makeWrappedModel 212
MeasurePropertieso e e 213
MEASUIES « « o v v v v e e e e e e e e e e e e e e e e e e e 214
mergeBenchmarkResults L 217
mergeSmallFactorLevels o 218
mirFamilies 219
mtears.task L 220
normalizeFeatures 221
Oversample e e e e e e 222
parallelization L e e e e e 223
performance L e e e e 224
phoneme.task L e 225
piditask . . .o 225
plotBMRBoXplots e 226
plotBMRRanksAsBarChart 227
plotBMRSummary 228
plotCalibration e e e e e 230
plotCritDifferences 231
plotFilterValues 232
plotHyperParsEffect 233
plotLearnerPrediction 236
plotLearningCurve L. e e e e e 238
plotPartialDependence 239
plotResiduals e e e e 240
plotROCCurves e 241
plotThreshVsPerf 242
plotTuneMultiCritResult e 244
predict. WrappedModel 245
predictlearner L e 246
reduceBatchmarkResults oL 247
reextractFDAFeatures 248
TRIMPULE L L o e 249

removeConstantFeatures 250

Index

mlr-package

removeHyperPars 251
resample L. e e e e e 252
ResamplePrediction L 256
ResampleResult 257
RLearner e 258
selectFeatures 260
SEtAGEregation L. e 262
setHyperPars L 263
setHyperPars2 264
setld L e e 264
setLearnerld L e 265
setMeasurePars L e e 266
setPredictThreshold 266
setPredictType e 267
setThreshold e 268
simplifyMeasureNames 269
) 1010] 1 270
sonar.task . . .o L. L L e e 271
spam.task ... oL L 271
spatial.task . . . oL L L L 271
subsetTask e e e e 272
summarizeColumns e e e e e 273
summarizeLevels e e 274
Task e e e e 274
TaskDesc e e e 276
AN o e e e e e e e 277
trainlLearner e e e 278
TuneControl 279
TuneMultiCritControl e 280
TuneMultiCritResult e 284
tuneParams L L e e e e e e 284
tuneParamsMultiCrit e e e 287
TuneResult e e 288
tuneThreshold e 289
wpbc.task . .o 290
yeast.task oL 290

291

mlr-package mlr: Machine Learning in R

mlr-package 9

Description

Interface to a large number of classification and regression techniques, including machine-readable
parameter descriptions. There is also an experimental extension for survival analysis, clustering and
general, example-specific cost-sensitive learning. Generic resampling, including cross-validation,
bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for
single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension
of basic learners with additional operations common in machine learning, also allowing for easy
nested resampling. Most operations can be parallelized.

Author(s)

Maintainer: Martin Binder <mlr.developer@mb706.com>
Authors:

¢ Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

* Michel Lang <michellang@gmail.com> (ORCID)

e Lars Kotthoff <larsko@uwyo.edu>

 Patrick Schratz <patrick.schratz@gmail.com> (ORCID)

e Julia Schiffner <schiffner@math.uni-duesseldorf.de>

¢ Jakob Richter <code@jakob-r.de>

* Zachary Jones <zmj@zmjones.com>

* Giuseppe Casalicchio <giuseppe.casalicchio@stat.uni-muenchen.de> (ORCID)
* Mason Gallo <masonagallo@gmail.com>

Other contributors:

» Jakob Bossek <jakob.bossek@tu-dortmund.de> (ORCID) [contributor]

¢ Erich Studerus <erich. studerus@upkbs.ch> (ORCID) [contributor]

¢ Leonard Judt <leonard. judt@tu-dortmund. de> [contributor]

¢ Tobias Kuehn <tobi.kuehn@gmx.de> [contributor]

* Pascal Kerschke <kerschke@uni-muenster.de> (ORCID) [contributor]

* Florian Fendt <flo_fendt@gmx.de> [contributor]

* Philipp Probst <philipp_probst@gmx.de> (ORCID) [contributor]

* Xudong Sun <xudong.sun@stat.uni-muenchen.de> (ORCID) [contributor]

* Janek Thomas <janek.thomas@stat.uni-muenchen.de> (ORCID) [contributor]
e Bruno Vieira <bruno.hebling.vieira@usp.br> [contributor]

* Laura Beggel <laura.beggel@web.de> (ORCID) [contributor]

* Quay Au <quay.au@stat.uni-muenchen.de> (ORCID) [contributor]

* Florian Pfisterer <pfistererf@googlemail.com> [contributor]

¢ Stefan Coors <stefan.coors@gmx.net> [contributor]

¢ Steve Bronder <sab2287@columbia.edu> [contributor]

* Alexander Engelhardt <alexander.w.engelhardt@gmail.com> [contributor]

* Christoph Molnar <christoph.molnar@stat.uni-muenchen.de> [contributor]

* Annette Spooner <a.spooner@unsw.edu. au> [contributor]

https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-0748-6624
https://orcid.org/0000-0001-5324-5966
https://orcid.org/0000-0002-4121-4668
https://orcid.org/0000-0003-4233-0182
https://orcid.org/0000-0003-2862-1418
https://orcid.org/0000-0001-8402-6790
https://orcid.org/0000-0003-3269-2307
https://orcid.org/0000-0003-4511-6245
https://orcid.org/0000-0002-8872-8535
https://orcid.org/0000-0002-5252-8902

10 addRRMeasure

See Also
Useful links:
e https://mlr.mlr-org.com

e https://github.com/mlr-org/mlr

* Report bugs at https://github.com/mlr-org/mlr/issues

addRRMeasure Compute new measures for existing ResampleResult

Description

Adds new measures to an existing ResampleResult.

Usage

addRRMeasure(res, measures)

Arguments
res (ResampleResult)
The result of resample run with keep.pred = TRUE.
measures (Measure | list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task,
see here getDefaultMeasure.
Value
(ResampleResult).
See Also

Other resample: ResamplePrediction, ResampleResult, getRRPredictionlList(), getRRPredictions(),
getRRTaskDesc(), getRRTaskDescription(), makeResampleDesc(), makeResampleInstance(),
resample()

https://mlr.mlr-org.com
https://github.com/mlr-org/mlr
https://github.com/mlr-org/mlr/issues

Aggregation 11

Aggregation Aggregation object.

Description
An aggregation method reduces the performance values of the test (and possibly the training sets)
to a single value. To see all possible implemented aggregations look at aggregations.

The aggregation can access all relevant information of the result after resampling and combine
them into a single value. Though usually something very simple like taking the mean of the test set
performances is done.

Object members:

id (character (1)) Name of the aggregation method.
name (character (1)) Long name of the aggregation method.
properties (character) Properties of the aggregation.

fun (‘function(task, perf.test, perf.train, measure, group, pred))] Aggregation function.

See Also

makeAggregation

aggregations Aggregation methods.

Description

test.mean Mean of performance values on test sets.

test.sd Standard deviation of performance values on test sets.
test. median Median of performance values on test sets.
test.min Minimum of performance values on test sets.
test.max Maximum of performance values on test sets.
test.sum Sum of performance values on test sets.
train.mean Mean of performance values on training sets.
train.sd Standard deviation of performance values on training sets.
train.median Median of performance values on training sets.
train.min Minimum of performance values on training sets.
train.max Maximum of performance values on training sets.
train.sum Sum of performance values on training sets.

b632 Aggregation for B632 bootstrap.

b632plus Aggregation for B632+ bootstrap.

12 analyzeFeatSelResult

testgroup.mean Performance values on test sets are grouped according to resampling method. The
mean for every group is calculated, then the mean of those means. Mainly used for repeated
CV.

testgroup.sd Similar to testgroup.mean - after the mean for every group is calculated, the standard
deviation of those means is obtained. Mainly used for repeated CV.

test.join Performance measure on joined test sets. This is especially useful for small sample sizes
where unbalanced group sizes have a significant impact on the aggregation, especially for
cross-validation test.join might make sense now. For the repeated CV, the performance is
calculated on each repetition and then aggregated with the arithmetic mean.

See Also
Aggregation

agri.task European Union Agricultural Workforces clustering task.

Description

Contains the task (agri. task).

References

See cluster::agriculture.

analyzeFeatSelResult Show and visualize the steps of feature selection.

Description

This function prints the steps selectFeatures took to find its optimal set of features and the reason
why it stopped. It can also print information about all calculations done in each intermediate step.

Currently only implemented for sequential feature selection.

Usage

analyzeFeatSelResult(res, reduce = TRUE)

Arguments
res (FeatSelResult)
The result of of selectFeatures.
reduce (logical(1))

Per iteration: Print only the selected feature (or all features that were evaluated)?
Default is TRUE.

asROCRPrediction 13

Value

(invisible(NULL)).

See Also

Other featsel: FeatSelControl, getFeatSelResult(), makeFeatSelWrapper(), selectFeatures()

asROCRPrediction Converts predictions to a format package ROCR can handle.

Description

Converts predictions to a format package ROCR can handle.

Usage
asROCRPrediction(pred)

Arguments
pred (Prediction)
Prediction object.
See Also

Other roc: calculateROCMeasures()

Other predict: getPredictionProbabilities(), getPredictionResponse(), getPredictionTaskDesc(),
predict.WrappedModel (), setPredictThreshold(), setPredictType()

batchmark Run machine learning benchmarks as distributed experiments.

Description

This function is a very parallel version of benchmark using batchtools. Experiments are created in
the provided registry for each combination of learners, tasks and resamplings. The experiments are
then stored in a registry and the runs can be started via batchtools::submitJobs. A job is one train/test
split of the outer resampling. In case of nested resampling (e.g. with makeTuneWrapper), each job
is a full run of inner resampling, which can be parallelized in a second step with ParallelMap.

For details on the usage and support backends have a look at the batchtools tutorial page: https:
//github.com/mllg/batchtools.

The general workflow with batchmark looks like this:

1. Create an ExperimentRegistry using batchtools::makeExperimentRegistry.

https://github.com/mllg/batchtools
https://github.com/mllg/batchtools

14 batchmark

2. Call batchmark(...) which defines jobs for all learners and tasks in an base::expand.grid
fashion.

3. Submit jobs using batchtools::submitJobs.
4. Babysit the computation, wait for all jobs to finish using batchtools::waitForJobs.

5. Call reduceBatchmarkResult () to reduce results into a BenchmarkResult.

If you want to use this with OpenML datasets you can generate tasks from a vector of dataset IDs
easily with tasks = lapply(data.ids, function(x) convertOMLDataSetToMlr(getOMLDataSet(x))).

Usage

batchmark(
learners,
tasks,
resamplings,
measures,
keep.pred = TRUE,
keep.extract = FALSE,
models = FALSE,
reg = batchtools: :getDefaultRegistry()

Arguments

learners (list of Learner | character)
Learning algorithms which should be compared, can also be a single learner. If
you pass strings the learners will be created via makeLearner.

tasks list of Task
Tasks that learners should be run on.

resamplings [(list of) ResampleDesc)
Resampling strategy for each tasks. If only one is provided, it will be replicated
to match the number of tasks. If missing, a 10-fold cross validation is used.

measures (list of Measure)
Performance measures for all tasks. If missing, the default measure of the first
task is used.

keep.pred (logical(1))
Keep the prediction data in the pred slot of the result object. If you do many ex-
periments (on larger data sets) these objects might unnecessarily increase object
size / mem usage, if you do not really need them. The default is set to TRUE.

keep.extract (logical(1))
Keep the extract slot of the result object. When creating a lot of benchmark
results with extensive tuning, the resulting R objects can become very large in
size. That is why the tuning results stored in the extract slot are removed by
default (keep.extract = FALSE). Note that when keep.extract = FALSE you
will not be able to conduct analysis in the tuning results.

models (logical(1))
Should all fitted models be stored in the ResampleResult? Default is FALSE.

bc.task 15

reg (batchtools::Registry)
Registry, created by batchtools::makeExperimentRegistry. If not explicitly passed,
uses the last created registry.

Value

(data.table). Generated job ids are stored in the column “job.id”.

See Also

Other benchmark: BenchmarkResult, benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(),
friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

bc. task Wisconsin Breast Cancer classification task.

Description

Contains the task (bc. task).

References

See mlbench::BreastCancer. The column "Id"” and all incomplete cases have been removed from
the task.

benchmark Benchmark experiment for multiple learners and tasks.

Description

Complete benchmark experiment to compare different learning algorithms across one or more tasks
w.r.t. a given resampling strategy. Experiments are paired, meaning always the same training / test
sets are used for the different learners. Furthermore, you can of course pass “enhanced” learners
via wrappers, e.g., a learner can be automatically tuned using makeTuneWrapper.

16

Usage

benchmark(
learners,
tasks,
resamplings,
measures,

benchmark

keep.pred = TRUE,

keep.extract = FALSE,

models = FALSE,

show.info = getMlrOption("”show.info")

Arguments

learners

tasks

resamplings

measures

keep.pred

keep.extract

models

show. info

Value

BenchmarkResult.

(list of Learner | character)
Learning algorithms which should be compared, can also be a single learner. If
you pass strings the learners will be created via makeLearner.

list of Task
Tasks that learners should be run on.

(list of ResampleDesc | Resamplelnstance)
Resampling strategy for each tasks. If only one is provided, it will be replicated
to match the number of tasks. If missing, a 10-fold cross validation is used.

(list of Measure)
Performance measures for all tasks. If missing, the default measure of the first
task is used.

(logical(1))

Keep the prediction data in the pred slot of the result object. If you do many ex-
periments (on larger data sets) these objects might unnecessarily increase object
size / mem usage, if you do not really need them. The default is set to TRUE.

(logical(1))

Keep the extract slot of the result object. When creating a lot of benchmark
results with extensive tuning, the resulting R objects can become very large in
size. That is why the tuning results stored in the extract slot are removed by
default (keep.extract = FALSE). Note that when keep.extract = FALSE you
will not be able to conduct analysis in the tuning results.

(logical(1))
Should all fitted models be stored in the ResampleResult? Default is FALSE.

(logical(1))
Print verbose output on console? Default is set via configureMIr.

BenchmarkResult 17

See Also

Other benchmark: BenchmarkResult, batchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(),
friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

Examples

lrns = list(makeLearner("”classif.lda"), makeLearner("”classif.rpart”))
tasks = list(iris.task, sonar.task)

rdesc = makeResampleDesc("CV", iters = 2L)

meas = list(acc, ber)

bmr = benchmark(lrns, tasks, rdesc, measures = meas)
rmat = convertBMRToRankMatrix (bmr)

print(rmat)

plotBMRSummary (bmr)

plotBMRBoxplots(bmr, ber, style = "violin")
plotBMRRanksAsBarChart(bmr, pos = "stack")
friedmanTestBMR (bmr)

friedmanPostHocTestBMR(bmr, p.value = 0.05)

BenchmarkResult BenchmarkResult object.

Description

Result of a benchmark experiment conducted by benchmark with the following members:

results (list of ResampleResult): A nested list of resample results, first ordered by task id, then by
learner id.

measures (list of Measure): The performance measures used in the benchmark experiment.

learners (list of Learner): The learning algorithms compared in the benchmark experiment.

The print method of this object shows aggregated performance values for all tasks and learners.

It is recommended to retrieve required information via the getBMR* getter functions. You can also
convert the object using as.data.frame.

18 cache_helpers

See Also

Other benchmark: batchmark(), benchmark (), convertBMRToRankMatrix (), friedmanPostHocTestBMR(),
friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

bh.task Boston Housing regression task.

Description

Contains the task (bh. task).

References

See mlbench::BostonHousing.

cache_helpers Get or delete mlr cache directory

Description

Helper functions to deal with mlr caching.

Usage

getCacheDir ()

deleteCacheDir ()

Details

getCacheDir () returns the default mlr cache directory

deleteCacheDir() clears the default mir cache directory. Custom cache directories must be
deleted by hand.

calculateConfusionMatrix 19

calculateConfusionMatrix
Confusion matrix.

Description

Calculates the confusion matrix for a (possibly resampled) prediction. Rows indicate true classes,
columns predicted classes. The marginal elements count the number of classification errors for the
respective row or column, i.e., the number of errors when you condition on the corresponding true
(rows) or predicted (columns) class. The last bottom right element displays the total amount of
erTors.

A list is returned that contains multiple matrices. If relative = TRUE we compute three matrices,
one with absolute values and two with relative. The relative confusion matrices are normalized
based on rows and columns respectively, if FALSE we only compute the absolute value matrix.

The print function returns the relative matrices in a compact way so that both row and column
marginals can be seen in one matrix. For details see ConfusionMatrix.

Note that for resampling no further aggregation is currently performed. All predictions on all test
sets are joined to a vector yhat, as are all labels joined to a vector y. Then yhat is simply tabulated
vs. y, as if both were computed on a single test set. This probably mainly makes sense when
cross-validation is used for resampling.

Usage

calculateConfusionMatrix(pred, relative = FALSE, sums = FALSE, set = "both")

S3 method for class 'ConfusionMatrix'

print(x, both = TRUE, digits = 2, ...)
Arguments
pred (Prediction)

Prediction object.

relative (logical(1))
If TRUE two additional matrices are calculated. One is normalized by rows and
one by columns.

sums (logical(1))
If TRUE add absolute number of observations in each group.
set (character(1))

Specifies which part(s) of the data are used for the calculation. If set equals
train or test, the pred object must be the result of a resampling, otherwise an
error is thrown. Defaults to “both”. Possible values are “train”, “test”, or “both”.

X (ConfusionMatrix)
Object to print.
both (logical(1))

If TRUE both the absolute and relative confusion matrices are printed.

20 calculateROCMeasures

digits (integer(1))
How many numbers after the decimal point should be printed, only relevant for
relative confusion matrices.

(any)
Currently not used.

Value

(ConfusionMatrix).

Functions

e print(ConfusionMatrix):

See Also

Other performance: ConfusionMatrix, calculateROCMeasures(), estimateRelativeOverfitting(),
makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), measures, performance(),
setAggregation(), setMeasurePars()

Examples

get confusion matrix after simple manual prediction
allinds = 1:150

train = sample(allinds, 75)

test = setdiff(allinds, train)

mod = train("classif.lda”, iris.task, subset = train)
pred = predict(mod, iris.task, subset = test)
print(calculateConfusionMatrix(pred))
print(calculateConfusionMatrix(pred, sums = TRUE))
print(calculateConfusionMatrix(pred, relative = TRUE))

now after cross-validation
r = crossval(”classif.lda", iris.task, iters = 2L)
print(calculateConfusionMatrix(r$pred))

calculateROCMeasures Calculate receiver operator measures.

Description

Calculate the absolute number of correct/incorrect classifications and the following evaluation mea-
sures:

 tpr True positive rate (Sensitivity, Recall)

» fpr False positive rate (Fall-out)

 fnr False negative rate (Miss rate)

* tnr True negative rate (Specificity)

calculateROCMeasures 21

* ppv Positive predictive value (Precision)

* for False omission rate

¢ 1rp Positive likelihood ratio (LR+)

 fdr False discovery rate

* npv Negative predictive value

* acc Accuracy

* 1rm Negative likelihood ratio (LR-)

* dor Diagnostic odds ratio
For details on the used measures see measures and also https://en.wikipedia.org/wiki/Receiver_
operating_characteristic.

The element for the false omission rate in the resulting object is not called for but fomr since for
should never be used as a variable name in an object.

Usage

calculateROCMeasures(pred)

S3 method for class 'ROCMeasures'

print(x, abbreviations = TRUE, digits = 2, ...)
Arguments
pred (Prediction)

Prediction object.

X (ROCMeasures)
Created by calculateROCMeasures.

abbreviations (logical(1))
If TRUE a short paragraph with explanations of the used measures is printed
additionally.

digits (integer(1))
Number of digits the measures are rounded to.

(any)
Currently not used.
Value

(ROCMeasures). A list containing two elements confusion.matrix which is the 2 times 2 confu-
sion matrix of absolute frequencies and measures, a list of the above mentioned measures.

Functions

e print(ROCMeasures):

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

22 capLargeValues

See Also

Other roc: asROCRPrediction()

Other performance: ConfusionMatrix, calculateConfusionMatrix(), estimateRelativeOverfitting(),
makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), measures, performance(),
setAggregation(), setMeasurePars()

Examples

1rn = makelLearner(”classif.rpart”, predict.type = "prob")
fit = train(lrn, sonar.task)

pred = predict(fit, task = sonar.task)
calculateROCMeasures(pred)

caplLargeValues Convert large/infinite numeric values in a data.frame or task.

Description

Convert numeric entries which large/infinite (absolute) values in a data.frame or task. Only nu-
meric/integer columns are affected.

Usage

caplLargeValues(
obj,
target = character(@L),
cols = NULL,
threshold = Inf,
impute = threshold,

what = "abs”
)
Arguments

obj (data.frame | Task)
Input data.

target (character)
Name of the column(s) specifying the response. Target columns will not be
capped. Default is character(0).

cols (character)
Which columns to convert. Default is all numeric columns.

threshold (numeric(1))

Threshold for capping. Every entry whose absolute value is equal or larger is
converted. Default is Inf.

configureMlIr 23

impute (numeric(1))
Replacement value for large entries. Large negative entries are converted to
-impute. Default is threshold.

what (character(1))
What kind of entries are affected? “abs” means abs(x) > threshold, “pos’
means abs(x) > threshold && x > @, “neg” means abs(x) > threshold && x
< Q. Default is “abs”.

>

Value

(data.frame)

See Also
Other eda_and_preprocess: createDummyFeatures(), dropFeatures(), mergeSmallFactorLevels(),

normalizeFeatures(), removeConstantFeatures(), summarizeColumns(), summarizelLevels()

Examples

capLargeValues(iris, threshold = 5, impute = 5)

configureMlr Configures the behavior of the package.

Description

Configuration is done by setting custom options.
If you do not set an option here, its current value will be kept.

If you call this function with an empty argument list, everything is set to its defaults.

Usage

configureMlr(
show. info,
on.learner.error,
on.learner.warning,
on.par.without.desc,
on.par.out.of.bounds,
on.measure.not.applicable,
show.learner.output,
on.error.dump

24 configureMIr

Arguments

show. info (logical(1))
Some methods of mlr support a show. info argument to enable verbose output
on the console. This option sets the default value for these arguments. Setting
the argument manually in one of these functions will overwrite the default value
for that specific function call. Default is TRUE.

on.learner.error
(character(1))
What should happen if an error in an underlying learning algorithm is caught:
“stop”: R exception is generated.
“warn”: A FailureModel will be created, which predicts only NAs and a warn-
ing will be generated.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

on.learner.warning
(character(1))
What should happen if a warning in an underlying learning algorithm is gener-
ated:
“warn”: The warning is generated as usual.
“quiet”: The warning is suppressed.
Default is “warn”.
on.par.without.desc
(character(1))
What should happen if a parameter of a learner is set to a value, but no parameter
description object exists, indicating a possibly wrong name:
“stop”: R exception is generated.
“warn”: Warning, but parameter is still passed along to learner.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

on.par.out.of.bounds
(character(1))
What should happen if a parameter of a learner is set to an out of bounds value.
“stop”: R exception is generated.
“warn”: Warning, but parameter is still passed along to learner.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.
on.measure.not.applicable
(logical(1))
What should happen if a measure is not applicable to a learner.
“stop”: R exception is generated.
“warn”: Warning, but value of the measure will be NA.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.
show. learner.output
(logical(1))
Should the output of the learning algorithm during training and prediction be
shown or captured and suppressed? Default is TRUE.

ConfusionMatrix 25

on.error.dump (logical(1))
Specify whether FailureModel models and failed predictions should contain an
error dump that can be used with debugger to inspect an error. This option is
only effective if on. learner.error is “warn” or “quiet”. If it is TRUE, the dump
can be accessed using getFailureModelDump on the FailureModel, getPredic-
tionDump on the failed prediction, and getRRDump on resample predictions.
Default is FALSE.

Value

(invisible(NULL)).

See Also

Other configure: getMlrOptions()

ConfusionMatrix Confusion matrix

Description

The result of calculateConfusionMatrix.

Object members:

result (matrix) Confusion matrix of absolute values and marginals. Can also contain row and
column sums of observations.

task.desc (TaskDesc) Additional information about the task.

sums (logical(1)) Flag if marginal sums of observations are calculated.

relative (logical (1)) Flag if the relative confusion matrices are calculated.

relative.row (matrix) Confusion matrix of relative values and marginals normalized by row.

relative.col (matrix) Confusion matrix of relative values and marginals normalized by column.

relative.error (numeric(1)) Relative error overall.

See Also

Other performance: calculateConfusionMatrix(), calculateROCMeasures(), estimateRelativeOverfitting(),
makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), measures, performance(),
setAggregation(), setMeasurePars()

26 convertBMRToRankMatrix

convertBMRToRankMatrix
Convert BenchmarkResult to a rank-matrix.

Description

Computes a matrix of all the ranks of different algorithms over different datasets (tasks). Ranks are
computed from aggregated measures. Smaller ranks imply better methods, so for measures that are
minimized, small ranks imply small scores. for measures that are maximized, small ranks imply
large scores.

Usage
convertBMRToRankMatrix(
bmr,
measure = NULL,
ties.method = "average",
aggregation = "default”
)
Arguments
bmr (BenchmarkResult)
Benchmark result.
measure (Measure)
Performance measure. Default is the first measure used in the benchmark exper-
iment.

ties.method (character(1))
See base::rank for details.

aggregation (character(1))
“mean” or “default”. See getBMRAggrPerformances for details on “default”.

Value

(matrix) with measure ranks as entries. The matrix has one row for each learner, and one column
for each task.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), friedmanPostHocTestBMR(),
friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

convertMLBenchObjToTask 27

Examples

see benchmark

convertMLBenchObjToTask
Convert a machine learning benchmark / demo object from package
mlbench to a task.

Description

We auto-set the target column, drop any column which is called “Id” and convert logicals to factors.

Usage
convertMLBenchObjToTask(x, n = 100L, ...)
Arguments
X (character(1))
Name of an mlbench function or dataset.
n (integer(1))
Number of observations for data simul functions. Note that for a few mlbench
function this setting is not exactly respected by mlbench. Default is 100.
(any)
Passed on to data simul functions.
Examples

print(convertMLBenchObjToTask("Ionosphere™))
print(convertMLBenchObjToTask("mlbench.spirals”, n = 100, sd = 0.1))

costiris.task Iris cost-sensitive classification task.

Description

Contains the task (costiris. task).

References

See datasets::iris. The cost matrix was generated artificially following

Tu, H.-H. and Lin, H.-T. (2010), One-sided support vector regression for multiclass cost-sensitive
classification. In ICML, J. Fiirnkranz and T. Joachims, Eds., Omnipress, 1095—-1102.

28 createDummyFeatures

createDummyFeatures Generate dummy variables for factor features.

Description

Replace all factor features with their dummy variables. Internally model.matrix is used. Non factor
features will be left untouched and passed to the result.

Usage

createDummyFeatures(
obj,
target = character(@L),
method = "1-of-n",

cols = NULL
)
Arguments
obj (data.frame | Task)
Input data.
target (character(1) | character(2) | character(n.classes))

Name(s) of the target variable(s). Only used when obj is a data.frame, otherwise
ignored. If survival analysis is applicable, these are the names of the survival
time and event columns, so it has length 2. For multilabel classification these
are the names of logical columns that indicate whether a class label is present
and the number of target variables corresponds to the number of classes.

method (character(1))
Available are:

""1-of-n"": For n factor levels there will be n dummy variables.

"reference'': There will be n-1 dummy variables leaving out the first factor
level of each variable.

Default is “1-of-n”.

cols (character)
Columns to create dummy features for. Default is to use all columns.
Value

data.frame | Task. Same type as obj.

See Also

Other eda_and_preprocess: capLargeValues(), dropFeatures(), mergeSmallFactorLevels(),
normalizeFeatures(), removeConstantFeatures(), summarizeColumns(), summarizelLevels()

createSpatialResamplingPlots 29

createSpatialResamplingPlots
Create (spatial) resampling plot objects.

Description

Visualize partitioning of resample objects with spatial information.

Usage

createSpatialResamplingPlots(
task = NULL,
resample = NULL,
crs = NULL,
datum = 4326,
repetitions = 1,
color.train = "#0072B5",
color.test = "#E18727",
point.size = 0.5,
axis.text.size = 14,
X.axis.breaks = waiver(),
y.axis.breaks = waiver()

)
Arguments
task Task
Task object.
resample ResampleResult or named 1ist with (multiple) ResampleResult
As returned by resample.
crs integer
Coordinate reference system (EPSG code number) for the supplied coordinates
in the Task.
datum integer
Coordinate reference system which should be used in the resulting map.
repetitions integer
Number of repetitions.
color.train character
Color for train set.
color.test character
Color for test set.
point.size integer

Point size.

axis.text.size integer
Font size of axis labels.

30 createSpatialResamplingPlots

X.axis.breaks numeric
Custom x axis breaks

y.axis.breaks numeric
Custom y axis breaks

Details

If a named list is given to resample, names will appear in the title of each fold. If multiple inputs
are given to resample, these must be named.

This function makes a hard cut at five columns of the resulting gridded plot. This means if the
resample object consists of folds > 5, these folds will be put into the new row.

For file saving, we recommend to use cowplot::save_plot.

When viewing the resulting plot in RStudio, margins may appear to be different than they really
are. Make sure to save the file to disk and inspect the image.

When modifying axis breaks, negative values need to be used if the area is located in either the
western or southern hemisphere. Use positive values for the northern and eastern hemisphere.
Value

(list of 2L containing (1) multiple ‘gg* objects and (2) their corresponding labels.

CRS

The crs has to be suitable for the coordinates stored in the Task. For example, if the coordinates
are UTM, crs should be set to a UTM projection. Due to a limited axis space in the resulting grid
(especially on the x-axis), the data will by default projected into a lat/lon projection, specifically
EPSG 4326. If other projections are desired for the resulting map, please set argument datum
accordingly. This argument will be passed onto ggplot2::coord_sf.

Author(s)

Patrick Schratz

See Also

Other plot: plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary (), plotCalibration(),
plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotROCCurves(),
plotResiduals(), plotThreshVsPerf ()

Examples

rdesc = makeResampleDesc("”SpRepCV", folds = 5, reps = 4)
r = resample(makeLearner(”classif.qda"), spatial.task, rdesc)

e
single unnamed resample input with 5 folds and 2 repetitions

createSpatialResamplingPlots 31

plots = createSpatialResamplingPlots(spatial.task, r, crs = 32717,
repetitions = 2, x.axis.breaks = c(-79.065, -79.085),
y.axis.breaks = c(-3.970, -4))

cowplot::plot_grid(plotlist = plots[["Plots”]], ncol = 5, nrow = 2,
labels = plots[["Labels"”]])

B oo
single named resample input with 5 folds and 1 repetition and 32717 datum
o

plots = createSpatialResamplingPlots(spatial.task, list("Resamp” = r),
crs = 32717, datum = 32717, repetitions = 1)

cowplot::plot_grid(plotlist = plots[["Plots”]], ncol = 5, nrow = 1,
labels = plots[["Labels"]])

B oo
multiple named resample inputs with 5 folds and 1 repetition
e e e P PR

rdescl = makeResampleDesc("SpRepCV", folds = 5, reps = 4)

r1 = resample(makelLearner(”classif.qda"), spatial.task, rdescl)
rdesc2 = makeResampleDesc("RepCV", folds = 5, reps = 4)

r2 = resample(makeLearner(”classif.qda"), spatial.task, rdesc2)

plots = createSpatialResamplingPlots(spatial.task,
list("SpRepCV" = r1, "RepCV" = r2), crs = 32717, repetitions = 1,
X.axis.breaks = c(-79.055, -79.085), y.axis.breaks = c(-3.975, -4))
cowplot::plot_grid(plotlist = plots[["Plots”]], ncol = 5, nrow = 2,
labels = plots[["Labels"]1])

Complex arrangements of multiple named resample inputs with 5 folds and 1 repetition
Tt

p1 = cowplot::plot_grid(plots[["Plots”J1[[1]1], plots[["Plots"]][[2]1],
plots[["Plots”]1I[[3]1, ncol = 3, nrow = 1, labels = plots[["Labels"]11[1:3],
label_size = 18)

p12 = cowplot::plot_grid(plots[["Plots”]1][[4]1], plots[["Plots"]I[[5]],
ncol = 2, nrow = 1, labels = plots[["Labels"]11[4:5], label_size = 18)

p2 = cowplot::plot_grid(plots[["Plots"]1][[6]1]1, plots[["Plots"]1[[71],
plots[["Plots”]I[[8]1, ncol = 3, nrow = 1, labels = plots[["Labels"]1]1[6:8],
label_size = 18)

p22 = cowplot::plot_grid(plots[["Plots"]1][[9]1], plots[["Plots"]][[10]],
ncol = 2, nrow = 1, labels = plots[["Labels”]11[9:10], label_size = 18)

cowplot::plot_grid(pl, pl12, p2, p22, ncol = 1)

32 downsample

crossover Crossover.

Description

Takes two bit strings and creates a new one of the same size by selecting the items from the first
string or the second, based on a given rate (the probability of choosing an element from the first

string).
Arguments
X (logical)
First parent string.
y (logical)
Second parent string.
rate (numeric(1))
A number representing the probability of selecting an element of the first string.
Default is 0. 5.
Value
(crossover).
downsample Downsample (subsample) a task or a data.frame.
Description

Decrease the observations in a task or a ResampleInstance to a given percentage of observations.

Usage

downsample(obj, perc = 1, stratify = FALSE)

Arguments
obj (Task | Resamplelnstance)
Input data or a ResampleInstance.
perc (numeric(1))
Percentage from (0, 1). Default is 1.
stratify (logical(1))

Only for classification: Should the downsampled data be stratified according to
the target classes? Default is FALSE.

dropFeatures 33

Value

([data.frame| [Task] | [ResampleInstance]). Same type asobj‘.

See Also

makeResamplelnstance

Other downsample: makeDownsampleWrapper ()

dropFeatures Drop some features of task.

Description

Drop some features of task.

Usage

dropFeatures(task, features)

Arguments
task (Task)
The task.
features (character)
Features to drop.
Value
Task.
See Also

Other eda_and_preprocess: capLargeValues(), createDummyFeatures(), mergeSmallFactorLevels(),
normalizeFeatures(), removeConstantFeatures(), summarizeColumns(), summarizelLevels()

34 estimateRelativeOverfitting

estimateRelativeOverfitting
Estimate relative overfitting.

Description

Estimates the relative overfitting of a model as the ratio of the difference in test and train perfor-
mance to the difference of test performance in the no-information case and train performance. In
the no-information case the features carry no information with respect to the prediction. This is
simulated by permuting features and predictions.

Usage

estimateRelativeOverfitting(
predish,
measures,
task,
learner = NULL,
pred.train = NULL,

iter = 1
)
Arguments
predish (ResampleDesc | ResamplePrediction | Prediction)
Resampling strategy or resampling prediction or test predictions.
measures (Measure | list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task,
see here getDefaultMeasure.
task (Task)
The task.
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
pred.train (Prediction)
Training predictions. Only needed if test predictions are passed.
iter (integer)
Iteration number. Default 1, usually you don’t need to specify this. Only needed
if test predictions are passed.
Details

Currently only support for classification and regression tasks is implemented.

Value

(data.frame). Relative overfitting estimate(s), named by measure(s), for each resampling iteration.

estimateResidual Variance 35

References

Bradley Efron and Robert Tibshirani; Improvements on Cross-Validation: The .632+ Bootstrap
Method, Journal of the American Statistical Association, Vol. 92, No. 438. (Jun., 1997), pp.
548-560.

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(),
makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(), measures, performance(),
setAggregation(), setMeasurePars()

Examples

task = makeClassifTask(data = iris, target = "Species")

rdesc = makeResampleDesc("CV", iters = 2)
estimateRelativeOverfitting(rdesc, acc, task, makelLearner(”classif.knn"))
estimateRelativeOverfitting(rdesc, acc, task, makelLearner(”classif.lda"))
rpred = resample(”classif.knn"”, task, rdesc)$pred
estimateRelativeOverfitting(rpred, acc, task)

estimateResidualVariance
Estimate the residual variance.

Description

Estimate the residual variance of a regression model on a given task. If a regression learner is
provided instead of a model, the model is trained (see train) first.

Usage

estimateResidualVariance(x, task, data, target)

Arguments

X (Learner or WrappedModel)
Learner or wrapped model.

task (RegrTask)
Regression task. If missing, data and target must be supplied.

data (data.frame)
A data frame containing the features and target variable. If missing, task must
be supplied.

target (character(1))

Name of the target variable. If missing, task must be supplied.

36 extractFDADTWKernel

extractFDABsignal Bspline mlq features

Description

The function extracts features from functional data based on the Bspline fit. For more details refer
to FDboost: :bsignal().

Usage

extractFDABsignal (bsignal.knots = 10L, bsignal.df = 3)

Arguments

bsignal.knots (integer(1))
The number of knots for bspline.

bsignal.df (numeric(1))
The effective degree of freedom of penalized bspline.
Value

(data.frame).

See Also

Other fda_featextractor: extractFDADTWKernel (), extractFDAFPCA(), extractFDAFourier(),
extractFDAMultiResFeatures(), extractFDATsfeatures(), extractFDAWavelets()

extractFDADTWKernel DTW kernel features

Description

The function extracts features from functional data based on the DTW distance with a reference
dataframe.

Usage

extractFDADTWKernel(
ref.method = "random”,
n.refs = 0.05,
refs = NULL,
dtwwindow = 0.05

extractFDAFeatures 37

Arguments
ref.method (character(1))
How should the reference curves be obtained? Method random draws n.refs
random reference curves, while all uses all curves as references. In order to
use user-provided reference curves, this parameter is set to fixed.
n.refs (numeric(1))
Number of reference curves to be drawn (as a fraction of the number of obser-
vations in the training data).
refs (matrixlinteger(n))
Integer vector of training set row indices or a matrix of reference curves with
the same length as the functionals in the training data. Overwrites ref.method
and n.refs.
dtwwindow (numeric(1))
Size of the warping window size (as a proportion of query length).
Value

(data.frame).

See Also

Other fda_featextractor: extractFDABsignal (), extractFDAFPCA(), extractFDAFourier(), extractFDAMultiResFeatL
extractFDATsfeatures(), extractFDAWavelets()

extractFDAFeatures Extract features from functional data.

Description

Extract non-functional features from functional features using various methods.

The function extractFDAFeatures performs the extraction for all functional features via the methods
specified in feat.methods and transforms all mentioned functional (matrix) features into regular
data.frame columns. Additionally, a “extractFDAFeatDesc” object which contains learned coeffi-
cients and other helpful data for re-extraction during the predict-phase is returned. This can be used
with reextractFDAFeatures in order to extract features during the prediction phase.

Usage

extractFDAFeatures(obj, target = character(@L), feat.methods = list(), ...)

38 extractFDAFeatures

Arguments
obj (Task | data.frame)
Task or data.frame to extract functional features from. Must contain functional
features as matrix columns.
target (character(1))

Task target column. Only necessary for data.frames Default is character(0).

feat.methods (named list)

List of functional features along with the desired methods for each functional
feature. “all” applies the extractFDAFeatures method to each functional fea-

ture. Names of feat.methods must match column names of functional features.
Available feature extraction methods are available under family fda_featextractor.
Specifying a functional feature multiple times with different extraction methods
allows for the extraction of different features from the same functional. Default

is list () which does nothing.

(any)
Further hyperparameters passed on to the feat.methods specified above.

Details
The description object contains these slots:

* target (character): See argument.

¢ coln (character): Colum names of data.

fd.cols (character): Functional feature names.

* extractFDAFeat (1ist): Contains feature.methods and relevant parameters for reextraction.

Value
(list)

* data | task (data.frame | Task): Extracted features, same type as obj.

* desc (extracFDAFeatDesc): Description object. See description for details.

See Also
Other fda: makeExtractFDAFeatMethod(), makeExtractFDAFeatsWrapper ()

Examples

df = data.frame(x = matrix(rnorm(24), ncol = 8), y = factor(c("a", "a", "b")))
fdf = makeFunctionalData(df, fd.features = list(x1 = 1:4, x2 = 5:8), exclude.cols = "y")
task = makeClassifTask(data = fdf, target = "y")
extracted = extractFDAFeatures(task,

feat.methods = list("x1" = extractFDAFourier(), "x2" = extractFDAWavelets(filter = "haar")))
print(extracted$task)

reextractFDAFeatures(task, extracted$desc)

extractFDA Fourier 39

extractFDAFourier Fast Fourier transform features.

Description

The function extracts features from functional data based on the fast fourier transform. For more
details refer to stats::fft.

Usage

extractFDAFourier(trafo.coeff = "phase”)

Arguments

trafo.coeff (character(1))
Specifies which transformation of the complex frequency domain representation
should be calculated as a feature representation. Must be one of “amplitude” or
“phase”. Default is “phase”. The phase shift is returned in Rad, i.e. values lie in
[-180, 180].

Value

(data.frame).

See Also

Other fda_featextractor: extractFDABsignal(), extractFDADTWKernel(), extractFDAFPCA(),
extractFDAMultiResFeatures(), extractFDATsfeatures(), extractFDAWavelets()

extractFDAFPCA Extract functional principal component analysis features.

Description

The function extracts the functional principal components from a data.frame containing functional
features. Uses stats: :prcomp.

Usage

extractFDAFPCA(rank. = NULL, center = TRUE, scale. = FALSE)

40 extractFDAMultiResFeatures

Arguments
rank. (integer(1))
Number of principal components to extract. Default is NULL
center (logical(1))
Should data be centered before applying PCA?
scale. (logical(1))
Should data be scaled before applying PCA?
Value

(data.frame).

See Also

Other fda_featextractor: extractFDABsignal(), extractFDADTWKernel (), extractFDAFourier(),
extractFDAMultiResFeatures(), extractFDATsfeatures(), extractFDAWavelets()

extractFDAMultiResFeatures
Multiresolution feature extraction.

Description

The function extracts currently the mean of multiple segments of each curve and stacks them as
features. The segments length are set in a hierachy way so the features cover different resolution
levels.

Usage
extractFDAMultiResFeatures(res.level = 3L, shift = 0.5, seg.lens = NULL)

Arguments
res.level (integer(1))
The number of resolution hierachy, each length is divided by a factor of 2.
shift (numeric(1))
The overlapping proportion when slide the window for one step.
seg.lens (integer(1))
Curve subsequence lengths. Needs to sum up to the length of the functional.
Value

(data.frame).

See Also

Other fda_featextractor: extractFDABsignal(), extractFDADTWKernel(), extractFDAFPCA(),
extractFDAFourier(), extractFDATsfeatures(), extractFDAWavelets()

extractFDATsfeatures 41

extractFDATsfeatures Time-Series Feature Heuristics

Description

The function extracts features from functional data based on known Heuristics. For more details re-

ferto tsfeatures: :tsfeatures(). Under the hood this function uses the package tsfeatures: :tsfeatures().
For more information see Hyndman, Wang and Laptev, Large-Scale Unusual Time Series Detection,

ICDM 2015.

Note: Currently computes the following features:
"frequency"”, "stl_features", "entropy", "acf_features", "arch_stat", "crossing_points", "flat_spots",
"hurst", "holt_parameters", "lumpiness”, "max_kI_shift", "max_var_shift", "max_level_shift", "sta-

bility", "nonlinearity"

Usage
extractFDATsfeatures(
scale = TRUE,
trim = FALSE,

trim_amount = 0.1,
parallel = FALSE,
na.action = na.pass,

feats = NULL,
)
Arguments
scale (logical(1))
If TRUE, time series are scaled to mean 0 and sd 1 before features are computed.
trim (logical(1))
If TRUE, time series are trimmed by trim_amount before features are com-
puted. Values larger than trim_amount in absolute value are set to NA.
trim_amount (numeric(1))
Default level of trimming if trim==TRUE.
parallel (logical(1))
If TRUE, multiple cores (or multiple sessions) will be used. This only speeds
things up when there are a large number of time series.
na.action (logical(1))
A function to handle missing values. Use na.interp to estimate missing values
feats (character)

A character vector of function names to apply to each time-series in order to
extract features.
Default:

42 extractFDAWavelets

"non "non "non non "non

feats = c("frequency", "stl_features", "entropy", "acf_features", "arch_stat", "cross-
ing_points", "flat_spots", "hurst", "holt_parameters", "lumpiness", "max_kI_shift",

non non non

"max_var_shift", "max_level_shift", "stability", "nonlinearity")

(any)

Further arguments passed on to the respective tsfeatures functions.
Value

(data.frame)

References

Hyndman, Wang and Laptev, Large-Scale Unusual Time Series Detection, ICDM 2015.

See Also

Other fda_featextractor: extractFDABsignal(), extractFDADTWKernel(), extractFDAFPCA(),
extractFDAFourier(), extractFDAMultiResFeatures(), extractFDAWavelets()

extractFDAWavelets Discrete Wavelet transform features.

Description

The function extracts discrete wavelet transform coefficients from the raw functional data. See
wavelets::dwt for more information.

Usage

extractFDAWavelets(filter = "1a8", boundary = "periodic"”)

Arguments
filter (character(1))
Specifies which filter should be used. Must be one of dllalbllc followed by an
even number for the level of the filter. The level of the filter needs to be smaller
or equal then the time-series length. For more information and acceptable filters
see help(wt.filter). Defaults to 1a8.
boundary (character(1))
Boundary to be used. “periodic” assumes circular time series, for “reflection”
the series is extended to twice its length. Default is “periodic”.
Value

(data.frame).

FailureModel 43

See Also

Other fda_featextractor: extractFDABsignal(), extractFDADTWKernel (), extractFDAFPCA(),
extractFDAFourier(), extractFDAMultiResFeatures(), extractFDATsfeatures()

FailureModel Failure model.

Description

A subclass of WrappedModel. It is created

* if you set the respective option in configureMlr - when a model internally crashed during
training. The model always predicts NAs.

The if mlr option on. error.dump is TRUE, the FailureModel contains the debug trace of the error.
It can be accessed with getFailureModelDump and inspected with debugger.

Its encapsulated learner.model is simply a string: The error message that was generated when the
model crashed. The following code shows how to access the message.

See Also

Other debug: ResampleResult, getPredictionDump(), getRRDump()

Examples

configureMlr(on.learner.error = "warn")

data = iris

data$newfeat = 1 # will make LDA crash

task = makeClassifTask(data = data, target = "Species”)
m = train("classif.lda”, task) # LDA crashed, but mlr catches this
print(m)

print(m$learner.model) # the error message

p = predict(m, task) # this will predict NAs

print(p)

print(performance(p))

configureMlr(on.learner.error = "stop”)

44

FeatSelControl

FeatSelControl Create control structures for feature selection.

Description

Feature selection method used by selectFeatures.
The methods used here follow a wrapper approach, described in Kohavi and John (1997) (see ref-
erences).

The following optimization algorithms are available:

FeatSelControlExhaustive Exhaustive search. All feature sets (up to a certain number of features

max . features) are searched.

FeatSelControlRandom Random search. Features vectors are randomly drawn, up to a certain

number of features max.features. A feature is included in the current set with probabil-
ity prob. So we are basically drawing (0,1)-membership-vectors, where each element is
Bernoulli(prob) distributed.

FeatSelControlSequential Deterministic forward or backward search. That means extending (for-

ward) or shrinking (backward) a feature set. Depending on the given method different ap-
proaches are taken.

sf's Sequential Forward Search: Starting from an empty model, in each step the feature in-
creasing the performance measure the most is added to the model.

sbs Sequential Backward Search: Starting from a model with all features, in each step the
feature decreasing the performance measure the least is removed from the model.

sffs Sequential Floating Forward Search: Starting from an empty model, in each step the
algorithm chooses the best model from all models with one additional feature and from all
models with one feature less.

sfbs Sequential Floating Backward Search: Similar to sffs but starting with a full model.

FeatSelControlGA Search via genetic algorithm. The GA is a simple (mu, lambda) or (mu +

Usage

lambda) algorithm, depending on the comma setting. A comma strategy selects a new pop-
ulation of size mu out of the 1lambda > mu offspring. A plus strategy uses the joint pool of mu
parents and lambda offspring for selecting mu new candidates. Out of those mu features, the
new lambda features are generated by randomly choosing pairs of parents. These are crossed
over and crossover. rate represents the probability of choosing a feature from the first par-
ent instead of the second parent. The resulting offspring is mutated, i.e., its bits are flipped
with probability mutation.rate. If max.features is set, offspring are repeatedly generated
until the setting is satisfied.

makeFeatSelControlExhaustive(

same.resampling.instance = TRUE,
maxit = NA_integer_,
max.features = NA_integer_,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”

FeatSelControl 45

)

makeFeatSelControlGA(
same.resampling.instance = TRUE,
impute.val = NULL,
maxit = NA_integer_,
max.features = NA_integer_,
comma = FALSE,
mu = 10L,
lambda,
crossover.rate = 0.5,
mutation.rate = 0.05,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”

)

makeFeatSelControlRandom(
same.resampling.instance = TRUE,

maxit = 100L,
max.features = NA_integer_,
prob = 0.5,

tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”

)

makeFeatSelControlSequential (
same.resampling.instance = TRUE,
impute.val = NULL,

method,
alpha = 0.01,
beta = -0.001,

maxit = NA_integer_,
max.features = NA_integer_,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”

Arguments

same.resampling.instance
(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

maxit (integer (1))
Maximal number of iterations. Note, that this is usually not equal to the number
of function evaluations.

46

max.features

tune. threshold

tune. threshold.

log.fun

impute.val

comma

mu

lambda

crossover.rate

mutation.rate

FeatSelControl

(integer(1))
Maximal number of features.

(logical(1))

Should the threshold be tuned for the measure at hand, after each feature set
evaluation, via tuneThreshold? Only works for classification if the predict type
is “prob”. Default is FALSE.

args
(list)

Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

(function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory”’ the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character(1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

(numeric)

If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on.learner.error is configured not to stop in configureMlr. It
is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

(logical(1))
Parameter of the GA feature selection, indicating whether to use a (mu, 1lambda)
or (mu + lambda) GA. The default is FALSE.

(integer(1))
Parameter of the GA feature selection. Size of the parent population.

(integer(1))
Parameter of the GA feature selection. Size of the children population (should
be smaller or equal to mu).

(numeric(1))
Parameter of the GA feature selection. Probability of choosing a bit from the
first parent within the crossover mutation.

(numeric(1))
Parameter of the GA feature selection. Probability of flipping a feature bit, i.e.
switch between selecting / deselecting a feature.

FeatSelResult 47

prob (numeric(1))
Parameter of the random feature selection. Probability of choosing a feature.
method (character(1))

Parameter of the sequential feature selection. A character representing the method.
Possible values are sf's (forward search), sbs (backward search), sffs (floating
forward search) and sfbs (floating backward search).

alpha (numeric(1))
Parameter of the sequential feature selection. Minimal required value of im-
provement difference for a forward / adding step. Default is 0.01.

beta (numeric(1))
Parameter of the sequential feature selection. Minimal required value of im-
provement difference for a backward / removing step. Negative values imply
that you allow a slight decrease for the removal of a feature. Default is -0.001.

Value
(FeatSelControl). The specific subclass is one of FeatSelControlExhaustive, FeatSelControlRan-
dom, FeatSelControlSequential, FeatSelControlGA.

References

Ron Kohavi and George H. John, Wrappers for feature subset selection, Artificial Intelligence Vol-
ume 97, 1997, 273-324. http://ai.stanford.edu/~ronnyk/wrappersPrint.pdf.

See Also
Other featsel: analyzeFeatSelResult(), getFeatSelResult (), makeFeatSelWrapper(), selectFeatures()

FeatSelResult Result of feature selection.

Description

Container for results of feature selection. Contains the obtained features, their performance values
and the optimization path which lead there.
You can visualize it using analyzeFeatSelResult.

Details

Object members:

learner (Learner) Learner that was optimized.
control (FeatSelControl) Control object from feature selection.
x (character) Vector of feature names identified as optimal.

y (numeric) Performance values for optimal x.

http://ai.stanford.edu/~ronnyk/wrappersPrint.pdf

48 filterFeatures

threshold (numeric) Vector of finally found and used thresholds if tune. threshold was enabled
in FeatSelControl, otherwise not present and hence NULL.

opt.path (ParamHelpers::OptPath) Optimization path which lead to x.

filterFeatures Filter features by thresholding filter values.

Description

First, calls generateFilterValuesData. Features are then selected via select and val.

Usage
filterFeatures(
task,
method = "FSelectorRcpp_information.gain”,
fval = NULL,
perc = NULL,
abs = NULL,
threshold = NULL,
fun = NULL,

fun.args = NULL,
mandatory.feat = NULL,
select.method = NULL,
base.methods = NULL,
cache = FALSE,

Arguments

task (Task)
The task.

method (character(1))
See listFilterMethods. Default is “FSelectorRcpp_information.gain”.

fval (FilterValues)
Result of generateFilterValuesData. If you pass this, the filter values in the ob-
ject are used for feature filtering. method and . .. are ignored then. Default is
NULL and not used.

perc (numeric(1))
If set, select perc*100 top scoring features. perc =1 means to select all fea-
tures.Mutually exclusive with argumentsabs, thresholdandfun‘.

abs (numeric(1))

If set, select abs top scoring features. Mutually exclusive with arguments perc,
threshold and fun.

filterFeatures 49

threshold (numeric(1))
If set, select features whose score exceeds threshold. Mutually exclusive with
arguments perc, abs and fun.

fun (function)
If set, select features via a custom thresholding function, which must return the
number of top scoring features to select. Mutually exclusive with arguments
perc, abs and threshold.

fun.args (any)
Arguments passed to the custom thresholding function.

mandatory.feat (character)
Mandatory features which are always included regardless of their scores

select.method If multiple methods are supplied in argument method, specify the method that is
used for the final subsetting.

base.methods If method is an ensemble filter, specify the base filter methods which the ensem-
ble method will use.

cache (character (1) I logical)
Whether to use caching during filter value creation. See details.

(any)
Passed down to selected filter method.

Value

Task.

Caching

If cache = TRUE, the default mlr cache directory is used to cache filter values. The directory is
operating system dependent and can be checked with getCacheDir ().

The default cache can be cleared with deleteCacheDir (). Alternatively, a custom directory can
be passed to store the cache.

Note that caching is not thread safe. It will work for parallel computation on many systems, but
there is no guarantee.

Simple and ensemble filters

Besides passing (multiple) simple filter methods you can also pass an ensemble filter method (in a
list). The ensemble method will use the simple methods to calculate its ranking. See 1istFilterEnsembleMethods()
for available ensemble methods.

See Also

Other filter: generateFilterValuesData(), getFilteredFeatures(), listFilterEnsembleMethods(),
listFilterMethods(), makeFilter (), makeFilterEnsemble(), makeFilterWrapper(), plotFilterValues()

50 friedmanPostHocTestBMR

Examples

simple filter

filterFeatures(iris.task, method = "FSelectorRcpp_gain.ratio”, abs = 2)
ensemble filter
filterFeatures(iris.task, method = "E-min",

base.methods = c("FSelectorRcpp_gain.ratio”,
"FSelectorRcpp_information.gain"), abs = 2)

friedmanPostHocTestBMR
Perform a posthoc Friedman-Nemenyi test.

Description

Performs a PMCMRplus::frdAllPairsNemenyiTest for a BenchmarkResult and a selected measure.

This means all pairwise comparisons of learners are performed. The null hypothesis of the
post hoc test is that each pair of learners is equal. If the null hypothesis of the included ad hoc
stats::friedman.test can be rejected an object of class pairwise.htest is returned. If not, the func-
tion returns the corresponding friedman.test.

Note that benchmark results for at least two learners on at least two tasks are required.

Usage

friedmanPostHocTestBMR(
bmr,
measure = NULL,
p.value = 0.05,
aggregation = "default”

)
Arguments

bmr (BenchmarkResult)
Benchmark result.

measure (Measure)
Performance measure. Default is the first measure used in the benchmark exper-
iment.

p.value (numeric(1))
p-value for the tests. Default: 0.05

aggregation (character(1))

“mean” or “default”. See getBMRAggrPerformances for details on “default”.

friedmanTestBMR 51

Value

(pairwise.htest): See PMCMRplus::frdAllPairsNemenyiTest for details. Additionally two com-
ponents are added to the list:

* firejnull (logical(1)):
Whether the according friedman.test rejects the Null hypothesis at the selected p.value

e crit.difference (1ist(2)):
Minimal difference the mean ranks of two learners need to have in order to be significantly
different

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

Examples

see benchmark

friedmanTestBMR Perform overall Friedman test for a BenchmarkResult.

Description

Performs a stats::friedman.test for a selected measure. The null hypothesis is that apart from an
effect of the different (Task), the location parameter (aggregated performance measure) is the same
for each Learner. Note that benchmark results for at least two learners on at least two tasks are
required.

Usage

friedmanTestBMR(bmr, measure = NULL, aggregation = "default”)

Arguments
bmr (BenchmarkResult)
Benchmark result.
measure (Measure)
Performance measure. Default is the first measure used in the benchmark exper-
iment.

aggregation (character(1))
“mean” or “default”. See getBMRAggrPerformances for details on “default”.

52 generateCalibrationData

Value

(htest): See stats::friedman.test for details.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(),
plotBMRRanksAsBarChart (), plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

Examples

see benchmark

fuelsubset. task FuelSubset functional data regression task.

Description

Contains the task (fuelsubset.task). 2 functional covariates and 1 scalar covariate. You have
to predict the heat value of some fuel based on the ultraviolet radiation spectrum and infrared ray
radiation and one scalar column called h2o.

Details

The features and grids are scaled in the same way as in FDboost::FDboost.

References

See Brockhaus, S., Scheipl, F., Hothorn, T., & Greven, S. (2015). The functional linear array model.
Statistical Modelling, 15(3), 279-300.

generateCalibrationData
Generate classifier calibration data.

Description

A calibrated classifier is one where the predicted probability of a class closely matches the rate at
which that class occurs, e.g. for data points which are assigned a predicted probability of class
A of .8, approximately 80 percent of such points should belong to class A if the classifier is well
calibrated. This is estimated empirically by grouping data points with similar predicted probabilities
for each class, and plotting the rate of each class within each bin against the predicted probability
bins.

generateCalibrationData 53

Usage

generateCalibrationData(obj, breaks = "Sturges”, groups = NULL, task.id = NULL)

Arguments

obj (list of Prediction | list of ResampleResult | BenchmarkResult)
Single prediction object, list of them, single resample result, list of them, or a
benchmark result. In case of a list probably produced by different learners you
want to compare, then name the list with the names you want to see in the plots,
probably learner shortnames or ids.

breaks (character(1) | numeric)
If character (1), the algorithm to use in generating probability bins. See hist
for details. If numeric, the cut points for the bins. Default is “Sturges”.

groups (integer(1))
The number of bins to construct. If specified, breaks is ignored. Default is
NULL.

task.id (character(1))
Selected task in BenchmarkResult to do plots for, ignored otherwise. Default is
first task.

Value

CalibrationData. A list containing:

proportion data.frame with columns:

* Learner Name of learner.

* bin Bins calculated according to the breaks or groups argument.

* Class Class labels (for binary classification only the positive class).

* Proportion Proportion of observations from class Class among all obser-
vations with posterior probabilities of class Class within the interval given
in bin.

data data.frame with columns:

¢ Learner Name of learner.

e truth True class label.

* Class Class labels (for binary classification only the positive class).

* Probability Predicted posterior probability of Class.

* bin Bin corresponding to Probability.

task (TaskDesc)
Task description.

References

Vuk, Miha, and Curk, Tomaz. “ROC Curve, Lift Chart, and Calibration Plot.” Metodoloski zvezki.
Vol. 3. No. 1 (2006): 89-108.

54 generateCritDifferencesData

See Also

Other generate_plot_data: generateCritDifferencesData(), generateFeatureImportanceData(),
generateFilterValuesData(), generateLearningCurveData(), generatePartialDependenceData(),
generateThreshVsPerfData(), plotFilterValues()

Other calibration: plotCalibration()

generateCritDifferencesData
Generate data for critical-differences plot.

Description

Generates data that can be used to plot a critical differences plot. Computes the critical differences
according to either the "Bonferroni-Dunn” test or the "Nemenyi" test.

"Bonferroni-Dunn” usually yields higher power as it does not compare all algorithms to each
other, but all algorithms to a baseline instead.

Learners are drawn on the y-axis according to their average rank.

For test = "nemenyi” a bar is drawn, connecting all groups of not significantly different learners.
For test = "bd"” an interval is drawn arround the algorithm selected as a baseline. All learners
within this interval are not signifcantly different from the baseline.

Calculation:

D —a (k(k+ 1))

6N
Where g, is based on the studentized range statistic. See references for details.

Usage

generateCritDifferencesData(
bmr,
measure = NULL,
p.value = 0.05,
baseline = NULL,

test = "bd”
)
Arguments

bmr (BenchmarkResult)
Benchmark result.

measure (Measure)
Performance measure. Default is the first measure used in the benchmark exper-
iment.

p.value (numeric(1))

P-value for the critical difference. Default: 0.05

generateCritDifferencesData 55

baseline

test

Value

(character(1)): (learner.id)

Select a learner. id as baseline for the test = "bd"” ("Bonferroni-Dunn") crit-
ical differences diagram. The critical difference interval will then be positioned
arround this learner. Defaults to best performing algorithm.

For test = "nemenyi”, no baseline is needed as it performs all pairwise com-
parisons.

(character(1))

Test for which the critical differences are computed.

“bd” for the Bonferroni-Dunn Test, which is comparing all classifiers to a baseline,
thus performing a comparison of one classifier to all others.

Algorithms not connected by a single line are statistically different from the
baseline.

“nemenyi” for the PMCMRplus::frdAllPairsNemenyiTest which is comparing

all classifiers to each other. The null hypothesis that there is a difference be-
tween the classifiers can not be rejected for all classifiers that have a single grey
bar connecting them.

(critDifferencesData). List containing:

data

(data.frame) containing the info for the descriptive part of the plot

friedman.nemenyi.test

cd.info
baseline

p.value

See Also

(list) of class pairwise.htest
contains the calculated PMCMRplus::frd AllPairsNemenyiTest

(list) containing info on the critical difference and its positioning
baseline chosen for plotting

p-value used for the PMCMRplus::frd AllPairsNemenyiTest and for computation
of the critical difference

Other generate_plot_data: generateCalibrationData(), generateFeatureImportanceData(),
generateFilterValuesData(), generateLearningCurveData(), generatePartialDependenceData(),
generateThreshVsPerfData(), plotFilterValues()

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), getBMRAggrPerformances(), getBMRFeatSelResults(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds(), getBMRTuneResults (), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

56 generateFeatureImportanceData

generateFeatureImportanceData
Generate feature importance.

Description

Estimate how important individual features or groups of features are by contrasting prediction per-
formances. For method “permutation.importance” compute the change in performance from per-
muting the values of a feature (or a group of features) and compare that to the predictions made on
the unmcuted data.

Usage
generateFeatureImportanceData(
task,
method = "permutation.importance”,
learner,

features = getTaskFeatureNames(task),
interaction = FALSE,

measure,

contrast = function(x, y) x -y,
aggregation = mean,

nmc = 50L,

replace = TRUE,

local = FALSE,

show.info = FALSE

)
Arguments

task (Task)
The task.

method (character(1))
The method used to compute the feature importance. The only method available
is “permutation.importance”. Default is “permutation.importance”.

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makelearner.

features (character)
The features to compute the importance of. The default is all of the features
contained in the Task.

interaction (logical(1))

Whether to compute the importance of the features argument jointly. For
method = "permutation. importance” this entails permuting the values of all
features together and then contrasting the performance with that of the perfor-
mance without the features being permuted. The default is FALSE.

generateFeaturelmportanceData 57

measure

contrast

aggregation

nmc

replace

local

show. info

Value

(Measure)
Performance measure. Default is the first measure used in the benchmark exper-
iment.

(function)
A difference function that takes a numeric vector and returns a numeric vector
of the same length. The default is element-wise difference between the vectors.

(function)
A function which aggregates the differences. This function must take a numeric
vector and return a numeric vector of length 1. The default is mean.

(integer(1))

The number of Monte-Carlo iterations to use in computing the feature impor-
tance. If nmc == -1 and method = "permutation. importance” then all permu-
tations of the features are used. The default is 50.

(logical(1))

Whether or not to sample the feature values with or without replacement. The
default is TRUE.

(logical(1))

Whether to compute the per-observation importance. The default is FALSE.
(logical(1))

Whether progress output (feature name, time elapsed) should be displayed.

(FeatureImportance). A named list which contains the computed feature importance and the input

arguments.

Object members:

res

interaction

measure

(data.frame)

Has columns for each feature or combination of features (colon separated) for
which the importance is computed. A row coresponds to importance of the
feature specified in the column for the target.

(logical(1))
Whether or not the importance of the features was computed jointly rather
than individually.

(Measure)

The measure used to compute performance.

contrast

aggregation

replace

(function)
The function used to compare the performance of predictions.

(function)

The function which is used to aggregate the contrast between the performance
of predictions across Monte-Carlo iterations.

(logical(1))

Whether or not, when method = "permutation. importance”, the feature val-
ues are sampled with replacement.

58 generateFilter ValuesData

nmc (integer(1))
The number of Monte-Carlo iterations used to compute the feature importance.
When nmc == -1 and method = "permutation. importance” all permutations
are used.

local (logical(1))

Whether observation-specific importance is computed for the features.

References

Jerome Friedman; Greedy Function Approximation: A Gradient Boosting Machine, Annals of
Statistics, Vol. 29, No. 5 (Oct., 2001), pp. 1189-1232.

See Also

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFilterValuesDa
generateLearningCurveData(), generatePartialDependenceData(), generateThreshVsPerfData(),
plotFilterValues()

Examples

1rn = makelLearner(”classif.rpart”, predict.type = "prob")

fit = train(lrn, iris.task)

imp = generateFeaturelmportanceData(iris.task, "permutation.importance”,
1rn, "Petal.Width", nmc = 10L, local = TRUE)

generateFilterValuesData
Calculates feature filter values.

Description

Calculates numerical filter values for features. For a list of features, use listFilterMethods.

Usage
generateFilterValuesData(
task,
method = "FSelectorRcpp_information.gain”,

nselect = getTaskNFeats(task),

more.args = list()

generateFilter ValuesData 59

Arguments
task (Task)
The task.
method (character | list)
Filter method(s). In case of ensemble filters the 1ist notation needs to be used.
See the examples for more information. Default is “FSelectorRcpp_information.gain”.
nselect (integer(1))
Number of scores to request. Scores are getting calculated for all features per
default.
(any)
Passed down to selected method. Can only be use if method contains one ele-
ment.
more.args (named list)
Extra args passed down to filter methods. List elements are named with the filter
method name the args should be passed down to. A more general and flexible
option than Default is empty list.
Value

(FilterValues). A 1ist containing:

task.desc [TaskDesc)
Task description.

data (data. frame) with columns:
¢ name(character)
Name of feature.

¢ type(character)
Feature column type.

¢ method(numeric)
One column for each method with the feature importance values.

Simple and ensemble filters

Besides passing (multiple) simple filter methods you can also pass an ensemble filter method (in a
list). The ensemble method will use the simple methods to calculate its ranking. See 1istFilterEnsembleMethods()
for available ensemble methods.

See Also

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImporta
generateLearningCurveData(), generatePartialDependenceData(), generateThreshVsPerfData(),
plotFilterValues()

Other filter: filterFeatures(), getFilteredFeatures(), listFilterEnsembleMethods(), listFilterMethods(),
makeFilter (), makeFilterEnsemble(), makeFilterWrapper(), plotFilterValues()

60 generateHyperParsEffectData

Examples

two simple filter methods
fval = generateFilterValuesData(iris.task,
method = c("FSelectorRcpp_gain.ratio”, "FSelectorRcpp_information.gain”))
using ensemble method "E-mean”
fval = generateFilterValuesData(iris.task,
method = list("E-mean”, c("FSelectorRcpp_gain.ratio”,
"FSelectorRcpp_information.gain")))

generateHyperParsEffectData
Generate hyperparameter effect data.

Description

Generate cleaned hyperparameter effect data from a tuning result or from a nested cross-validation
tuning result. The object returned can be used for custom visualization or passed downstream to an
out of the box mlr method, plotHyperParsEffect.

Usage

generateHyperParsEffectData(
tune.result,
include.diagnostics = FALSE,
trafo = FALSE,
partial.dep = FALSE

Arguments

tune.result (TuneResult | ResampleResult)
Result of tuneParams (or resample ONLY when used for nested cross-validation).
The tuning result (or results if the output is from nested cross-validation), also
containing the optimizer results. If nested CV output is passed, each element
in the list will be considered a separate run, and the data from each run will be
included in the dataframe within the returned HyperParsEffectData.

include.diagnostics

(logical(1))

Should diagnostic info (eol and error msg) be included? Default is FALSE.
trafo (logical(1))

Should the units of the hyperparameter path be converted to the transformed

scale? This is only useful when trafo was used to create the path. Default is
FALSE.

generateLearningCurveData 61

partial.dep (logical(1))

Should partial dependence be requested based on converting to reg task? This
sets a flag so that we know to use partial dependence downstream. This should
most likely be set to TRUE if 2 or more hyperparameters were tuned simultane-
ously. Partial dependence should always be requested when more than 2 hyper-
parameters were tuned simultaneously. Setting to TRUE will cause plotHyper-
ParsEffect to automatically plot partial dependence when called downstream.
Default is FALSE.

Value

(HyperParsEffectData) Object containing the hyperparameter effects dataframe, the tuning per-
formance measures used, the hyperparameters used, a flag for including diagnostic info, a flag for
whether nested cv was used, a flag for whether partial dependence should be generated, and the
optimization algorithm used.

Examples

Not run:

3-fold cross validation

ps = makeParamSet(makeDiscreteParam("C"”, values = 2%(-4:4)))

ctrl = makeTuneControlGrid()

rdesc = makeResampleDesc("CV", iters = 3L)

res = tuneParams("classif.ksvm”, task = pid.task, resampling = rdesc,
par.set = ps, control = ctrl)

data = generateHyperParsEffectData(res)

plt = plotHyperParsEffect(data, x = "C", y = "mmce.test.mean")

plt + ylab("Misclassification Error")

nested cross validation
ps = makeParamSet(makeDiscreteParam(”C"”, values = 2%(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
1rn = makeTuneWrapper(”classif.ksvm”, control = ctrl,
resampling = rdesc, par.set = ps)
res = resample(lrn, task = pid.task, resampling = cv2,
extract = getTuneResult)
data = generateHyperParsEffectData(res)
plotHyperParsEffect(data, x = "C", y = "mmce.test.mean”, plot.type = "line")

End(Not run)

generatelLearningCurveData
Generates a learning curve.

Description

Observe how the performance changes with an increasing number of observations.

62 generateLearningCurveData

Usage

generatelLearningCurveData(
learners,
task,
resampling = NULL,
percs = seq(@0.1, 1, by = 0.1),
measures,
stratify = FALSE,
show.info = getMlrOption("show.info")

)
Arguments

learners [(list of) Learner)
Learning algorithms which should be compared.

task (Task)
The task.

resampling (ResampleDesc | Resamplelnstance)
Resampling strategy to evaluate the performance measure. If no strategy is given
a default "Holdout" will be performed.

percs (numeric)
Vector of percentages to be drawn from the training split. These values represent
the x-axis. Internally makeDownsampleWrapper is used in combination with
benchmark. Thus for each percentage a different set of observations is drawn
resulting in noisy performance measures as the quality of the sample can differ.

measures [(list of) Measure)
Performance measures to generate learning curves for, representing the y-axis.

stratify (logical(1))
Only for classification: Should the downsampled data be stratified according to
the target classes?

show.info (logical(1))
Print verbose output on console? Default is set via configureMIr.

Value

(LearningCurveData). A 1ist containing:

e The Task

e List of Measure)
Performance measures

e data (data.frame) with columns:

— learner Names of learners.
— percentage Percentages drawn from the training split.
— One column for each Measure passed to generateLearningCurveData.

generatePartial DependenceData 63

See Also

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImporta
generateFilterValuesData(), generatePartialDependenceData(), generateThreshVsPerfData(),
plotFilterValues()

Other learning_curve: plotLearningCurve()

Examples

r = generateLearningCurveData(list("”classif.rpart”, "classif.knn"),
task = sonar.task, percs = seq(@0.2, 1, by = 0.2),
measures = list(tp, fp, tn, fn),
resampling = makeResampleDesc(method = "Subsample”, iters = 5),
show.info = FALSE)

plotLearningCurve(r)

generatePartialDependenceData
Generate partial dependence.

Description

Estimate how the learned prediction function is affected by one or more features. For a learned
function f(x) where x is partitioned into x_s and x_c, the partial dependence of f on x_s can be
summarized by averaging over x_c and setting x_s to a range of values of interest, estimating
E_(x_c)(f(x_s, x_c)). The conditional expectation of f at observation i is estimated similarly. Addi-
tionally, partial derivatives of the marginalized function w.r.t. the features can be computed.

This function requires the mmpf package to be installed. It is currently not on CRAN, but can be
installed through GitHub using devtools: :install_github('zmjones/mmpf/pkg").

Usage

generatePartialDependenceData(
obj,
input,
features = NULL,
interaction = FALSE,
derivative = FALSE,
individual = FALSE,
fun = mean,
bounds = c(gnorm(0.025), gnorm(@.975)),
uniform = TRUE,
n = c(19, NA),

64

Arguments

obj

input

features

interaction

derivative

individual

fun

bounds

generatePartialDependenceData

(WrappedModel)
Result of train.

(data.frame | Task)
Input data.

character
A vector of feature names contained in the training data. If not specified all
features in the input will be used.

(logical(1))

Whether the features should be interacted or not. If TRUE then the Cartesian
product of the prediction grid for each feature is taken, and the partial depen-
dence at each unique combination of values of the features is estimated. Note
that if the length of features is greater than two, plotPartialDependence cannot
be used. If FALSE each feature is considered separately. In this case features
can be much longer than two. Default is FALSE.

(logical(1))

Whether or not the partial derivative of the learned function with respect to the
features should be estimated. If TRUE interaction must be FALSE. The partial
derivative of individual observations may be estimated. Note that computation
time increases as the learned prediction function is evaluated at gridsize points
* the number of points required to estimate the partial derivative. Additional
arguments may be passed to numDeriv::grad (for regression or survival tasks) or
numDeriv::jacobian (for classification tasks). Note that functions which are not
smooth may result in estimated derivatives of O (for points where the function
does not change within +/- epsilon) or estimates trending towards +/- infinity (at
discontinuities). Default is FALSE.

(logical(1))

Whether to plot the individual conditional expectation curves rather than the ag-
gregated curve, i.e., rather than aggregating (using fun) the partial dependences
of features, plot the partial dependences of all observations in data across all
values of the features. The algorithm is developed in Goldstein, Kapelner,
Bleich, and Pitkin (2015). Default is FALSE.

function

A function which operates on the output on the predictions made on the input
data. For regression this means a numeric vector, and, e.g., for a multiclass
classification problem, this migh instead be probabilities which are returned as
a numeric matrix. This argument can return vectors of arbitrary length, how-
ever, if their length is greater than one, they must by named, e.g., fun = mean
or fun = function(x) c("mean” =mean(x), "variance” =var(x)). The de-
fault is the mean, unless obj is classification with predict.type = "response”
in which case the default is the proportion of observations predicted to be in
each class.

(numeric(2))
The value (lower, upper) the estimated standard error is multiplied by to es-
timate the bound on a confidence region for a partial dependence. Ignored if

generatePartial DependenceData 65

predict.type !="se" for the learner. Default is the 2.5 and 97.5 quantiles
(-1.96, 1.96) of the Gaussian distribution.

uniform (logical(1))
Whether or not the prediction grid for the features is a uniform grid of size
n[1] or sampled with replacement from the input. Default is TRUE.

n (integer21)
The first element of n gives the size of the prediction grid created for each fea-
ture. The second element of n gives the size of the sample to be drawn without
replacement from the input data. Setting n[2] less than the number of rows in
the input will decrease computation time. The default for n[1] is 10, and the
default for n[2] is the number of rows in the input.

additional arguments to be passed to mmpf’s marginalPrediction.

Value

PartialDependenceData. A named list, which contains the partial dependence, input data, target,
features, task description, and other arguments controlling the type of partial dependences made.

Object members:

data data.frame
Has columns for the prediction: one column for regression and survival analysis,
and a column for class and the predicted probability for classification as well as
a a column for each element of features. If individual = TRUE then there is
an additional column idx which gives the index of the data that each prediction
corresponds to.

task.desc TaskDesc
Task description.

target Target feature for regression, target feature levels for classification, survival and
event indicator for survival.

features character
Features argument input.

interaction (logical(1))
Whether or not the features were interacted (i.e. conditioning).

derivative (logical(1))
Whether or not the partial derivative was estimated.

individual (logical(1))
Whether the partial dependences were aggregated or the individual curves are
retained.

References

Goldstein, Alex, Adam Kapelner, Justin Bleich, and Emil Pitkin. “Peeking inside the black box:
Visualizing statistical learning with plots of individual conditional expectation.” Journal of Com-
putational and Graphical Statistics. Vol. 24, No. 1 (2015): 44-65.

Friedman, Jerome. “Greedy Function Approximation: A Gradient Boosting Machine.” The Annals
of Statistics. Vol. 29. No. 5 (2001): 1189-1232.

66 generateThreshVsPerfData

See Also

Other partial_dependence: plotPartialDependence()

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImporta
generateFilterValuesData(), generatelLearningCurveData(), generateThreshVsPerfData(),
plotFilterValues()

Examples

1rn = makeLearner("regr.svm"”)

fit = train(lrn, bh.task)

pd = generatePartialDependenceData(fit, bh.task, "lstat"”)
plotPartialDependence(pd, data = getTaskData(bh.task))

1rn = makelLearner(”"classif.rpart”, predict.type = "prob”)

fit = train(lrn, iris.task)

pd = generatePartialDependenceData(fit, iris.task, "Petal.Width")
plotPartialDependence(pd, data = getTaskData(iris.task))

generateThreshVsPerfData
Generate threshold vs. performance(s) for 2-class classification.

Description

Generates data on threshold vs. performance(s) for 2-class classification that can be used for plot-
ting.

Usage

generateThreshVsPerfData(
obj,
measures,
gridsize = 100L,
aggregate = TRUE,
task.id = NULL

Arguments

obj (list of Prediction | list of ResampleResult | BenchmarkResult)
Single prediction object, list of them, single resample result, list of them, or a
benchmark result. In case of a list probably produced by different learners you
want to compare, then name the list with the names you want to see in the plots,
probably learner shortnames or ids.

getBMRAggrPerformances 67

measures (Measure | list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task,
see here getDefaultMeasure.

gridsize (integer(1))
Grid resolution for x-axis (threshold). Default is 100.

aggregate (logical(1))
Whether to aggregate ResamplePredictions or to plot the performance of each
iteration separately. Default is TRUE.

task.id (character(1))
Selected task in BenchmarkResult to do plots for, ignored otherwise. Default is
first task.
Value

(ThreshVsPerfData). A named list containing the measured performance across the threshold grid,
the measures, and whether the performance estimates were aggregated (only applicable for (list of)
ResampleResults).

See Also

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImporta
generateFilterValuesData(), generatelLearningCurveData(), generatePartialDependenceData(),
plotFilterValues()

Other thresh_vs_perf: plotROCCurves(), plotThreshVsPerf ()

getBMRAggrPerformances
Extract the aggregated performance values from a benchmark result.

Description

Either a list of lists of “aggr” numeric vectors, as returned by resample, or these objects are rbind-ed
with extra columns “task.id”” and “learner.id”.

Usage

getBMRAggrPerformances(
bmr,
task.ids = NULL,
learner.ids = NULL,
as.df = FALSE,
drop = FALSE

68 getBMRFeatSelResults

Arguments
bmr (BenchmarkResult)
Benchmark result.
task.ids (character(1))
Restrict result to certain tasks. Default is all.
learner.ids (character(1))
Restrict result to certain learners. Default is all.
as.df (character(1))
Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
drop (logical(1))
If drop is FALSE (the default), a nested list with the following structure is re-
turned:
res[task.ids][learner.ids].
If drop is set to TRUE it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.
Value

(list | data.frame). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRFeatSelResults(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getBMRFeatSelResults Extract the feature selection results from a benchmark result.

Description

Returns a nested list of FeatSelResults. The first level of nesting is by data set, the second by learner,
the third for the benchmark resampling iterations. If as.df is TRUE, a data frame with “task.id”,
“learner.id”, the resample iteration and the selected features is returned.

Note that if more than one feature is selected and a data frame is requested, there will be multiple
rows for the same dataset-learner-iteration; one for each selected feature.

getBMRFeatSelResults 69

Usage

getBMRFeatSelResults(
bmr,
task.ids = NULL,
learner.ids = NULL,

as.df = FALSE,
drop = FALSE
)
Arguments

bmr (BenchmarkResult)
Benchmark result.

task.ids (character(1))
Restrict result to certain tasks. Default is all.

learner.ids (character(1))
Restrict result to certain learners. Default is all.

as.df (character(1))
Return one data.frame as result - or a list of lists of objects?. Default is FALSE.

drop (logical(1))
If drop is FALSE (the default), a nested list with the following structure is re-
turned:
res[task.ids][learner.ids].
If drop is set to TRUE it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.

See Also

Other benchmark: BenchmarkResult, batchmark (), benchmark (), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

70 getBMRFilteredFeatures

getBMRFilteredFeatures
Extract the feature selection results from a benchmark result.

Description

Returns a nested list of characters The first level of nesting is by data set, the second by learner,
the third for the benchmark resampling iterations. The list at the lowest level is the list of selected
features. If as.df is TRUE, a data frame with “task.id”, “learner.id”, the resample iteration and the
selected features is returned.

Note that if more than one feature is selected and a data frame is requested, there will be multiple
rows for the same dataset-learner-iteration; one for each selected feature.

Usage

getBMRFilteredFeatures(
bmr,
task.ids = NULL,
learner.ids = NULL,

as.df = FALSE,
drop = FALSE
)
Arguments
bmr (BenchmarkResult)
Benchmark result.
task.ids (character(1))
Restrict result to certain tasks. Default is all.
learner.ids (character(1))
Restrict result to certain learners. Default is all.
as.df (character(1))
Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
drop (logical(1))
If drop is FALSE (the default), a nested list with the following structure is re-
turned:

res[task.ids][learner.ids].

If drop is set to TRUE it is checked if the list structure can be simplified.

If only one learner was passed, a list with entries for each task is returned.

If only one task was passed, the entries are named after the corresponding
learner.

For an experiment with both one task and learner, the whole list structure is re-
moved.

Note that the name of the task/learner will be dropped from the return object.

getBMRLearnerlds 71

Value

(list | data.frame). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getBMRLearnerlIds Return learner ids used in benchmark.

Description

Gets the IDs of the learners used in a benchmark experiment.

Usage

getBMRLearnerIds(bmr)

Arguments
bmr (BenchmarkResult)
Benchmark result.
Value
(character).
See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerShortNames(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

72 getBMRI earnerShortNames

getBMRLearners Return learners used in benchmark.

Description

Gets the learners used in a benchmark experiment.

Usage

getBMRLearners (bmr)

Arguments

bmr (BenchmarkResult)
Benchmark result.

Value

(list).

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getBMRLearnerShortNames
Return learner short.names used in benchmark.

Description

Gets the learner short.names of the learners used in a benchmark experiment.

Usage

getBMRLearnerShortNames (bmr)

Arguments

bmr (BenchmarkResult)
Benchmark result.

getBMRMeasurelds 73

Value

(character).

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearners(),
getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getBMRMeasurelds Return measures IDs used in benchmark.

Description

Gets the IDs of the measures used in a benchmark experiment.

Usage

getBMRMeasureIds(bmr)

Arguments
bmr (BenchmarkResult)
Benchmark result.
Value

(list). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasures(), getBMRModels (), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

74 getBMRModels

getBMRMeasures Return measures used in benchmark.

Description

Gets the measures used in a benchmark experiment.

Usage
getBMRMeasures (bmr)
Arguments
bmr (BenchmarkResult)
Benchmark result.
Value

(list). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRModels(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getBMRModels Extract all models from benchmark result.

Description

A list of lists containing all WrappedModels trained in the benchmark experiment.

If models is FALSE in the call to benchmark, the function will return NULL.

Usage

getBMRModels(bmr, task.ids = NULL, learner.ids = NULL, drop = FALSE)

getBMRPerformances 75

Arguments
bmr (BenchmarkResult)
Benchmark result.
task.ids (character(1))
Restrict result to certain tasks. Default is all.
learner.ids (character(1))
Restrict result to certain learners. Default is all.
drop (logical(1))
If drop is FALSE (the default), a nested list with the following structure is re-
turned:
res[task.ids][learner.ids].
If drop is set to TRUE it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.
Value
(list).
See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRPerformances(), getBMRPredictions(),
getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getBMRPerformances Extract the test performance values from a benchmark result.

Description

Either a list of lists of “measure.test” data.frames, as returned by resample, or these objects are
rbind-ed with extra columns “task.id” and “learner.id”.

Usage

getBMRPerformances(
bmr,
task.ids = NULL,
learner.ids = NULL,

76 getBMRPredictions

as.df = FALSE,
drop = FALSE
)
Arguments

bmr (BenchmarkResult)
Benchmark result.

task.ids (character(1))
Restrict result to certain tasks. Default is all.

learner.ids (character(1))
Restrict result to certain learners. Default is all.

as.df (character(1))
Return one data.frame as result - or a list of lists of objects?. Default is FALSE.

drop (logical(1))
If drop is FALSE (the default), a nested list with the following structure is re-
turned:
res[task.ids][learner.ids].
If drop is set to TRUE it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPredictions(),
getBMRTaskDescs (), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getBMRPredictions Extract the predictions from a benchmark result.

Description
Either a list of lists of ResamplePrediction objects, as returned by resample, or these objects are
rbind-ed with extra columns “task.id” and “learner.id”.
If predict. type is “prob”, the probabilities for each class are returned in addition to the response.
If keep.pred is FALSE in the call to benchmark, the function will return NULL.

getBMRPredictions 77

Usage

getBMRPredictions(
bmr,
task.ids = NULL,
learner.ids = NULL,

as.df = FALSE,
drop = FALSE
)
Arguments

bmr (BenchmarkResult)
Benchmark result.

task.ids (character(1))
Restrict result to certain tasks. Default is all.

learner.ids (character(1))
Restrict result to certain learners. Default is all.

as.df (character(1))
Return one data.frame as result - or a list of lists of objects?. Default is FALSE.

drop (logical(1))
If drop is FALSE (the default), a nested list with the following structure is re-
turned:
res[task.ids][learner.ids].
If drop is set to TRUE it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.

See Also

Other benchmark: BenchmarkResult, batchmark (), benchmark (), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRTaskDescs (), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

78 getBMRTaskDescs

getBMRTaskDescriptions
Extract all task descriptions from benchmark result (DEPRECATED,).

Description

A list containing all TaskDescs for each task contained in the benchmark experiment.

Usage

getBMRTaskDescriptions(bmr)

Arguments
bmr (BenchmarkResult)
Benchmark result.
Value
(list).
getBMRTaskDescs Extract all task descriptions from benchmark result.
Description

A list containing all TaskDescs for each task contained in the benchmark experiment.

Usage
getBMRTaskDescs (bmr)
Arguments
bmr (BenchmarkResult)
Benchmark result.
Value

(list).

getBMRTasklds 79

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getBMRTaskIds Return task ids used in benchmark.

Description

Gets the task IDs used in a benchmark experiment.

Usage

getBMRTaskIds (bmr)

Arguments

bmr (BenchmarkResult)
Benchmark result.

Value

(character).

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs(), getBMRTuneResults (), plotBMRBoxplots(), plotBMRRanksAsBarChart (.
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

80 getBMRTuneResults

getBMRTuneResults Extract the tuning results from a benchmark result.

Description

Returns a nested list of TuneResults. The first level of nesting is by data set, the second by learner,
the third for the benchmark resampling iterations. If as.df is TRUE, a data frame with the “task.id”,
“learner.id”, the resample iteration, the parameter values and the performances is returned.

Usage

getBMRTuneResults(
bmr,
task.ids = NULL,
learner.ids = NULL,

as.df = FALSE,
drop = FALSE
)
Arguments

bmr (BenchmarkResult)
Benchmark result.

task.ids (character(1))
Restrict result to certain tasks. Default is all.

learner.ids (character(1))
Restrict result to certain learners. Default is all.

as.df (character(1))
Return one data.frame as result - or a list of lists of objects?. Default is FALSE.

drop (logical(1))
If drop is FALSE (the default), a nested list with the following structure is re-
turned:
res[task.ids][learner.ids].
If drop is set to TRUE it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.

Value

(list | data.frame). See above.

getCaretParamSet 81

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds (), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

getCaretParamSet Get tuning parameters from a learner of the caret R-package.

Description

Constructs a grid of tuning parameters from a learner of the caret R-package. These values are then
converted into a list of non-tunable parameters (par.vals) and a tunable ParamHelpers::ParamSet
(par.set), which can be used by tuneParams for tuning the learner. Numerical parameters will
either be specified by their lower and upper bounds or they will be discretized into specific values.

Usage

getCaretParamSet(learner, length = 3L, task, discretize = TRUE)

Arguments

learner (character(1))
The name of the learner from caret (cf. https://topepo.github.io/caret/
available-models.html). Note that the names in caret often differ from the
ones in mlr.

length (integer (1))
A length / precision parameter which is used by caret for generating the grid of
tuning parameters. caret generates either as many values per tuning parameter
/ dimension as defined by length or only a single value (in case of non-tunable
par.vals).

task (Task)
Learning task, which might be requested for creating the tuning grid.

discretize (logical(1))
Should the numerical parameters be discretized? Alternatively, they will be de-
fined by their lower and upper bounds. The default is TRUE.

Value

(1ist(2)). A list of parameters:

* par.vals contains a list of all constant tuning parameters

* par.set is a ParamHelpers::ParamSet, containing all the configurable tuning parameters

https://topepo.github.io/caret/available-models.html
https://topepo.github.io/caret/available-models.html

82 getClassWeightParam

Examples

if (requireNamespace("caret”) && requireNamespace("mlbench”)) {
library(caret)
classifTask = makeClassifTask(data = iris, target = "Species")

(1) classification (random forest) with discretized parameters
getCaretParamSet("rf"”, length = 9L, task = classifTask, discretize = TRUE)

(2) regression (gradient boosting machine) without discretized parameters
library(mlbench)

data(BostonHousing)

regrTask = makeRegrTask(data = BostonHousing, target = "medv")
getCaretParamSet("gbm”, length = 9L, task = regrTask, discretize = FALSE)

getClassWeightParam Get the class weight parameter of a learner.

Description

Gets the class weight parameter of a learner.

Usage
getClassWeightParam(learner, 1lrn.id = NULL)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
1lrn.id (character)
Only used for BaseEnsembles. It is possible that multiple learners in a base
ensemble have a class weight param. Specify the learner from which the class
weight should be extracted.
Value

numeric LearnerParam: A numeric parameter object, containing the class weight parameter of the
given learner.

See Also

Other learner: LearnerProperties, getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(),
getLearnerParVals(), getLearnerParamSet (), getLearnerPredictType(), getLearnerShortName(),

getLearnerType(), getParamSet(), helpLearner(), helpLearnerParam(), makeLearner(),

makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(), setPredictThreshold(),

setPredictType()

getConfMatrix 83

getConfMatrix Confusion matrix.

Description

getConfMatrix is deprecated. Please use calculateConfusionMatrix.

Calculates confusion matrix for (possibly resampled) prediction. Rows indicate true classes, columns
predicted classes.

The marginal elements count the number of classification errors for the respective row or col-
umn, i.e., the number of errors when you condition on the corresponding true (rows) or predicted
(columns) class. The last element in the margin diagonal displays the total amount of errors.

Note that for resampling no further aggregation is currently performed. All predictions on all test
sets are joined to a vector yhat, as are all labels joined to a vector y. Then yhat is simply tabulated
vs y, as if both were computed on a single test set. This probably mainly makes sense when cross-
validation is used for resampling.

Usage

getConfMatrix(pred, relative = FALSE)

Arguments
pred (Prediction)
Prediction object.
relative (logical(1))
If TRUE rows are normalized to show relative frequencies. Default is FALSE.
Value

(matrix). A confusion matrix.

See Also

predict. WrappedModel

84 getFailureModelDump

getDefaultMeasure Get default measure.

Description

Get the default measure for a task type, task, task description or a learner. Currently these are:
classif: mmce

regr: mse

cluster: db

surv: cindex

costsen: mcp

multilabel: multilabel.hamloss

Usage
getDefaultMeasure(x)
Arguments
X ([character(1)° | Task | TaskDesc | Learner)
Task type, task, task description, learner name, a learner, or a type of learner
(e.g. "classif").
Value
(Measure).

getFailureModelDump Return the error dump of FailureModel.

Description
Returns the error dump that can be used with debugger() to evaluate errors. If configureMlr
configuration on.error.dump is FALSE, this returns NULL.

Usage
getFailureModelDump(model)

Arguments
model (WrappedModel)
The model.
Value

(last.dump).

getFailureModelMsg 85

getFailureModelMsg Return error message of FailureModel.

Description

Such a model is created when one sets the corresponding option in configureMlr. If no failure
occurred, NA is returned.

For complex wrappers this getter returns the first error message encountered in ANY model that
failed.

Usage

getFailureModelMsg(model)

Arguments
model (WrappedModel)
The model.
Value
(character(1)).
getFeatSelResult Returns the selected feature set and optimization path after training.
Description

Returns the selected feature set and optimization path after training.

Usage

getFeatSelResult(object)

Arguments
object (WrappedModel)
Trained Model created with makeFeatSelWrapper.
Value
(FeatSelResult).
See Also

Other featsel: FeatSelControl, analyzeFeatSelResult (), makeFeatSelWrapper(), selectFeatures()

86 getFeatureImportance

getFeaturelmportance Calculates feature importance values for trained models.

Description

For some learners it is possible to calculate a feature importance measure. getFeatureImportance
extracts those values from trained models. See below for a list of supported learners.

Usage

getFeatureImportance(object, ...)

Arguments

object (WrappedModel)
Wrapped model, result of train().

(any)
Additional parameters, which are passed to the underlying importance value
generating function.

Details

* boosting
Measure which accounts the gain of Gini index given by a feature in a tree and the weight of
that tree.

* cforest
Permutation principle of the *'mean decrease in accuracy’ principle in randomForest. If auc=TRUE
(only for binary classification), area under the curve is used as measure. The algorithm used
for the survival learner is ’extremely slow and experimental; use at your own risk’. See
party::varimp() for details and further parameters.

e gbm
Estimation of relative influence for each feature. See gbm::relative.influence() for de-
tails and further parameters.

e h2o0
Relative feature importances as returned by h2o: :h2o.varimp().

¢ randomForest
For type = 2 (the default) the "MeanDecreaseGini’ is measured, which is based on the Gini
impurity index used for the calculation of the nodes. Alternatively, you can set type to 1, then
the measure is the mean decrease in accuracy calculated on OOB data. Note, that in this case
the learner’s parameter importance needs to be set to be able to compute feature importance
values. See randomForest: : importance() for details.

* RRF
This is identical to randomForest.

getFilteredFeatures 87

* ranger
Supports both measures mentioned above for the randomForest learner. Note, that you need to
specifically set the learners parameter importance, to be able to compute feature importance
measures. See ranger: :importance() and ranger: :ranger() for details.

* rpart
Sum of decrease in impurity for each of the surrogate variables at each node

* xgboost
The value implies the relative contribution of the corresponding feature to the model calculated
by taking each feature’s contribution for each tree in the model. The exact computation of the
importance in xgboost is undocumented.

Value

(FeatureImportance) An object containing a data. frame of the variable importances and further
information.

getFilteredFeatures Returns the filtered features.

Description

Returns the filtered features.

Usage

getFilteredFeatures(model)

Arguments
model (WrappedModel)
Trained Model created with makeFilterWrapper.
Value
(character).
See Also

Other filter: filterFeatures(), generateFilterValuesData(), listFilterEnsembleMethods(),
listFilterMethods(), makeFilter (), makeFilterEnsemble (), makeFilterWrapper (), plotFilterValues()

88

getFunctionalFeatures

getFunctionalFeatures Get only functional features from a task or a data.frame.

Description

The parameters “subset”, “features”, and “recode.target” are ignored for the data.frame method.

Usage

getFunctionalFeatures(object, subset

S3 method for class 'Task'

getFunctionalFeatures(object, subset

S3 method for class 'data.frame'

getFunctionalFeatures(object, subset

Arguments

object

subset

features

recode. target

Value

= NULL, features, recode.target = "no")
= NULL, features, recode.target = "no")
= NULL, features, recode.target = "no")

(Task/data.frame)
Object to check on.

(integer | logical | NULL)
Selected cases. Either a logical or an index vector. By default NULL if all obser-
vations are used.

(character | integer | logical)

Vector of selected inputs. You can either pass a character vector with the feature
names, a vector of indices, or a logical vector.

In case of an index vector each element denotes the position of the feature name
returned by getTaskFeatureNames.

Note that the target feature is always included in the resulting task, you should
not pass it here. Default is to use all features.

(character(1))
Should target classes be recoded? Supported are binary and multilabel classi-
fication and survival. Possible values for binary classification are “01”, “-1+1”

and “drop.levels”. In the two latter cases the target vector is converted into a
numeric vector. The positive class is coded as “+1” and the negative class either
as “0” or “-1”. “drop.levels” will remove empty factor levels in the target col-
umn. In the multilabel case the logical targets can be converted to factors with
“multilabel.factor”. For survival, you may choose to recode the survival times to
“left”, “right” or “interval2” censored times using “lcens”, “rcens” or “icens”,
respectively. See survival::Surv for the format specification. Default for both

binary classification and survival is “no” (do nothing).

Returns a data. frame containing only the functional features.

getHomogeneousEnsembleModels 89

getHomogeneousEnsembleModels
Deprecated, use getLearnerModel instead.

Description

Deprecated, use getLearnerModel instead.

Usage

getHomogeneousEnsembleModels(model, learner.models = FALSE)

Arguments

model Deprecated.

learner.models Deprecated.

getHyperPars Get current parameter settings for a learner.

Description

Retrieves the current hyperparameter settings of a learner.

Usage

getHyperPars(learner, for.fun = c("train”, "predict”, "both"))

Arguments
learner (Learner)
The learner.
for.fun (character(1))
Restrict the returned settings to hyperparameters corresponding to when the are
used (see ParamHelpers::LearnerParam). Must be a subset of: “train”, “predict”
or “both”. Default is c("train", "predict”, "both").
Details

This function only shows hyperparameters that differ from the learner default (because mlr changed
the default) or if the user set hyperparameters manually during learner creation. If you want to have
an overview of all available hyperparameters use getParamSet ().

Value

(list). A named list of values.

90 getLearnerld

See Also

Other learner: LearnerProperties, getClassWeightParam(), getLearnerId(), getLearnerNote(),
getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(),
getLearnerShortName(), getLearnerType(), getParamSet (), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

Examples

getHyperPars(makeLearner(”classif.ranger"))

set learner hyperparameter “mtry~ manually
getHyperPars(makeLearner(”classif.ranger”, mtry = 100))

getLearnerId Get the ID of the learner.

Description

Get the ID of the learner.

Usage

getLearnerId(learner)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
Value
(character(1)).
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerNote(),
getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(),
getLearnerShortName(), getLearnerType(), getParamSet (), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getLearnerModel 91

getLearnerModel Get underlying R model of learner integrated into mlr.

Description

Get underlying R model of learner integrated into mlr.

Usage

getLearnerModel (model, more.unwrap = FALSE)

Arguments
model (WrappedModel)
The model, returned by e.g., train.
more.unwrap (logical(1))
Some learners are not basic learners from R, but implemented in mlr as meta-
techniques. Examples are everything that inherits from HomogeneousEnsemble.
In these cases, the learner.model is often a list of mlr WrappedModels. This
option allows to strip them further to basic R models. The option is simply
ignored for basic learner models. Default is FALSE.
Value

(any). A fitted model, depending the learner / wrapped package. E.g., a model of class rpart::rpart
for learner “classif.rpart”.

getLearnerNote Get the note for the learner.

Description

Get the note for the learner.

Usage

getLearnerNote(learner)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
Value

(character).

92 getLearnerParamSet

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(),
getlLearnerShortName(), getLearnerType(), getParamSet (), helpLearner (), helpLearnerParam(),
makelLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getLearnerPackages Get the required R packages of the learner.

Description

Get the R packages the learner requires.

Usage

getlLearnerPackages(learner)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
Value
(character).
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(),
getLearnerShortName(), getLearnerType(), getParamSet (), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getlLearnerParamSet Get the parameter set of the learner.

Description

Alias for getParamSet.

Usage

getLearnerParamSet (learner)

getLearnerParVals 93

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
Value
ParamSet.
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerPredictType(),
getLearnerShortName(), getLearnerType(), getParamSet (), helpLearner(), helpLearnerParam(),
makelLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getLearnerParVals Get the parameter values of the learner.

Description

Alias for getHyperPars.
Usage

getlearnerParVals(learner, for.fun = c("train”, "predict”, "both"))
Arguments

learner (Learner | character(1))

The learner. If you pass a string the learner will be created via makeLearner.
for.fun (character(1))

Restrict the returned settings to hyperparameters corresponding to when the are

used (see ParamHelpers::LearnerParam). Must be a subset of: “train”, “predict”
or “both”. Defaultis c("train”, "predict”, "both").

Value

(list). A named list of values.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getlLearnerNote(), getLearnerPackages(), getLearnerParamSet(), getLearnerPredictType(),
getlLearnerShortName(), getLearnerType(), getParamSet(), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

94 getLearnerShortName

getlLearnerPredictType Get the predict type of the learner.

Description

Get the predict type of the learner.

Usage

getLearnerPredictType(learner)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
Value
(character(1)).
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerShortName(), getLearnerType(), getParamSet (), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getLearnerShortName Get the short name of the learner.

Description
For an ordinary learner simply its short name is returned. For wrapped learners, the wrapper id is
successively attached to the short name of the base learner. E.g: “rf.bagged.imputed”

Usage

getLearnerShortName(learner)

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

getLearnerType 95

Value

(character(1)).

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getlLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getlLearnerParamSet(),
getLearnerPredictType(), getLearnerType(), getParamSet (), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

getLearnerType Get the type of the learner:

Description

Get the type of the learner.

Usage

getLearnerType(learner)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
Value
(character(1)).
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getlLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getlLearnerParamSet(),
getlearnerPredictType(), getLearnerShortName(), getParamSet(), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

96

getMultilabelBinaryPerformances

getMlrOptions Returns a list of mlr’s options.

Description

Gets the options for mlr.

Usage

getMlrOptions()

Value

(list).

See Also

Other configure: configureMlr()

getMultilabelBinaryPerformances

Retrieve binary classification measures for multilabel classification

predictions.

Description

Measures the quality of each binary label prediction w.r.t. some binary classification performance

measure.

Usage

getMultilabelBinaryPerformances(pred, measures)

Performance measure(s) to evaluate, must be applicable to binary classification

Arguments
pred (Prediction)
Multilabel Prediction object.
measures (Measure | list of Measure)
performance. Default is mmce.
Value

(named matrix). Performance value(s), column names are measure(s), row names are labels.

getNestedTuneResultsOptPathDf 97

See Also
Other multilabel: makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper()

Examples

see makeMultilabelBinaryRelevanceWrapper

getNestedTuneResultsOptPathDf
Get the opt.paths from each tuning step from the outer resampling.

Description

After you resampled a tuning wrapper (see makeTuneWrapper) with resample(. .., extract =
getTuneResult) this helper returns a data. frame with with all opt.paths combined by rbind.
An additional column iter indicates to what resampling iteration the row belongs.

Usage

getNestedTuneResultsOptPathDf (r, trafo = FALSE)

Arguments
r (ResampleResult)
The result of resampling of a tuning wrapper.
trafo (logical(1))
Should the units of the hyperparameter path be converted to the transformed
scale? This is only necessary when trafo was used to create the opt.paths.
Note that opt.paths are always stored on the untransformed scale. Default is
FALSE.
Value

(data.frame). See above.

See Also

Other tune: TuneControl, getNestedTuneResultsX(), getResamplingIndices(), getTuneResult(),
makeModelMultiplexer (), makeModelMultiplexerParamSet (), makeTuneControlCMAES(), makeTuneControlDesign(
makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControlIrace(), makeTuneControlMBO(),
makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

Examples

see example of makeTuneWrapper

98 getOOBPreds

getNestedTuneResultsX Get the tuned hyperparameter settings from a nested tuning.

Description

After you resampled a tuning wrapper (see makeTuneWrapper) with resample(. .., extract =
getTuneResult) this helper returns a data. frame with the best found hyperparameter settings for
each resampling iteration.

Usage

getNestedTuneResultsX(r)

Arguments
r (ResampleResult)
The result of resampling of a tuning wrapper.
Value

(data.frame). One column for each tuned hyperparameter and one row for each outer resampling
iteration.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getResamplingIndices(), getTuneResult(),
makeModelMultiplexer (), makeModelMultiplexerParamSet (), makeTuneControlCMAES(), makeTuneControlDesign(
makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControlIrace(), makeTuneControlMBO(),
makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

Examples

see example of makeTuneWrapper

getOOBPreds Extracts out-of-bag predictions from trained models.

Description

Learners like randomForest produce out-of-bag predictions. getOOBPreds extracts this informa-
tion from trained models and builds a prediction object as provided by predict (with prediction time
set to NA). In the classification case: What is stored exactly in the (Prediction) object depends on
the predict. type setting of the Learner.

You can call listLearners(properties = "oobpreds") to get a list of learners which provide
this.

getParamSet 99

Usage

getO0BPreds(model, task)

Arguments
model (WrappedModel)
The model.
task (Task)
The task.
Value
(Prediction).
Examples

training.set = sample(1:150, 50)
1rn = makelLearner("”classif.ranger”, predict.type = "prob”, predict.threshold = 0.6)

mod = train(lrn, sonar.task, subset = training.set)
oob = getOOBPreds(mod, sonar.task)
oob

performance(oob, measures = list(auc, mmce))

getParamSet Get a description of all possible parameter settings for a learner.

Description

Returns the ParamHelpers::ParamSet from a Learner.

Value

ParamSet.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

100 getPredictionProbabilities

getPredictionDump Return the error dump of a failed Prediction.

Description

Returns the error dump that can be used with debugger() to evaluate errors. If configureMlr
configuration on.error.dump is FALSE or if the prediction did not fail, this returns NULL.

Usage

getPredictionDump(pred)

Arguments
pred (Prediction)
Prediction object.
Value

(last.dump).

See Also

Other debug: FailureModel, ResampleResult, getRRDump ()

getPredictionProbabilities
Get probabilities for some classes.

Description

Get probabilities for some classes.

Usage

getPredictionProbabilities(pred, cl)

Arguments
pred (Prediction)
Prediction object.
cl (character)

Names of classes. Default is either all classes for multi-class / multilabel prob-
lems or the positive class for binary classification.

getPredictionResponse 101

Value
(data.frame) with numerical columns or a numerical vector if length of c1 is 1. Order of columns is
defined by cl.

See Also

Other predict: asROCRPrediction(), getPredictionResponse(), getPredictionTaskDesc(),
predict.WrappedModel (), setPredictThreshold(), setPredictType()

Examples
task = makeClassifTask(data = iris, target = "Species"”)
1rn = makelLearner("classif.lda”, predict.type = "prob")

mod = train(lrn, task)
predict probabilities
pred = predict(mod, newdata = iris)

Get probabilities for all classes
head(getPredictionProbabilities(pred))

Get probabilities for a subset of classes
head(getPredictionProbabilities(pred, c("setosa”, "virginica")))

getPredictionResponse Get response / truth from prediction object.

Description

The following types are returned, depending on task type:

classif factor
regr numeric
se numeric
cluster integer
surv numeric

multilabel logical matrix, columns named with labels

Usage

getPredictionResponse(pred)
getPredictionSE(pred)

getPredictionTruth(pred)

102 getPredictionTaskDesc

Arguments
pred (Prediction)
Prediction object.
Value
See above.
See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionTaskDesc(),
predict.WrappedModel (), setPredictThreshold(), setPredictType()

getPredictionTaskDesc Get summarizing task description from prediction.

Description

See title.

Usage

getPredictionTaskDesc(pred)

Arguments
pred (Prediction)
Prediction object.
Value

ret_taskdesc

See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionResponse(),
predict.WrappedModel (), setPredictThreshold(), setPredictType()

getProbabilities 103

getProbabilities Deprecated, use getPredictionProbabilities instead.

Description

Deprecated, use getPredictionProbabilities instead.

Usage

getProbabilities(pred, cl)

Arguments
pred Deprecated.
cl Deprecated.

getResamplingIndices Get the resampling indices from a tuning or feature selection wrapper..

Description

After you resampled a tuning or feature selection wrapper (see makeTuneWrapper) with resample(.. .,
extract = getTuneResult) or resample(..., extract = getFeatSelResult) this helper returns
a list with the resampling indices used for the respective method.

Usage

getResamplingIndices(object, inner = FALSE)

Arguments
object (ResampleResult)
The result of resampling of a tuning or feature selection wrapper.
inner (logical)
If TRUE, returns the inner indices of a nested resampling setting.
Value

(list). One list for each outer resampling fold.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet (), makeTuneControlCMAES(),
makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControllIrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

104 getRRDump

Examples

task = makeClassifTask(data = iris, target = "Species”)

lrn = makelLearner(”classif.rpart”)

stupid mini grid

ps = makeParamSet (
makeDiscreteParam(”cp”, values = c(0.05, 0.1)),
makeDiscreteParam("minsplit”, values = c(10, 20))

)

ctrl = makeTuneControlGrid()

inner = makeResampleDesc("Holdout")

outer = makeResampleDesc("CV", iters = 2)

1rn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control = ctrl)

nested resampling for evaluation

we also extract tuned hyper pars in each iteration and by that the resampling indices

r = resample(lrn, task, outer, extract = getTuneResult)

get tuning indices

getResamplingIndices(r, inner = TRUE)

getRRDump Return the error dump of ResampleResult.

Description

Returns the error dumps generated during resampling, which can be used with debugger () to debug
errors. These dumps are saved if configureMIr configuration on. error.dump, or the corresponding
learner config, is TRUE.

The returned object is a list with as many entries as the resampling being used has folds. Each of
these entries can have a subset of the following slots, depending on which step in the resampling
iteration failed: “train” (error during training step), “predict.train” (prediction on training subset),
“predict.test” (prediction on test subset).

Usage
getRRDump(res)

Arguments
res (ResampleResult)
The result of resample.
Value

list.

See Also

Other debug: FailureModel, ResampleResult, getPredictionDump()

getRRPredictionList 105

getRRPredictionlList Get list of predictions for train and test set of each single resample
iteration.

Description

This function creates a list with two slots train and test where each slot is again a list of Predic-
tion objects for each single resample iteration. In case that predict = "train” was used for the
resample description (see makeResampleDesc), the slot test will be NULL and in case that predict
= "test"” was used, the slot train will be NULL.

Usage
getRRPredictionList(res, ...)
Arguments
res (ResampleResult)
The result of resample run with keep.pred = TRUE.
(any)
Further options passed to makePrediction.
Value
list.
See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictions(),
getRRTaskDesc(), getRRTaskDescription(), makeResampleDesc(), makeResampleInstance(),
resample()

getRRPredictions Get predictions from resample results.

Description

Very simple getter.

Usage

getRRPredictions(res)

Arguments

res (ResampleResult)
The result of resample run with keep.pred = TRUE.

106 getRRTaskDesc

Value

(ResamplePrediction).

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(),
getRRTaskDesc(), getRRTaskDescription(), makeResampleDesc(), makeResampleInstance(),
resample()

getRRTaskDesc Get task description from resample results (DEPRECATED).

Description

Get a summarizing task description.

Usage

getRRTaskDesc(res)

Arguments

res (ResampleResult)
The result of resample.

Value

(TaskDesc).

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(),
getRRPredictions(), getRRTaskDescription(), makeResampleDesc(), makeResampleInstance(),
resample()

getRRTaskDescription 107

getRRTaskDescription Get task description from resample results (DEPRECATED).

Description

Get a summarizing task description.

Usage

getRRTaskDescription(res)

Arguments
res (ResampleResult)
The result of resample.
Value
(TaskDesc).
See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(),
getRRPredictions(), getRRTaskDesc (), makeResampleDesc(), makeResampleInstance(), resample()

getStackedBaselLearnerPredictions
Returns the predictions for each base learner.

Description

Returns the predictions for each base learner.

Usage

getStackedBaselLearnerPredictions(model, newdata = NULL)

Arguments
model (WrappedModel)
Wrapped model, result of train.
newdata (data.frame)

New observations, for which the predictions using the specified base learners
should be returned. Default is NULL and extracts the base learner predictions
that were made during the training.

108 getTaskCosts

Details

None.

getTaskClassLevels Get the class levels for classification and multilabel tasks.

Description

NB: For multilabel, getTaskTargetNames and getTaskClassLevels actually return the same thing.

Usage
getTaskClassLevels(x)

Arguments
X (Task | TaskDesc)
Task or its description object.
Value
(character).
See Also

Other task: getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(), getTaskFormula(),
getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(), getTaskTargets(),
getTaskType(), subsetTask()

getTaskCosts Extract costs in task.

Description

Returns “NULL” if the task is not of type “costsens”.

Usage
getTaskCosts(task, subset = NULL)

Arguments
task (CostSensTask)
The task.
subset (integer | logical | NULL)

Selected cases. Either a logical or an index vector. By default NULL if all obser-
vations are used.

getTaskData 109

Value

(matrix | NULL).

See Also

Other task: getTaskClassLevels(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskTargets(), getTaskType(), subsetTask()

getTaskData Extract data in task.

Description

Useful in trainLearner when you add a learning machine to the package.

Usage
getTaskData(
task,
subset = NULL,
features,
target.extra = FALSE,
recode. target = "no",
functionals.as = "dfcols”
)
Arguments
task (Task)
The task.
subset (integer | logical | NULL)
Selected cases. Either a logical or an index vector. By default NULL if all obser-
vations are used.
features (character | integer | logical)

Vector of selected inputs. You can either pass a character vector with the feature
names, a vector of indices, or a logical vector.

In case of an index vector each element denotes the position of the feature name
returned by getTaskFeatureNames.

Note that the target feature is always included in the resulting task, you should
not pass it here. Default is to use all features.

target.extra (logical(1))
Should target vector be returned separately? If not, a single data.frame including
the target columns is returned, otherwise a list with the input data.frame and an
extra vector or data.frame for the targets. Default is FALSE.

110 getTaskDesc

recode.target (character(1))

Should target classes be recoded? Supported are binary and multilabel classi-
fication and survival. Possible values for binary classification are “01”, “-1+1”
and “drop.levels”. In the two latter cases the target vector is converted into a
numeric vector. The positive class is coded as “+1” and the negative class either
as “0” or “-1”. “drop.levels” will remove empty factor levels in the target col-
umn. In the multilabel case the logical targets can be converted to factors with
“multilabel.factor”. For survival, you may choose to recode the survival times to
“left”, “right” or “interval2” censored times using “lcens”, “rcens” or “icens”,
respectively. See survival::Surv for the format specification. Default for both
binary classification and survival is “no” (do nothing).

functionals.as (character(1))
How to represents functional features? Option “matrix”: Keep them as matrix
columns in the data.frame. Option “dfcols”: Convert them to individual numeric
data.frame columns. Default is “dfcols”.

Value

Either a data.frame or a list with data.frame data and vector target.

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskTargets(), getTaskType(), subsetTask()

Examples

library("mlbench")
data(BreastCancer)

df = BreastCancer

df$Id = NULL

task = makeClassifTask(id = "BreastCancer”, data = df, target = "Class”, positive = "malignant”)
head(getTaskData)

head(getTaskData(task, features = c("Cell.size"”, "Cell.shape"), recode.target = "-1+1"))

head(getTaskData(task, subset = 1:100, recode.target = "01"))

getTaskDesc Get a summarizing task description.

Description

See title.

Usage

getTaskDesc(x)

getTaskDescription 111

Arguments
X (Task | TaskDesc)
Task or its description object.
Value

ret_taskdesc

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskTargets(), getTaskType(), subsetTask()

getTaskDescription Deprecated, use getTaskDesc instead.

Description

Deprecated, use getTaskDesc instead.

Usage

getTaskDescription(x)

Arguments

X (Task | TaskDesc)
Task or its description object.

getTaskFeatureNames Get feature names of task.

Description

Target column name is not included.

Usage

getTaskFeatureNames(task)

Arguments

task (Task)
The task.

112 getTaskFormula

Value

(character).

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFormula(),
getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(), getTaskTargets(),
getTaskType(), subsetTask()

getTaskFormula Get formula of a task.
Description
This is usually simply <target> ~ . For multilabel it is <target_1> + ... + <target_k> ~.
Usage
getTaskFormula(
X’

target = getTaskTargetNames(x),
explicit.features = FALSE,
env = parent.frame()

)
Arguments
X (Task | TaskDesc)
Task or its description object.
target (character(1))

Left hand side of the formula. Default is defined by task x.

explicit.features
(logical(1))
Should the features (right hand side of the formula) be explicitly listed? Default
is FALSE, i.e., they will be represented as ".".

env (environment)
Environment of the formula. Default is parent. frame().

Value

(formula).

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(), getTaskTargets(),
getTaskType(), subsetTask()

getTaskld 113

getTaskId Get the id of the task.

Description

See title.

Usage
getTaskId(x)

Arguments
X (Task | TaskDesc)
Task or its description object.
Value

(character(1)).

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(), getTaskTargets(),
getTaskType(), subsetTask()

getTaskNFeats Get number of features in task.

Description

See title.

Usage

getTaskNFeats(x)

Arguments
X (Task | TaskDesc)
Task or its description object.
Value

(integer(1)).

114 getTaskTargetNames

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskSize(), getTaskTargetNames(), getTaskTargets(),
getTaskType(), subsetTask()

getTaskSize Get number of observations in task.

Description

See title.

Usage
getTaskSize(x)

Arguments
X (Task | TaskDesc)
Task or its description object.
Value

(integer(1)).

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskTargetNames(), getTaskTargets(),
getTaskType(), subsetTask()

getTaskTargetNames Get the name(s) of the target column(s).

Description

NB: For multilabel, getTaskTargetNames and getTaskClassLevels actually return the same thing.

Usage
getTaskTargetNames(x)

Arguments

X (Task | TaskDesc)
Task or its description object.

getTaskTargets 115

Value

(character).

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargets(), getTaskType(),
subsetTask()

getTaskTargets Get target data of task.

Description

Get target data of task.

Usage

n

getTaskTargets(task, recode.target = "no")

Arguments

task (Task)
The task.

recode.target (character(1))

Should target classes be recoded? Supported are binary and multilabel classi-
fication and survival. Possible values for binary classification are “01”, “-1+1”
and “drop.levels”. In the two latter cases the target vector is converted into a
numeric vector. The positive class is coded as “+1” and the negative class either
as “0” or “-1”. “drop.levels” will remove empty factor levels in the target col-
umn. In the multilabel case the logical targets can be converted to factors with
“multilabel.factor”. For survival, you may choose to recode the survival times to
“left”, “right” or “interval2” censored times using “lcens”, “rcens” or “icens”,
respectively. See survival::Surv for the format specification. Default for both
binary classification and survival is “no” (do nothing).

Value

A factor for classification or a numeric for regression, a data.frame of logical columns for multil-
abel.

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskType(), subsetTask()

116 getTuneResult

Examples

task = makeClassifTask(data = iris, target = "Species”)
getTaskTargets(task)

getTaskType Get the type of the task.

Description

See title.

Usage
getTaskType(x)

Arguments
X (Task | TaskDesc)
Task or its description object.
Value

(character(1)).

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskTargets(), subsetTask()

getTuneResult Returns the optimal hyperparameters and optimization path after
training.

Description

Returns the optimal hyperparameters and optimization path after training.

Usage
getTuneResult(object)

Arguments

object (WrappedModel)
Trained Model created with makeTuneWrapper.

getTuneResultOptPath 117

Value

(TuneResult).

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), makeModelMultiplexer(), makeModelMultiplexerParamSet (), makeTuneControlCMAES(),
makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControllrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

getTuneResultOptPath Get the optimization path of a tuning result.

Description

Returns the opt.path from a (TuneResult) object.

Usage
getTuneResultOptPath(tune.result, as.df = TRUE)

Arguments
tune.result (TuneResult)
A tuning result of the (tuneParams) function.
as.df (logical(1))
Should the optimization path be returned as a data frame? Default is TRUE.
Value

(ParamHelpers::OptPath) or (data.frame).

gunpoint.task Gunpoint functional data classification task.

Description
Contains the task (gunpoint.task). You have to classify whether a person raises up a gun or just
an empty hand.

References

See Ratanamahatana, C. A. & Keogh. E. (2004). Everything you know about Dynamic Time
Warping is Wrong. Proceedings of SIAM International Conference on Data Mining (SDMOS5),
506-510.

118

hasProperties

hasFunctionalFeatures Check whether the object contains functional features.

Description

See title.

Usage

hasFunctionalFeatures(obj)

Arguments
obj (Task | TaskDesc | data. frame)
Object to check.
Value
(logical(1))
hasProperties Deprecated, use hasLearnerProperties instead.
Description

Deprecated, use hasLearnerProperties instead.

Usage

hasProperties(learner, props)

Arguments

learner Deprecated.

props Deprecated.

helpLearner 119

helpLearner Access help page of learner functions.

Description

Interactive function that gives the user quick access to the help pages associated with various func-
tions involved in the given learner.

Usage
helpLearner(learner)
Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getlLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

Other help: helpLearnerParam()

helpLearnerParam Get specific help for a learner’s parameters.

Description
Print the description of parameters of a given learner. The description is automatically extracted
from the help pages of the learner, so it may be incomplete.

Usage

helpLearnerParam(learner, param = NULL)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
param (character | NULL)

Parameter(s) to describe. Defaults to NULL, which prints information on the
documentation status of all parameters.

120 imputations

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getlLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getlLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearner(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

Other help: helpLearner()

imputations Built-in imputation methods.

Description

The built-ins are:

* imputeConstant(const) for imputation using a constant value,
* imputeMedian() for imputation using the median,
* imputeMode () for imputation using the mode,

e imputeMin(multiplier) for imputing constant values shifted below the minimum using
min(x) -multiplier x diff(range(x)),

e imputeMax(multiplier) for imputing constant values shifted above the maximum using
max(x) + multiplier x diff(range(x)),

* imputeNormal(mean, sd) for imputation using normally distributed random values. Mean
and standard deviation will be calculated from the data if not provided.

e imputeHist(breaks, use.mids) for imputation using random values with probabilities cal-
culated using table or hist.

* imputeLearner(learner, features = NULL) for imputations using the response of a classi-
fication or regression learner.

Usage

imputeConstant(const)

imputeMedian()
imputeMean()

imputeMode ()
imputeMin(multiplier = 1)
imputeMax(multiplier = 1)

imputeUniform(min = NA_real_, max = NA_real_)

imputations

imputeNormal (mu

121

= NA_real_, sd = NA_real_)

imputeHist(breaks, use.mids = TRUE)

imputelLearner(learner, features = NULL)

Arguments

const

multiplier

min

max

mu

sd

breaks

use.mids

learner

features

See Also

(any)
Constant valued use for imputation.

(numeric(1))
Value that stored minimum or maximum is multiplied with when imputation is
done.

(numeric(1))
Lower bound for uniform distribution. If NA (default), it will be estimated from
the data.

(numeric(1))
Upper bound for uniform distribution. If NA (default), it will be estimated from
the data.

(numeric(1))
Mean of normal distribution. If missing it will be estimated from the data.

(numeric(1))
Standard deviation of normal distribution. If missing it will be estimated from
the data.

(numeric(1))
Number of breaks to use in graphics::hist. If missing, defaults to auto-detection
via “Sturges”.

(logical(1))
If x is numeric and a histogram is used, impute with bin mids (default) or instead
draw uniformly distributed samples within bin range.

(Learner | character (1))

Supervised learner. Its predictions will be used for imputations. If you pass a
string the learner will be created via makeLearner. Note that the target column
is not available for this operation.

(character)
Features to use in learner for prediction. Default is NULL which uses all avail-
able features except the target column of the original task.

Other impute: impute (), makeImputeMethod(), makeImputeWrapper(), reimpute()

122 impute

impute Impute and re-impute data

Description

Allows imputation of missing feature values through various techniques. Note that you have the
possibility to re-impute a data set in the same way as the imputation was performed during training.
This especially comes in handy during resampling when one wants to perform the same imputation
on the test set as on the training set.

The function impute performs the imputation on a data set and returns, alongside with the imputed
data set, an “ImputationDesc” object which can contain “learned” coefficients and helpful data. It
can then be passed together with a new data set to reimpute.

The imputation techniques can be specified for certain features or for feature classes, see function
arguments.

You can either provide an arbitrary object, use a built-in imputation method listed under imputations
or create one yourself using makeImputeMethod.

Usage

impute(
obj,
target = character(@L),
classes = list(),
cols = 1list(),
dummy.classes = character(@L),
dummy.cols = character(QL),
dummy . type = "factor”,
force.dummies = FALSE,
impute.new.levels = TRUE,
recode.factor.levels = TRUE

)
Arguments

obj (data.frame | Task)
Input data.

target (character)
Name of the column(s) specifying the response. Default is character ().

classes (named list)
Named list containing imputation techniques for classes of columns. E.g. 1ist(numeric
= imputeMedian()).

cols (named list)

Named list containing names of imputation methods to impute missing values
in the data column referenced by the list element’s name. Overrules imputation
set via classes.

impute

dummy.classes

dummy . cols

dummy . type

force.dummies

123

(character)
Classes of columns to create dummy columns for. Default is character(0).

(character)
Column names to create dummy columns (containing binary missing indicator)
for. Default is character(0).

(character(1))
How dummy columns are encoded. Either as 0/1 with type “numeric” or as
“factor”. Default is “factor”.

(logical(1))

Force dummy creation even if the respective data column does not contain any
NAs. Note that (a) most learners will complain about constant columns created
this way but (b) your feature set might be stochastic if you turn this off. Default
is FALSE.

impute.new.levels

(logical(1))
If new, unencountered factor level occur during reimputation, should these be
handled as NAs and then be imputed the same way? Default is TRUE.

recode.factor.levels

Details

(logical(1))

Recode factor levels after reimputation, so they match the respective element
of 1vls (in the description object) and therefore match the levels of the feature
factor in the training data after imputation?. Default is TRUE.

The description object contains these slots

* target (character): See argument

* features (character): Feature names (column names of data)

* classes (character): Feature classes (storage type of data)

* lvls (named list): Mapping of column names of factor features to their levels, including newly
created ones during imputation

 impute (named list): Mapping of column names to imputation functions

* dummies (named list): Mapping of column names to imputation functions

* impute.new.levels (logical(1)): See argument

* recode.factor.levels (Logical(1)): See argument

Value

(list)

* data (data.frame): Imputed data.

* desc (ImputationDesc): Description object.

See Also

Other impute: imputations, makeImputeMethod(), makeImputeWrapper(), reimpute()

124

Examples

df = data.frame(x = c(1, 1, NA), y = factor(c("a",

nan

a ’

"b")), z = 1:3)

isFailureModel

imputed = impute(df, target = character(@), cols = list(x = 99, y = imputeMode()))

print(imputed$data)
reimpute(data.frame(x = NA_real_), imputed$desc)

iris.task Iris classification task.

Description

Contains the task (iris. task).

References

See datasets::iris.

isFailureModel Is the model a FailureModel?

Description

Such a model is created when one sets the corresponding option in configureMIr.

For complex wrappers this getter returns TRUE if ANY model contained in it failed.

Usage

isFailureModel (model)

Arguments
model (WrappedModel)
The model.
Value

(logical(1)).

joinClassLevels 125

joinClassLevels Join some class existing levels to new, larger class levels for classifi-
cation problems.

Description

Join some class existing levels to new, larger class levels for classification problems.

Usage

joinClasslLevels(task, new.levels)

Arguments
task (Task)
The task.
new.levels (list of character)
Element names specify the new class levels to create, while the corresponding
element character vector specifies the existing class levels which will be joined
to the new one.
Value
Task.
Examples
joinClasslLevels(iris.task, new.levels = list(foo = c("setosa”, "virginica")))

learnerArgsToControl Convert arguments to control structure.

Description

Find all elements in . .. which are not missing and call control on them.
Usage

learnerArgsToControl(control, ...)
Arguments

control (function)

Function that creates control structure.

(any)
Arguments for control structure function.

126 LearnerProperties

Value

Control structure for learner.

LearnerProperties Query properties of learners.

Description

Properties can be accessed with getLearnerProperties(learner), which returns a character vec-
tor.

The learner properties are defined as follows:

numerics, factors, ordered Can numeric, factor or ordered factor features be handled?
functionals Can an arbitrary number of functional features be handled?
single.functional Can exactly one functional feature be handled?

missings Can missing values in features be handled?

weights Can observations be weighted during fitting?

oneclas, twoclass, multiclass Only for classif: Can one-class, two-class or multi-class classifica-
tion problems be handled?

class.weights Only for classif: Can class weights be handled?

rcens, lcens, icens Only for surv: Can right, left, or interval censored data be handled?
prob For classif, cluster, multilabel, surv: Can probabilites be predicted?

se Only for regr: Can standard errors be predicted?

oobpreds Only for classif, regr and surv: Can out of bag predictions be extracted from the trained
model?

featimp For classif, regr, surv: Does the model support extracting information on feature impor-
tance?

Usage

getLearnerProperties(learner)

hasLearnerProperties(learner, props)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
props (character)

Vector of properties to query.

learners 127

Value

getLearnerProperties returns a character vector with learner properties. hasLearnerProperties
returns a logical vector of the same length as props.

See Also

Other learner: getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(),
getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(),
getLearnerShortName(), getLearnerType(), getParamSet (), helpLearner(), helpLearnerParam(),
makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

learners List of supported learning algorithms.

Description

All supported learners can be found by listLearners or as a table in the tutorial appendix: https:
//mlr.mlr-org.com/articles/tutorial/integrated_learners.html.

listFilterEnsembleMethods
List ensemble filter methods.

Description

Returns a subset-able dataframe with filter information.

Usage

listFilterEnsembleMethods(desc = TRUE)

Arguments
desc (logical(1))
Provide more detailed information about filters. Default is TRUE.
Value

(data.frame).

See Also

Other filter: filterFeatures(), generateFilterValuesData(), getFilteredFeatures(), listFilterMethods(),
makeFilter(), makeFilterEnsemble(), makeFilterWrapper(), plotFilterValues()

https://mlr.mlr-org.com/articles/tutorial/integrated_learners.html
https://mlr.mlr-org.com/articles/tutorial/integrated_learners.html

128 listFilterMethods

listFilterMethods List filter methods.

Description

Returns a subset-able dataframe with filter information.

Usage

listFilterMethods(
desc = TRUE,
tasks = FALSE,
features = FALSE,
include.deprecated = FALSE

)
Arguments
desc (logical(1))
Provide more detailed information about filters. Default is TRUE.
tasks (logical(1))
Provide information on supported tasks. Default is FALSE.
features (logical(1))

Provide information on supported features. Default is FALSE.

include.deprecated
(logical(1))
Should deprecated filter methods be included in the list. Default is FALSE.

Value

(data.frame).

See Also

Other filter: filterFeatures(), generateFilterValuesData(), getFilteredFeatures(), listFilterEnsembleMethoc
makeFilter (), makeFilterEnsemble(), makeFilterWrapper(), plotFilterValues()

listLearnerProperties 129

listlLearnerProperties List the supported learner properties

Description

This is useful for determining which learner properties are available.

Usage

listlLearnerProperties(type = "any")
Arguments

type (character(1))

Only return properties for a specified task type. Default is “any”.

Value

(character).

listlLearners Find matching learning algorithms.

Description

Returns learning algorithms which have specific characteristics, e.g. whether they support missing
values, case weights, etc.

Note that the packages of all learners are loaded during the search if you create them. This can be a
Iot. If you do not create them we only inspect properties of the S3 classes. This will be a lot faster.

Note that for general cost-sensitive learning, mlr currently supports mainly “wrapper” approaches
like CostSensWeightedPairsWrapper, which are not listed, as they are not basic R learning al-
gorithms. The same applies for many multilabel methods, see, e.g., makeMultilabelBinaryRele-
vanceWrapper.

Usage

listLearners(
obj = NA_character_,
properties = character(@L),
quiet = TRUE,
warn.missing.packages = TRUE,
check.packages = FALSE,
create = FALSE

130 listLearners

Default S3 method:

listlLearners(
obj = NA_character_,
properties = character(@L),
quiet = TRUE,
warn.missing.packages = TRUE,
check.packages = FALSE,
create = FALSE

)

S3 method for class 'character'’
listLearners(
obj = NA_character_,
properties = character(@L),
quiet = TRUE,
warn.missing.packages = TRUE,
check.packages = FALSE,
create = FALSE

)

S3 method for class 'Task'
listLearners(
obj = NA_character_,
properties = character(0L),
quiet = TRUE,
warn.missing.packages = TRUE,
check.packages = TRUE,
create = FALSE

)
Arguments

obj (character(1) | Task)
Either character (1) task or the type of the task, in the latter case one of: “clas-
sif” “regr” “surv” “costsens” “cluster” “multilabel”. Default is NA matching all
types.

properties (character)
Set of required properties to filter for. Default is character ().

quiet (logical(1))

Construct learners quietly to check their properties, shows no package startup

messages. Turn off if you suspect errors. Default is TRUE.
warn.missing.packages

(logical(1))

If some learner cannot be constructed because its package is missing, should a

warning be shown? Default is TRUE.

check.packages (logical(1))
Check if required packages are installed. Calls find.package(). If create
is TRUE, this is done implicitly and the value of this parameter is ignored. If

listMeasureProperties 131

create is FALSE and check. packages is TRUE the returned table only contains
learners whose dependencies are installed. If check.packages set to FALSE,
learners that cannot actually be constructed because of missing packages may
be returned. Default is FALSE.

create (logical(1))
Instantiate objects (or return info table)? Packages are loaded if and only if this
option is TRUE. Default is FALSE.

Value

([data.frame | list* of Learner). Either a descriptive data.frame that allows access to all properties of
the learners or a list of created learner objects (named by ids of listed learners).

Examples

Not run:

listLearners(”classif"”, properties = c("multiclass”, "prob"))
data = iris

task = makeClassifTask(data = data, target = "Species”)
listLearners(task)

End(Not run)

listMeasureProperties List the supported measure properties.

Description

This is useful for determining which measure properties are available.

Usage

listMeasureProperties()

Value

(character).

132 listTaskTypes

listMeasures Find matching measures.

Description

Returns the matching measures which have specific characteristics, e.g. whether they supports
classification or regression.

Usage
listMeasures(obj, properties = character(@L), create = FALSE)
Default S3 method:
listMeasures(obj, properties = character(@L), create = FALSE)
S3 method for class 'character'’
listMeasures(obj, properties = character(@L), create = FALSE)
S3 method for class 'Task'
listMeasures(obj, properties = character(@L), create = FALSE)
Arguments
obj (character (1) | Task)
Either character (1) task or the type of the task, in the latter case one of: “clas-
sif” “regr” “surv” “costsens” “cluster” “multilabel”. Default is NA matching all
types.
properties (character)
Set of required properties to filter for. See Measure for some standardized prop-
erties. Default is character(0).
create (logical(1))
Instantiate objects (or return strings)? Default is FALSE.
Value

([character |list‘ of Measure). Class names of matching measures or instantiated objects.

listTaskTypes List the supported task types in mlr

Description

Returns a character vector with each of the supported task types in mlr.

lung.task 133

Usage
listTaskTypes()

Value

(character).

lung. task NCCTG Lung Cancer survival task.

Description

Contains the task (lung. task).

References

See survival::lung. Incomplete cases have been removed from the task.

makeAggregation Specify your own aggregation of measures.

Description
This is an advanced feature of mlr. It gives access to some inner workings so the result might not
be compatible with everything!

Usage

makeAggregation(id, name = id, properties, fun)

Arguments

id (character(1))
Name of the aggregation method (preferably the same name as the generated
function).

name (character(1))
Long name of the aggregation method. Default is id.

properties (character)
Set of aggregation properties.
req.train Are prediction or train sets required to calculate the aggregation?
req.test Are prediction or test sets required to calculate the aggregation?

fun (function(task, perf.test, perf.train, measure, group, pred))

Calculates the aggregated performance. In most cases you will only need the
performances perf.test and optionally perf.train on the test and training
data sets.

134 makeBaggingWrapper

task (Task) The task.

perf.test (numeric) performance results on the test data sets.
perf.train (numeric) performance results on the training data sets.
measure (Measure) Performance measure.

group (factor) Grouping of resampling iterations. This encodes whether spe-
cific iterations "belong together’ (e.g. repeated CV).

pred (Prediction) Prediction object.

Value

(Aggregation).

See Also

aggregations, setAggregation

Examples

computes the interquartile range on all performance values
test.iqr = makeAggregation(

id = "test.iqr"”, name = "Test set interquartile range”,

properties = "req.test”,

fun = function(task, perf.test, perf.train, measure, group, pred) IQR(perf.test)
)

makeBaggingWrapper Fuse learner with the bagging technique.

Description

Fuses a learner with the bagging method (i.e., similar to what a randomForest does). Creates a
learner object, which can be used like any other learner object. Models can easily be accessed via
getLearnerModel.

Bagging is implemented as follows: For each iteration a random data subset is sampled (with or
without replacement) and potentially the number of features is also restricted to a random subset.
Note that this is usually handled in a slightly different way in the random forest where features are
sampled at each tree split).

Prediction works as follows: For classification we do majority voting to create a discrete label and
probabilities are predicted by considering the proportions of all predicted labels. For regression the
mean value and the standard deviations across predictions is computed.

Note that the passed base learner must always have predict.type = 'response’, while the Bag-
gingWrapper can estimate probabilities and standard errors, so it can be set, e.g., to predict. type
= 'prob'. For this reason, when you call setPredictType, the type is only set for the BaggingWrap-
per, not passed down to the inner learner.

makeClassification ViaRegression Wrapper 135

Usage

makeBaggingWrapper (
learner,
bw.iters = 10L,
bw.replace = TRUE,

bw.size,
bw.feats =1
)
Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
bw.iters (integer(1))
Iterations = number of fitted models in bagging. Default is 10.
bw.replace (logical(1))
Sample bags with replacement (bootstrapping)? Default is TRUE.
bw.size (numeric(1))
Percentage size of sampled bags. Default is 1 for bootstrapping and 0.632 for
subsampling.
bw.feats (numeric(1))
Percentage size of randomly selected features in bags. Default is 1. At least one
feature will always be selected.
Value
Learner.
See Also

Other wrapper: makeClassificationViaRegressionWrapper (), makeConstantClassWrapper(),
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrappercCar:
makeRemoveConstantFeaturesWrapper (), makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper(),
makeWeightedClassesWrapper()

makeClassificationViaRegressionWrapper
Classification via regression wrapper.

136 makeClassification ViaRegression Wrapper

Description

Builds regression models that predict for the positive class whether a particular example belongs to
it (1) or not (-1).

Probabilities are generated by transforming the predictions with a softmax.

Inspired by WEKA'’s ClassificationViaRegression (http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/ClassificationV

Usage

makeClassificationViaRegressionWrapper(learner, predict.type = "response”)
Arguments

learner (Learner | character(1))

The learner. If you pass a string the learner will be created via makeLearner.

predict.type (character(1))
“response” (= labels) or “prob” (= probabilities and labels by selecting the one
with maximal probability).

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper (), makeConstantClassWrapper (), makeCostSensClassifWrapper(),
makeCostSensRegrWrapper (), makeDownsampleWrapper (), makeDummyFeaturesWrapper (), makeExtractFDAFeatsWraj
makeFeatSelWrapper (), makeFilterWrapper (), makeImputeWrapper (), makeMulticlassWrapper(),
makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWra
makeMultilabelNestedStackingWrapper (), makeMultilabelStackingWrapper (), makeOverBaggingWrapper(),
makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWrapper(),
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

Examples

1rn = makeLearner("regr.rpart"”)

1rn = makeClassificationViaRegressionWrapper(lrn)

mod = train(lrn, sonar.task, subset = 1:140)

predictions = predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60])

makeClassifTask

137

makeClassifTask

Create a classification task.

Description

Create a classification task.

Usage

makeClassifTask(
id = deparse(substitute(data)),

data,
target,

weights = NULL,
blocking = NULL,

coordinates

NULL,

positive = NA_character_,

fixup.data = "warn”,
check.data = TRUE

Arguments

id
data

target

weights

blocking

coordinates

(character(1))
Id string for object. Default is the name of the R variable passed to data.

(data.frame)
A data frame containing the features and target variable(s).

(character (1) | character(2) | character(n.classes))

Name(s) of the target variable(s). For survival analysis these are the names of
the survival time and event columns, so it has length 2. For multilabel classifi-
cation it contains the names of the logical columns that encode whether a label
is present or not and its length corresponds to the number of classes.

(numeric)

Optional, non-negative case weight vector to be used during fitting. Cannot
be set for cost-sensitive learning. Default is NULL which means no (= equal)
weights.

(factor)

An optional factor of the same length as the number of observations. Obser-
vations with the same blocking level “belong together”. Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.

(data.frame)

Coordinates of a spatial data set that will be used for spatial partitioning of the
data in a spatial cross-validation resampling setting. Coordinates have to be
numeric values. Provided data.frame needs to have the same number of rows as
data and consist of at least two dimensions.

138 makeClusterTask

positive (character(1))
Positive class for binary classification (otherwise ignored and set to NA). Default
is the first factor level of the target attribute.

fixup.data (character(1))
Should some basic cleaning up of data be performed? Currently this means
removing empty factor levels for the columns. Possible choices are: “no” =
Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent.
Default is “warn”.

check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.

See Also
Task CostSensTask ClusterTask MultilabelTask RegrTask SurvTask

makeClusterTask Create a cluster task.

Description

Create a cluster task.

Usage

makeClusterTask(
id = deparse(substitute(data)),
data,
weights = NULL,
blocking = NULL,
coordinates = NULL,
fixup.data = "warn”,
check.data = TRUE

)
Arguments
id (character(1))
Id string for object. Default is the name of the R variable passed to data.
data (data.frame)
A data frame containing the features and target variable(s).
weights (numeric)

Optional, non-negative case weight vector to be used during fitting. Cannot
be set for cost-sensitive learning. Default is NULL which means no (= equal)
weights.

makeConstantClass Wrapper 139

blocking (factor)
An optional factor of the same length as the number of observations. Obser-
vations with the same blocking level “belong together”. Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.

coordinates (data.frame)
Coordinates of a spatial data set that will be used for spatial partitioning of the
data in a spatial cross-validation resampling setting. Coordinates have to be
numeric values. Provided data.frame needs to have the same number of rows as
data and consist of at least two dimensions.

fixup.data (character(1))
Should some basic cleaning up of data be performed? Currently this means
removing empty factor levels for the columns. Possible choices are: “no” =
Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent.
Default is “warn”.

check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.

See Also
Task ClassifTask CostSensTask MultilabelTask RegrTask SurvTask

makeConstantClassWrapper

Wraps a classification learner to support problems where the class
label is (almost) constant.

Description

If the training data contains only a single class (or almost only a single class), this wrapper creates a
model that always predicts the constant class in the training data. In all other cases, the underlying
learner is trained and the resulting model used for predictions.

Probabilities can be predicted and will be 1 or O depending on whether the label matches the major-
ity class or not.

Usage

makeConstantClassWrapper (learner, frac = 0)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
frac numeric(1)

The fraction of labels in [0, 1) that can be different from the majority label.
Default is 0, which means that constant labels are only predicted if there is
exactly one label in the data.

140

Value

Learner.

See Also

makeCostMeasure

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeCostSensClassifWrappe
makeCostSensRegrWrapper (), makeDownsampleWrapper (), makeDummyFeaturesWrapper (), makeExtractFDAFeatsWraj
makeFeatSelWrapper (), makeFilterWrapper (), makeImputeWrapper (), makeMulticlassWrapper(),
makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWra
makeMultilabelNestedStackingWrapper (), makeMultilabelStackingWrapper (), makeOverBaggingWrapper (),
makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWrapper(),
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

makeCostMeasure

Creates a measure for non-standard misclassification costs.

Description

Creates a cost measure for non-standard classification error costs.

Usage

ma

keCostMeasure(
id = "costs”,
minimize = TRUE,
costs,

combine = mean,
best = NULL,
worst = NULL,
name = id,

note = ""

Arguments

id

mi

Cco

(character(1))
Name of measure. Default is “costs”.

nimize (logical(1))

Should the measure be minimized? Otherwise you are effectively specifying a

benefits matrix. Default is TRUE.

sts (matrix)

Matrix of misclassification costs. Rows and columns have to be named with
class labels, order does not matter. Rows indicate true classes, columns pre-

dicted classes.

makeCostSensClassifWrapper 141

combine (function)
How to combine costs over all cases for a SINGLE test set? Note this is not the
same as the aggregate argument in makeMeasure You can set this as well via
setAggregation, as for any measure. Default is mean.

best (numeric(1))
Best obtainable value for measure. Default is -Inf or Inf, depending on minimize.
worst (numeric(1))
Worst obtainable value for measure. Default is Inf or -Inf, depending on
minimize.
name (character)

Name of the measure. Default is id.

note (character)
Description and additional notes for the measure. Default is *”.
Value

Measure.

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(),
estimateRelativeOverfitting(), makeCustomResampledMeasure(), makeMeasure(), measures,
performance(), setAggregation(), setMeasurePars()

makeCostSensClassifWrapper
Wraps a classification learner for use in cost-sensitive learning.

Description

Creates a wrapper, which can be used like any other learner object. The classification model can
easily be accessed via getLearnerModel.

This is a very naive learner, where the costs are transformed into classification labels - the label
for each case is the name of class with minimal costs. (If ties occur, the label which is better on
average w.r.t. costs over all training data is preferred.) Then the classifier is fitted to that data and
subsequently used for prediction.

Usage

makeCostSensClassifWrapper(learner)

Arguments

learner (Learner | character (1))
The classification learner. If you pass a string the learner will be created via
makeLearner.

142 makeCostSensRegrWrapper

Value

Learner.

See Also

Other costsens: makeCostSensRegrWrapper (), makeCostSensTask(), makeCostSensWeightedPairsWrapper ()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensRegrWrapper (), makeDownsampleWrapper (), makeDummyFeaturesWrapper (), makeExtractFDAFeatsWraj
makeFeatSelWrapper (), makeFilterWrapper (), makeImputeWrapper (), makeMulticlassWrapper(),
makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWra
makeMultilabelNestedStackingWrapper (), makeMultilabelStackingWrapper(), makeOverBaggingWrapper (),
makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWrapper(),
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

makeCostSensRegrWrapper
Wraps a regression learner for use in cost-sensitive learning.

Description

Creates a wrapper, which can be used like any other learner object. Models can easily be accessed
via getLearnerModel.

For each class in the task, an individual regression model is fitted for the costs of that class. During
prediction, the class with the lowest predicted costs is selected.

Usage

makeCostSensRegrWrapper (learner)

Arguments
learner (Learner | character (1))
The regression learner. If you pass a string the learner will be created via make-
Learner.
Value
Learner.
See Also

Other costsens: makeCostSensClassifWrapper(), makeCostSensTask(), makeCostSensWeightedPairsWrapper ()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper (), makeDownsampleWrapper (), makeDummyFeaturesWrapper(),
makeExtractFDAFeatsWrapper (), makeFeatSelWrapper (), makeFilterWrapper (), makeImputeWrapper(),
makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrappe

makeCostSensTask 143

makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWi
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

makeCostSensTask Create a cost-sensitive classification task.

Description

Create a cost-sensitive classification task.

Usage

makeCostSensTask(
id = deparse(substitute(data)),
data,
costs,
blocking = NULL,
coordinates = NULL,

fixup.data = "warn”,
check.data = TRUE
)
Arguments

id (character(1))
Id string for object. Default is the name of the R variable passed to data.

data (data.frame)
A data frame containing the features and target variable(s).

costs (data.frame)
A numeric matrix or data frame containing the costs of misclassification. We
assume the general case of observation specific costs. This means we have n
rows, corresponding to the observations, in the same order as data. The columns
correspond to classes and their names are the class labels (if unnamed we use
y1 to yk as labels). Each entry (i,j) of the matrix specifies the cost of predicting
class j for observation i.

blocking (factor)
An optional factor of the same length as the number of observations. Obser-
vations with the same blocking level “belong together”. Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.

coordinates (data.frame)

Coordinates of a spatial data set that will be used for spatial partitioning of the
data in a spatial cross-validation resampling setting. Coordinates have to be
numeric values. Provided data.frame needs to have the same number of rows as
data and consist of at least two dimensions.

144 makeCostSens WeightedPairs Wrapper

fixup.data (character(1))
Should some basic cleaning up of data be performed? Currently this means
removing empty factor levels for the columns. Possible choices are: “no” =
Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent.
Default is “warn”.

check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.

See Also
Task ClassifTask ClusterTask MultilabelTask RegrTask SurvTask

Other costsens: makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeCostSensWeightedPairsWrappet

makeCostSensWeightedPairsWrapper
Wraps a classifier for cost-sensitive learning to produce a weighted
pairs model.

Description

Creates a wrapper, which can be used like any other learner object. Models can easily be accessed
via getLearnerModel.

For each pair of labels, we fit a binary classifier. For each observation we define the label to be
the element of the pair with minimal costs. During fitting, we also weight the observation with the
absolute difference in costs. Prediction is performed by simple voting.

This approach is sometimes called cost-sensitive one-vs-one (CS-OVO), because it is obviously
very similar to the one-vs-one approach where one reduces a normal multi-class problem to multiple
binary ones and aggregates by voting.

Usage

makeCostSensWeightedPairsWrapper(learner)

Arguments
learner (Learner | character (1))
The classification learner. If you pass a string the learner will be created via
makeLearner.
Value

(Learner).

makeCustomResampledMeasure 145

References

Lin, HT.: Reduction from Cost-sensitive Multiclass Classification to One-versus-one Binary Clas-
sification. In: Proceedings of the Sixth Asian Conference on Machine Learning. JMLR Workshop
and Conference Proceedings, vol 39, pp. 371-386. JMLR W&CP (2014). https://proceedings.
mlr.press/v39/1in14. pdf

See Also

Other costsens: makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeCostSensTask()

makeCustomResampledMeasure
Construct your own resampled performance measure.

Description

Construct your own performance measure, used after resampling. Note that individual training / test
set performance values will be set to NA, you only calculate an aggregated value. If you can define
a function that makes sense for every single training / test set, implement your own Measure.

Usage

makeCustomResampledMeasure(
measure.id,
aggregation.id,
minimize = TRUE,
properties = character(@L),

fun,

extra.args = list(),
best = NULL,

worst = NULL,

measure.name = measure.id,
aggregation.name = aggregation.id,
note = ""

Arguments
measure.id (character(1))
Short name of measure.

aggregation.id (character(1))
Short name of aggregation.
minimize (logical(1))
Should the measure be minimized? Default is TRUE.

properties (character)
Set of measure properties. For a list of values see Measure. Default is character(9).

https://proceedings.mlr.press/v39/lin14.pdf
https://proceedings.mlr.press/v39/lin14.pdf

146 makeDownsample Wrapper
fun (function(task, group, pred, extra.args))
Calculates performance value from ResamplePrediction object. For rare cases
you can also use the task, the grouping or the extra arguments extra.args. -
task (Task)
The task. - group (factor)
Grouping of resampling iterations. This encodes whether specific iterations ’be-
long together’ (e.g. repeated CV). - pred (Prediction)
Prediction object. - extra.args (list)
See below.
extra.args (list)
List of extra arguments which will always be passed to fun. Default is empty
list.
best (numeric(1))
Best obtainable value for measure. Defaultis -Inf or Inf, depending on minimize.
worst (numeric(1))
Worst obtainable value for measure. Default is Inf or -Inf, depending on
minimize.
measure.name (character(1))
Long name of measure. Default is measure. id.
aggregation.name
(character(1))
Long name of the aggregation. Default is aggregation.id.
note (character)
Description and additional notes for the measure. Default is *”.
Value
Measure.
See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(),
estimateRelativeOverfitting(), makeCostMeasure(), makeMeasure(), measures, performance(),
setAggregation(), setMeasurePars()

makeDownsampleWrapper Fuse learner with simple downsampling (subsampling).

Description

Creates a learner object, which can be used like any other learner object. It will only be trained on
a subset of the original data to save computational time.

Usage

makeDownsampleWrapper (learner, dw.perc = 1, dw.stratify = FALSE)

makeDummyFeaturesWrapper 147

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
dw.perc (numeric(1))

See downsample. Default is 1.

dw.stratify (logical(1))
See downsample. Default is FALSE.

Value

Learner.

See Also

Other downsample: downsample ()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper (), makeCostSensRegrWrapper (), makeDummyFeaturesWrapper(),
makeExtractFDAFeatsWrapper (), makeFeatSelWrapper (), makeFilterWrapper (), makeImputeWrapper(),
makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrappe
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWwi
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

makeDummyFeaturesWrapper
Fuse learner with dummy feature creator.

Description

Fuses a base learner with the dummy feature creator (see createDummyFeatures). Returns a learner
which can be used like any other learner.

Usage
makeDummyFeaturesWrapper (learner, method = "1-of-n", cols = NULL)
Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
method (character(1))

Available are:

"1-of-n"": For n factor levels there will be n dummy variables.

"reference'': There will be n-1 dummy variables leaving out the first factor
level of each variable.

148 makeExtractFDAFeatMethod

Default is “1-of-n".

cols (character)
Columns to create dummy features for. Default is to use all columns.

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeExtractFDAFeatsWrapper (), makeFeatSelWrapper (), makeFilterWrapper (), makeImputeWrapper(),
makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrappe
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper (), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWi
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

makeExtractFDAFeatMethod
Constructor for FDA feature extraction methods.

Description

This can be used to implement custom FDA feature extraction. Takes a learn and a reextract
function along with some optional parameters to those as argument.

Usage

makeExtractFDAFeatMethod(learn, reextract, args = list(), par.set = NULL)

Arguments
learn (function(data, target, col, ...))
Function to learn and extract information on functional column col. Arguments
are:

* data data.frame
Data.frame containing matricies with one row per observation of a single
functional or time series and one column per meahttps://github.com/mlr-
org/mlr/pull/2005/conflict’name=R %252FextractFDAFeatures.R&ancestor_oid=bdc5d882cc86adac
time point. All entries need to be numeric.

* target (character(1))
Name of the target variable. Default: “NULL”. The variable is only set to
be consistent with the APL

e col (character (1) I numeric(1))
column names or indices, the extraction should be performed on. The func-
tion has to return a named list of values.

makeExtractFDAFeatsWrapper 149

reextract (function(data, target, col, ...))
Function used for reextracting data in predict phase. Can be equal to learn.

args (list)
Named list of arguments to pass to learnvia

par.set (ParamSet)

Paramset added to the learner if used in conjunction with a makeExtractFDAFeatsWrap-

per. Can be NULL.*

See Also

Other fda: extractFDAFeatures(), makeExtractFDAFeatsWrapper ()

makeExtractFDAFeatsWrapper
Fuse learner with an extractFFDAFeatures method.

Description

Fuses a base learner with an extractFDAFeatures method. Creates a learner object, which can be
used like any other learner object. Internally uses extractFDAFeatures before training the learner
and reextractFDAFeatures before predicting.

Usage

makeExtractFDAFeatsWrapper(learner, feat.methods = list())

Arguments

learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

feat.methods (named list)
List of functional features along with the desired methods for each functional
feature. “all” applies the extractFDAFeatures method to each functional fea-
ture. Names of feat.methods must match column names of functional features.

Auvailable feature extraction methods are available under family fda_featextractor.

Specifying a functional feature multiple times with different extraction methods
allows for the extraction of different features from the same functional. Default
is 1ist () which does nothing.

Value

Learner.

150 makeFeatSelWrapper

See Also

Other fda: extractFDAFeatures(), makeExtractFDAFeatMethod()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeFeatSelWrapper (), makeFilterWrapper(), makeImputeWrapper(),
makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrappe
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret(), makeRemoveConstantFeaturesWi
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper()

makeFeatSelWrapper Fuse learner with feature selection.

Description

Fuses a base learner with a search strategy to select variables. Creates a learner object, which can
be used like any other learner object, but which internally uses selectFeatures. If the train function
is called on it, the search strategy and resampling are invoked to select an optimal set of variables.
Finally, a model is fitted on the complete training data with these variables and returned. See
selectFeatures for more details.

After training, the optimal features (and other related information) can be retrieved with getFeat-
SelResult.

Usage
makeFeatSelWrapper (
learner,
resampling,
measures,
bit.names,
bits.to.features,
control,
show.info = getMlrOption("show.info")
)
Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
resampling (Resamplelnstance | ResampleDesc)

Resampling strategy for feature selection. If you pass a description, it is instan-
tiated once at the beginning by default, so all points are evaluated on the same
training/test sets. If you want to change that behavior, look at FeatSelControl.

makeFeatSelWrapper 151

measures (list of Measure | Measure)
Performance measures to evaluate. The first measure, aggregated by the first
aggregation function is optimized, others are simply evaluated. Default is the
default measure for the task, see here getDefaultMeasure.

bit.names character
Names of bits encoding the solutions. Also defines the total number of bits in
the encoding. Per default these are the feature names of the task. Has to be used
together with bits.to.features.

bits.to.features
(function(x, task))
Function which transforms an integer-0-1 vector into a character vector of se-
lected features. Per default a value of 1 in the ith bit selects the ith feature to be
in the candidate solution. The vector x will correspond to the bit.names and
has to be of the same length.

control [see FeatSelControl) Control object for search method. Also selects the opti-
mization algorithm for feature selection.

show. info (logical(1))
Print verbose output on console? Default is set via configureMIr.

Value

Learner.

See Also

Other featsel: FeatSelControl, analyzeFeatSelResult(), getFeatSelResult(), selectFeatures()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper (), makeFilterWrapper (), makeImputeWrapper(),
makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrappe
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWi
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

Examples

nested resampling with feature selection (with a nonsense algorithm for selection)
outer = makeResampleDesc("CV", iters = 2L)

inner = makeResampleDesc("Holdout")

ctrl = makeFeatSelControlRandom(maxit = 1)

1rn = makeFeatSelWrapper(”classif.ksvm”, resampling = inner, control = ctrl)

we also extract the selected features for all iteration here

r = resample(lrn, iris.task, outer, extract = getFeatSelResult)

152 makeFilter

makeFilter Create a feature filter.

Description

Creates and registers custom feature filters. Implemented filters can be listed with listFilterMeth-
ods. Additional documentation for the fun parameter specific to each filter can be found in the
description.

Usage

makeFilter(name, desc, pkg, supported.tasks, supported.features, fun)

Arguments
name (character(1))
Identifier for the filter.
desc (character(1))
Short description of the filter.
pkg (character(1))

Source package where the filter is implemented.
supported. tasks

(character)

Task types supported.
supported. features

(character)
Feature types supported.

fun (function(task, nselect, ...)
Function which takes a task and returns a named numeric vector of scores, one
score for each feature of task. Higher scores mean higher importance of the
feature. At least nselect features must be calculated, the remaining may be set
to NA or omitted, and thus will not be selected. the original order will be restored
if necessary.

Value

Object of class “Filter”.

References

Kira, Kenji and Rendell, Larry (1992). The Feature Selection Problem: Traditional Methods and a
New Algorithm. AAAI-92 Proceedings.

Kononenko, Igor et al. Overcoming the myopia of inductive learning algorithms with RELIEFF
(1997), Applied Intelligence, 7(1), p39-55.

makeFilterEnsemble 153

See Also

Other filter: filterFeatures(), generateFilterValuesData(), getFilteredFeatures(), listFilterEnsembleMethoc
listFilterMethods(), makeFilterEnsemble(), makeFilterWrapper (), plotFilterValues()

makeFilterEnsemble Create an ensemble feature filter.

Description

Creates and registers custom ensemble feature filters. Implemented ensemble filters can be listed
with listFilterEnsembleMethods. Additional documentation for the fun parameter specific to each
filter can be found in the description.

Usage

makeFilterEnsemble(name, base.methods, desc, fun)

Arguments

name (character(1))
Identifier for the filter.

base.methods the base filter methods which the ensemble method will use.

desc (character(1))
Short description of the filter.

fun (function(task, nselect, ...)
Function which takes a task and returns a named numeric vector of scores, one
score for each feature of task. Higher scores mean higher importance of the
feature. At least nselect features must be calculated, the remaining may be set
to NA or omitted, and thus will not be selected. the original order will be restored
if necessary.

Value

Object of class “FilterEnsemble”.

See Also

Other filter: filterFeatures(), generateFilterValuesData(), getFilteredFeatures(), listFilterEnsembleMethoc
listFilterMethods(), makeFilter(), makeFilterWrapper(), plotFilterValues()

154

makeFilterWrapper

makeFilterWrapper Fuse learner with a feature filter method.

Description

Fuses a base learner with a filter method. Creates a learner object, which can be used like any other
learner object. Internally uses filterFeatures before every model fit.

Usage

makeFilterWrapper(
learner,

fw.
fw.
fw.
fw.
fw.
fw.
fw.
fw.

method = "FSelectorRcpp_information.gain”,
base.methods = NULL,

perc = NULL,

abs = NULL,

threshold = NULL,

fun = NULL,

fun.args = NULL,

mandatory.feat = NULL,

cache = FALSE,

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
fw.method (character(1))
Filter method. See listFilterMethods. Default is “FSelectorRcpp_information.gain”.
fw.base.methods
(character(1))
Simple Filter methods for ensemble filters. See listFilterMethods. Can only be
used in combination with ensemble filters. See listFilterEnsembleMethods.
fw.perc (numeric(1))
If set, select fw.perc*100 top scoring features. Mutually exclusive with argu-
ments fw.abs, fw. threshold and ‘fw.fun.
fw.abs (numeric(1))
If set, select fw.abs top scoring features. Mutually exclusive with arguments
fw.perc, fw. threshold and fw. fun.
fw. threshold (numeric(1))
If set, select features whose score exceeds fw.threshold. Mutually exclusive
with arguments fw.perc, fw.abs and fw. fun.
fw. fun (function))

If set, select features via a custom thresholding function, which must return the

makeFilterWrapper 155

number of top scoring features to select. Mutually exclusive with arguments
fw.perc, fw.abs and fw. threshold.

fw.fun.args (any)
Arguments passed to the custom thresholding function

fw.mandatory. feat
(character)
Mandatory features which are always included regardless of their scores

cache (character (1) | logical)
Whether to use caching during filter value creation. See details.

(any)

Additional parameters passed down to the filter. If you are using more than one
filter method, you need to pass the arguments in a named list viamore. args. For
example more.args = list("FSelectorRcpp_information.gain” = list(equal
=TRUE)).

Details

If ensemble = TRUE, ensemble feature selection using all methods specified in fw.method is per-
formed. At least two methods need to be selected.

After training, the selected features can be retrieved with getFilteredFeatures.

Note that observation weights do not influence the filtering and are simply passed down to the next
learner.

Value

Learner.

Caching

If cache = TRUE, the default mir cache directory is used to cache filter values. The directory is
operating system dependent and can be checked with getCacheDir(). Alternatively a custom
directory can be passed to store the cache. The cache can be cleared with deleteCacheDir().
Caching is disabled by default. Care should be taken when operating on large clusters due to
possible write conflicts to disk if multiple workers try to write the same cache at the same time.

See Also

Other filter: filterFeatures(), generateFilterValuesData(), getFilteredFeatures(), listFilterEnsembleMethoc
listFilterMethods(), makeFilter(), makeFilterEnsemble(), plotFilterValues()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper (), makeImputeWrapper(),
makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(), makeMultilabelClassifierChainsWrappe
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWw
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

156 makeFilterWrapper

Examples

task = makeClassifTask(data = iris, target = "Species")

1rn = makelLearner(”classif.lda")

inner = makeResampleDesc("Holdout")

outer = makeResampleDesc("CV", iters = 2)

1rn = makeFilterWrapper(lrn, fw.perc = 0.5)

mod = train(lrn, task)

print(getFilteredFeatures(mod))

now nested resampling, where we extract the features that the filter method selected

r = resample(lrn, task, outer, extract = function(model) {
getFilteredFeatures(model)

»

print(r$extract)

usage of an ensemble filter

1rn = makelLearner(”"classif.lda")

1rn = makeFilterWrapper(lrn, fw.method = "E-Borda"”,
fw.base.methods = c("FSelectorRcpp_gain.ratio”, "FSelectorRcpp_information.gain”),
fw.perc = 0.5)

r = resample(lrn, task, outer, extract = function(model) {
getFilteredFeatures(model)

»
print(r$extract)

usage of a custom thresholding function
biggest_gap = function(values, diff) {
gap_size = 0@
gap_location = @

for (i in (diff + 1):length(values)) {
gap = values[[i - diff]] - values[[i]]
if (gap > gap_size) {
gap_size = gap
gap_location = i - 1
}
3
return(gap_location)

}

1rn = makelLearner("classif.lda")

1rn = makeFilterWrapper(lrn, fw.method = "FSelectorRcpp_information.gain”,
fw.fun = biggest_gap, fw.fun.args = list("diff” = 1))

r = resample(lrn, task, outer, extract = function(model) {
getFilteredFeatures(model)

»
print(r$extract)

makeFixedHoldoutInstance 157

makeFixedHoldoutInstance
Generate a fixed holdout instance for resampling.

Description

Generate a fixed holdout instance for resampling.

Usage

makeFixedHoldoutInstance(train.inds, test.inds, size)

Arguments
train.inds (integer)
Indices for training set.
test.inds (integer)
Indices for test set.
size (integer(1))
Size of the data set to resample. The function needs to know the largest possible
index of the whole data set.
Value
(Resamplelnstance).
makeFunctionalData Create a data.frame containing functional features from a normal
data.frame.
Description

To work with functional features, those features need to be stored as a matrix column in the
data.frame, so mlr can automatically recognize them as functional features. This function allows
for an easy conversion from a data.frame with numeric columns to the required format. If the data
already contains matrix columns, they are left as-is if not specified otherwise in fd. features. See
Examples for the structure of the generated output.

Usage

makeFunctionalData(data, fd.features = NULL, exclude.cols = NULL)

158

Arguments

data

fd.features

exclude.cols

Value

(data.frame).

Examples

makelmputeMethod

(data.frame)

A data.frame that contains the functional features as numeric columns.

(list)

Named list containing integer column indices or character column names.
Each element defines a functional feature, in the given order of the indices or
column names. The name of the list element defines the name of the functional
feature. All selected columns have to correspond to numeric data.frame entries.
The default is NULL, which means all numeric features are considered to be a
single functional “fd1”.

(character | integer)

Column names or indices to exclude from conversion to functionals, even if they
are in included in fd. features. Default is not to exclude anything.

data.frame where columns 1:6 and 8:10 belong to a functional feature

d1l = data.frame(matrix(rnorm(100), nrow = 10), "target" = seq_len(10))

Transform to functional data

d2 = makeFunctionalData(dl, fd.features = list("fd1" = 1:6, "fd2" = 8:10))
Create a regression task

makeRegrTask(data = d2, target = "target")

makeImputeMethod

Create a custom imputation method.

Description

This is a constructor to create your own imputation methods.

Usage

makeImputeMethod(learn, impute, args = list())

Arguments

learn

impute

(function(data, target, col, ...))

Function to learn and extract information on column col out of data frame data.
Argument target specifies the target column of the learning task. The function
has to return a named list of values.

(function(data, target, col, ...))

Function to impute missing values in col using information returned by learn
on the same column. All list elements of the return values o learn are passed to
this function into

makelmpute Wrapper

args

See Also

159

(list)
Named list of arguments to pass to learnvia

Other impute: imputations, impute(), makeImputeWrapper(), reimpute()

makeImputeWrapper

Fuse learner with an imputation method.

Description

Fuses a base learner with an imputation method. Creates a learner object, which can be used like
any other learner object. Internally uses impute before training the learner and reimpute before

predicting.

Usage

makeImputeWrapper(

learner,

classes = 1list(),
cols = list(),

dummy.classes

= character(oL),

dummy.cols = character(oL),
dummy . type = "factor”,

force.dummies

= FALSE,

impute.new.levels = TRUE,

recode. factor

Arguments

learner

classes

cols

dummy.classes

dummy . cols

.levels = TRUE

(Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

(named list)
Named list containing imputation techniques for classes of columns. E.g. 1ist(numeric
= imputeMedian()).

(named list)

Named list containing names of imputation methods to impute missing values
in the data column referenced by the list element’s name. Overrules imputation
set via classes.

(character)
Classes of columns to create dummy columns for. Default is character(9).

(character)
Column names to create dummy columns (containing binary missing indicator)
for. Default is character(0).

160 makeLearner

dummy . type (character(1))
How dummy columns are encoded. Either as 0/1 with type “numeric” or as
“factor”. Default is “factor”.

force.dummies (logical(1))
Force dummy creation even if the respective data column does not contain any
NAs. Note that (a) most learners will complain about constant columns created
this way but (b) your feature set might be stochastic if you turn this off. Default
is FALSE.

impute.new.levels
(logical(1))
If new, unencountered factor level occur during reimputation, should these be
handled as NAs and then be imputed the same way? Default is TRUE.

recode.factor.levels
(logical(1))
Recode factor levels after reimputation, so they match the respective element
of 1vls (in the description object) and therefore match the levels of the feature
factor in the training data after imputation?. Default is TRUE.

Value

Learner.

See Also

Other impute: imputations, impute(), makeImputeMethod(), reimpute()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper (),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper (), makeFeatSelWrapper(), makeFilterWrapper(),
makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrappe
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper (), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWw
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

makeLearner Create learner object.

Description

For a classification learner the predict.type can be set to “prob” to predict probabilities and the
maximum value selects the label. The threshold used to assign the label can later be changed using
the setThreshold function.

To see all possible properties of a learner, go to: LearnerProperties.

makel_earner

Usage

makeLearner (
cl,
id = cl,

predict.type

161

= "response”,

predict.threshold = NULL,
fix.factors.prediction = FALSE,

’

par.vals =

list(),

config = list()

Arguments

cl

id

predict.type

(character(1))

Class of learner. By convention, all classification learners start with “classif.”
all regression learners with “regr.”” all survival learners start with “surv.” all
clustering learners with “cluster.” and all multilabel classification learners start
with “multilabel.”. A list of all integrated learners is available on the learners
help page.

(character(1))
Id string for object. Used to display object. Default is c1.

(character(1))

Classification: “response” (= labels) or “prob” (= probabilities and labels by
selecting the ones with maximal probability). Regression: “response” (= mean
response) or “se” (= standard errors and mean response). Survival: “response”
(= some sort of orderable risk) or “prob” (= time dependent probabilities). Clus-
tering: “response” (= cluster IDS) or “prob” (= fuzzy cluster membership prob-
abilities), Multilabel: “response” (= logical matrix indicating the predicted class
labels) or “prob” (= probabilities and corresponding logical matrix indicating
class labels). Default is “response”.

predict.threshold

(numeric)

Threshold to produce class labels. Has to be a named vector, where names corre-
spond to class labels. Only for binary classification it can be a single numerical
threshold for the positive class. See setThreshold for details on how it is applied.
Default is NULL which means 0.5 / an equal threshold for each class.

fix.factors.prediction

(logical(1))

In some cases, problems occur in underlying learners for factor features during
prediction. If the new features have LESS factor levels than during training
(a strict subset), the learner might produce an error like “type of predictors in
new data do not match that of the training data”. In this case one can repair
this problem by setting this option to TRUE. We will simply add the missing
factor levels missing from the test feature (but present in training) to that feature.
Default is FALSE.

162 makel earner

(any)

Optional named (hyper)parameters. If you want to set specific hyperparameters
for a learner during model creation, these should go here. You can get a list
of available hyperparameters using getParamSet(<learner>). Alternatively
hyperparameters can be given using the par.vals argument but . . . should be
preferred!

par.vals (list)
Optional list of named (hyper)parameters. The arguments in ... take prece-
dence over values in this list. We strongly encourage you to use . . . for passing
hyperparameters.

config (named list)
Named list of config option to overwrite global settings set via configureMIr for
this specific learner.

Value

(Learner).

par.valsvs. ...

The former aims at specifying default hyperparameter settings from m1r which differ from the actual
defaults in the underlying learner. For example, respect.unordered. factors is set to order in

mlr while the default in ranger::ranger depends on the argument splitrule. getHyperPars(<learner>)
can be used to query hyperparameter defaults that differ from the underlying learner. This function

also shows all hyperparameters set by the user during learner creation (if these differ from the
learner defaults).

regr.randomForest

For this learner we added additional uncertainty estimation functionality (predict.type = "se")
for the randomForest, which is not provided by the underlying package.

Currently implemented methods are:

* If se.method = "jackknife" the standard error of a prediction is estimated by computing the
jackknife-after-bootstrap, the mean-squared difference between the prediction made by only
using trees which did not contain said observation and the ensemble prediction.

* If se.method = "bootstrap” the standard error of a prediction is estimated by bootstrapping
the random forest, where the number of bootstrap replicates and the number of trees in the
ensemble are controlled by se.boot and se.ntree respectively, and then taking the standard
deviation of the bootstrap predictions. The "brute force" bootstrap is executed when ntree =
se.ntree, the latter of which controls the number of trees in the individual random forests
which are bootstrapped. The "noisy bootstrap" is executed when se.ntree < ntree which is
less computationally expensive. A Monte-Carlo bias correction may make the latter option
preferable in many cases. Defaults are se.boot = 50 and se.ntree = 100.

* If se.method = "sd", the default, the standard deviation of the predictions across trees is
returned as the variance estimate. This can be computed quickly but is also a very naive
estimator.

makel_earner 163

For both “jackknife” and “bootstrap”, a Monte-Carlo bias correction is applied and, in the case that
this results in a negative variance estimate, the values are truncated at 0.

Note that when using the “jackknife” procedure for se estimation, using a small number of trees can
lead to training data observations that are never out-of-bag. The current implementation ignores
these observations, but in the original definition, the resulting se estimation would be undefined.

Please note that all of the mentioned se.method variants do not affect the computation of the pos-
terior mean “response” value. This is always the same as from the underlying randomForest.

regr.featureless

A very basic baseline method which is useful for model comparisons (if you don’t beat this, you very
likely have a problem). Does not consider any features of the task and only uses the target feature
of the training data to make predictions. Using observation weights is currently not supported.

Methods “mean” and “median” always predict a constant value for each new observation which
corresponds to the observed mean or median of the target feature in training data, respectively.

The default method is “mean” which corresponds to the ZeroR algorithm from WEKA.

classif.featureless

Method “majority” predicts always the majority class for each new observation. In the case of ties,
one randomly sampled, constant class is predicted for all observations in the test set. This method
is used as the default. It is very similar to the ZeroR classifier from WEKA. The only difference is
that ZeroR always predicts the first class of the tied class values instead of sampling them randomly.

Method “sample-prior” always samples a random class for each individual test observation accord-
ing to the prior probabilities observed in the training data.

If you opt to predict probabilities, the class probabilities always correspond to the prior probabilities
observed in the training data.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearner(),
helpLearnerParam(), makeLearners(), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

Examples

makelLearner("classif.rpart”)

makelLearner(”classif.lda"”, predict.type = "prob")

1rn = makeLearner(”classif.lda”, method = "t", nu = 10)
getHyperPars(lrn)

164 makeLearners

makeLearners Create multiple learners at once.

Description

Small helper function that can save some typing when creating mutiple learner objects. Calls make-
Learner multiple times internally.

Usage
makeLearners(cls, ids = NULL, type = NULL, ...)
Arguments
cls (character)
Classes of learners.
ids (character)
Id strings. Must be unique. Default is cls.
type (character(1))
Shortcut to prepend type string to cls so one can set c1s = "rpart”. Default is
NULL, i.e., this is not used.
(any)
Optional named (hyper)parameters. If you want to set specific hyperparameters
for a learner during model creation, these should go here. You can get a list
of available hyperparameters using getParamSet(<learner>). Alternatively
hyperparameters can be given using the par.vals argument but . .. should be
preferred!
Value

(named list of Learner). Named by ids.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearner(),
helpLearnerParam(), makeLearner (), removeHyperPars(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

Examples

makeLearners(c("rpart”, "lda"), type = "classif"”, predict.type = "prob")

makeMeasure 165

makeMeasure Construct performance measure.

Description

A measure object encapsulates a function to evaluate the performance of a prediction. Information
about already implemented measures can be obtained here: measures.

A learner is trained on a training set d1, results in a model m and predicts another set d2 (which
may be a different one or the training set) resulting in the prediction. The performance measure can
now be defined using all of the information of the original task, the fitted model and the prediction.

Usage

makeMeasure(
id,
minimize,
properties = character(@L),
fun,
extra.args = list(),
aggr = test.mean,

best = NULL,
worst = NULL,
name = id,
note = ""
)
Arguments
id (character(1))
Name of measure.
minimize (logical(1))
Should the measure be minimized? Default is TRUE.
properties (character)

Set of measure properties. Some standard property names include: - classif: Is
the measure applicable for classification? - classif.multi: Is the measure appli-
cable for multi-class classification? - multilabel: Is the measure applicable for
multilabel classification? - regr: Is the measure applicable for regression? -
surv: Is the measure applicable for survival? - cluster: Is the measure applicable
for cluster? - costsens: Is the measure applicable for cost-sensitive learning?
- req.pred: Is prediction object required in calculation? Usually the case. -
req.truth: Is truth column required in calculation? Usually the case. - req.task:
Is task object required in calculation? Usually not the case - req.model: Is model
object required in calculation? Usually not the case. - req.feats: Are feature val-
ues required in calculation? Usually not the case. - req.prob: Are predicted
probabilities required in calculation? Usually not the case, example would be
AUC.

Default is character(0).

166 makeMeasure

fun (function(task, model, pred, feats, extra.args))
Calculates the performance value. Usually you will only need the prediction
object pred. - task (Task)
The task. - model (WrappedModel)
The fitted model. - pred (Prediction)
Prediction object. - feats (data.frame)
The features. - extra.args (list)
See below.

extra.args (list)
List of extra arguments which will always be passed to fun. Can be changed
after construction via setMeasurePars(). Default is empty list.

aggr (Aggregation)
Aggregation function, which is used to aggregate the values measured on test /
training sets of the measure to a single value. Default is test.mean.

best (numeric(1))
Best obtainable value for measure. Defaultis -Inf or Inf, depending on minimize.

worst (numeric(1))
Worst obtainable value for measure. Default is Inf or -Inf, depending on
minimize.

name (character)

Name of the measure. Default is id.

note (character)
Description and additional notes for the measure. Default is

[3h

Value

Measure.

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(),
estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), measures,
performance(), setAggregation(), setMeasurePars()

Examples

f = function(task, model, pred, extra.args) {
sum((pred$data$response - pred$datas$truth)*2)

3

makeMeasure(id = "my.sse”, minimize = TRUE,
properties = c("regr"”, "response"), fun = f)

makeModelMultiplexer 167

makeModelMultiplexer Create model multiplexer for model selection to tune over multiple
possible models.

Description

Combines multiple base learners by dispatching on the hyperparameter “selected.learner” to a spe-
cific model class. This allows to tune not only the model class (SVM, random forest, etc) but also
their hyperparameters in one go. Combine this with tuneParams and makeTuneControllrace for a
very powerful approach, see example below.

The parameter set is the union of all (unique) base learners. In order to avoid name clashes all
parameter names are prefixed with the base learner id, i.e. learnerId.parameterName.

The predict.type of the Multiplexer is inherited from the predict.type of the base learners.

The getter getLearnerProperties returns the properties of the selected base learner.

Usage

makeModelMultiplexer(base.learners)

Arguments

base.learners ([list‘ of Learner)
List of Learners with unique IDs.

Value

(ModelMultiplexer). A Learner specialized as ModelMultiplexer.

Note

Note that logging output during tuning is somewhat shortened to make it more readable. lL.e., the
artificial prefix before parameter names is suppressed.

See Also

Other multiplexer: makeModelMultiplexerParamSet()

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult (), makeModelMultiplexerParamSet (), makeTuneControlCMAES(),
makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControllIrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

168 makeModelMultiplexer

Examples
set.seed(123)

library(BBmisc)
bls = list(
makeLearner("classif.ksvm"),
makelLearner("classif.randomForest”)
)
1rn = makeModelMultiplexer(bls)
simple way to contruct param set for tuning
parameter names are prefixed automatically and the 'requires'
element is set, too, to make all paramaters subordinate to 'selected.learner'
ps = makeModelMultiplexerParamSet(lrn,

makeNumericParam("sigma"”, lower = -10@, upper = 10, trafo = function(x) 2*x),
makeIntegerParam(”"ntree”, lower = 1L, upper = 500L)

)

print(ps)

rdesc = makeResampleDesc("CV", iters = 2L)

to save some time we use random search. but you probably want something like this:
ctrl = makeTuneControlIrace(maxExperiments = 500L)

ctrl = makeTuneControlRandom(maxit = 10L)

res = tuneParams(lrn, iris.task, rdesc, par.set = ps, control = ctrl)

print(res)

df = as.data.frame(res$opt.path)
print(head(df[, -ncol(df)]))

more unique and reliable way to construct the param set
ps = makeModelMultiplexerParamSet(lrn,
classif.ksvm = makeParamSet (
makeNumericParam(”sigma”, lower = -10@, upper = 10, trafo = function(x) 2*x)
),
classif.randomForest = makeParamSet(
makeIntegerParam("ntree”, lower = 1L, upper = 500L)
)
)

this is how you would construct the param set manually, works too
ps = makeParamSet (
makeDiscreteParam("selected.learner”, values = extractSubList(bls, "id")),

makeNumericParam(”classif.ksvm.sigma"”, lower = -10, upper = 10, trafo = function(x) 2"x,
requires = quote(selected.learner == "classif.ksvm")),
makeIntegerParam("classif.randomForest.ntree”, lower = 1L, upper = 500L,
requires = quote(selected.learner == "classif.randomForst"))

all three ps-objects are exactly the same internally.

makeModelMultiplexerParamSet 169

makeModelMultiplexerParamSet
Creates a parameter set for model multiplexer tuning.

Description

Handy way to create the param set with less typing.

The following is done automatically:

* The selected. learner param is created
* Parameter names are prefixed.

* The requires field of each param is set. This makes all parameters subordinate to selected. learner

Usage
makeModelMultiplexerParamSet(multiplexer, ..., .check = TRUE)

Arguments

multiplexer (ModelMultiplexer)
The muliplexer learner.
(ParamHelpers::ParamSet | ParamHelpers::Param)
(a) First option: Named param sets. Names must correspond to base learners.
You only need to enter the parameters you want to tune without reference to the
selected. learner field in any way.
(b) Second option. Just the params you would enter in the param sets. Even
shorter to create. Only works when it can be uniquely identified to which learner
each of your passed parameters belongs.

.check (logical)
Check that for each param in . .. one param in found in the base learners. De-
fault is TRUE

Value

ParamSet.

See Also

Other multiplexer: makeModelMultiplexer ()

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeTuneControlCMAES(),
makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControllrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

Examples

See makeModelMultiplexer

170 makeMulticlassWrapper

makeMulticlassWrapper Fuse learner with multiclass method.

Description

Fuses a base learner with a multi-class method. Creates a learner object, which can be used like any
other learner object. This way learners which can only handle binary classification will be able to
handle multi-class problems, too.

We use a multiclass-to-binary reduction principle, where multiple binary problems are created from
the multiclass task. How these binary problems are generated is defined by an error-correcting-
output-code (ECOC) code book. This also allows the simple and well-known one-vs-one and one-
vs-rest approaches. Decoding is currently done via Hamming decoding, see e.g. here https:
//jmlr.org/papers/volumell/escaleral@a/escaleral@a.pdf.

Currently, the approach always operates on the discrete predicted labels of the binary base models
(instead of their probabilities) and the created wrapper cannot predict posterior probabilities.

Usage
makeMulticlassWrapper(learner, mcw.method = "onevsrest")
Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
mcw.method (character(1) | function)
“onevsone” or “onevsrest”. You can also pass a function, with signature function(task)
and which returns a ECOC codematrix with entries +1,-1,0. Columns define new
binary problems, rows correspond to classes (rows must be named). 0 means
class is not included in binary problem. Default is “onevsrest”.
Value
Learner.
See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper (),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMultilabelBinaryRelevanceWrapper (), makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesW
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

https://jmlr.org/papers/volume11/escalera10a/escalera10a.pdf
https://jmlr.org/papers/volume11/escalera10a/escalera10a.pdf

makeMultilabelBinaryRelevance Wrapper 171

makeMultilabelBinaryRelevanceWrapper
Use binary relevance method to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be con-
verted to a wrapped binary relevance multilabel learner. The multilabel classification problem is
converted into simple binary classifications for each label/target on which the binary learner is ap-
plied.

Models can easily be accessed via getLearnerModel.

Note that it does not make sense to set a threshold in the used base learner when you pre-
dict probabilities. On the other hand, it can make a lot of sense, to call setThreshold on the
MultilabelBinaryRelevanceWrapper for each label indvidually; Or to tune these thresholds with
tuneThreshold; especially when you face very unabalanced class distributions for each binary label.

Usage

makeMultilabelBinaryRelevanceWrapper(learner)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
Value
Learner.
References

Tsoumakas, G., & Katakis, 1. (2006) Multi-label classification: An overview. Dept. of Informatics,
Aristotle University of Thessaloniki, Greece.

See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesW
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

Other multilabel: getMultilabelBinaryPerformances(), makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper()

172 makeMultilabelClassifierChains Wrapper

Examples

if (requireNamespace("rpart”)) {

d = getTaskData(yeast.task)

drop some labels so example runs faster

d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]

task = makeMultilabelTask(data = d, target = c("labell”, "label2"))

1rn = makelLearner("classif.rpart”)

1rn = makeMultilabelBinaryRelevanceWrapper(1lrn)

1rn = setPredictType(lrn, "prob")

train, predict and evaluate

mod = train(lrn, task)

pred = predict(mod, task)

performance(pred, measure = list(multilabel.hamloss, multilabel.subset@1, multilabel.f1))
the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))

above works also with predictions from resample!

}

makeMultilabelClassifierChainsWrapper
Use classifier chains method (CC) to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be con-
verted to a wrapped classifier chains multilabel learner. CC trains a binary classifier for each label
following a given order. In training phase, the feature space of each classifier is extended with true
label information of all previous labels in the chain. During the prediction phase, when true labels
are not available, they are replaced by predicted labels.

Models can easily be accessed via getLearnerModel.

Usage

makeMultilabelClassifierChainsWrapper(learner, order = NULL)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
order (character)
Specifies the chain order using the names of the target labels. E.g. for m target
labels, this must be a character vector of length m that contains a permutation
of the target label names. Default is NULL which uses a random ordering of the
target label names.
Value

Learner.

makeMultilabelDBRWrapper 173

References

Montanes, E. et al. (2013) Dependent binary relevance models for multi-label classification Artifi-
cial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper (), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesW
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper()

Other multilabel: getMultilabelBinaryPerformances(), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrapper (), makeMultilabelStackingWrapper ()

Examples

if (requireNamespace("rpart”)) {

d = getTaskData(yeast.task)

drop some labels so example runs faster

d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]

task = makeMultilabelTask(data = d, target = c("labell”, "label2"))

1rn = makelLearner("classif.rpart”)

1rn = makeMultilabelBinaryRelevanceWrapper(1lrn)

1rn = setPredictType(lrn, "prob")

train, predict and evaluate

mod = train(lrn, task)

pred = predict(mod, task)

performance(pred, measure = list(multilabel.hamloss, multilabel.subset@1, multilabel.f1))
the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))

above works also with predictions from resample!

}

makeMultilabelDBRWrapper

Use dependent binary relevance method (DBR) to create a multilabel
learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be con-
verted to a wrapped DBR multilabel learner. The multilabel classification problem is converted
into simple binary classifications for each label/target on which the binary learner is applied. For
each target, actual information of all binary labels (except the target variable) is used as additional
features. During prediction these labels need are obtained by the binary relevance method using the
same binary learner.

Models can easily be accessed via getLearnerModel.

174 makeMultilabelDBRWrapper

Usage

makeMultilabelDBRWrapper (learner)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
Value
Learner.
References

Montanes, E. et al. (2013) Dependent binary relevance models for multi-label classification Artifi-
cial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper (),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelNestedStackingWrapper (), makeMultilabelStackin
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWi
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

Other multilabel: getMultilabelBinaryPerformances(), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelNestedStackingWrapper (), makeMultilabelStackin

Examples

if (requireNamespace("rpart”)) {

d = getTaskData(yeast.task)

drop some labels so example runs faster

d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]

task = makeMultilabelTask(data = d, target = c("labell”, "label2"))

1rn = makelLearner("”classif.rpart”)

lrn = makeMultilabelBinaryRelevanceWrapper(1lrn)

lrn = setPredictType(lrn, "prob")

train, predict and evaluate

mod = train(lrn, task)

pred = predict(mod, task)

performance(pred, measure = list(multilabel.hamloss, multilabel.subset@1, multilabel.f1))
the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))

above works also with predictions from resample!

}

makeMultilabelNestedStacking Wrapper 175

makeMultilabelNestedStackingWrapper
Use nested stacking method to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be con-
verted to a wrapped nested stacking multilabel learner. Nested stacking trains a binary classifier for
each label following a given order. In training phase, the feature space of each classifier is extended
with predicted label information (by cross validation) of all previous labels in the chain. During
the prediction phase, predicted labels are obtained by the classifiers, which have been learned on all
training data.

Models can easily be accessed via getLearnerModel.

Usage

makeMultilabelNestedStackingWrapper(learner, order = NULL, cv.folds = 2)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
order (character)

Specifies the chain order using the names of the target labels. E.g. for m target
labels, this must be a character vector of length m that contains a permutation
of the target label names. Default is NULL which uses a random ordering of the
target label names.

cv.folds (integer(1))
The number of folds for the inner cross validation method to predict labels for
the augmented feature space. Default is 2.

Value

Learner.

References

Montanes, E. et al. (2013), Dependent binary relevance models for multi-label classification Artifi-
cial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper (), makeFeatSelWrapper (), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),

176 makeMultilabelStackingWrapper

makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelStackingWrapper(),
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWi
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

Other multilabel: getMultilabelBinaryPerformances(), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelStackingWrapper ()

Examples

if (requireNamespace("rpart”)) {

d = getTaskData(yeast. task)

drop some labels so example runs faster

d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]

task = makeMultilabelTask(data = d, target = c("labell”, "label2"))

1rn = makelLearner(”"classif.rpart”)

1rn = makeMultilabelBinaryRelevanceWrapper(1lrn)

1rn = setPredictType(lrn, "prob")

train, predict and evaluate

mod = train(lrn, task)

pred = predict(mod, task)

performance(pred, measure = list(multilabel.hamloss, multilabel.subset@1, multilabel.f1))
the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))

above works also with predictions from resample!

3

makeMultilabelStackingWrapper

Use stacking method (stacked generalization) to create a multilabel
learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be con-
verted to a wrapped stacking multilabel learner. Stacking trains a binary classifier for each label
using predicted label information of all labels (including the target label) as additional features (by
cross validation). During prediction these labels need are obtained by the binary relevance method
using the same binary learner.

Models can easily be accessed via getLearnerModel.

Usage
makeMultilabelStackingWrapper(learner, cv.folds = 2)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makelearner.
cv.folds (integer (1))

The number of folds for the inner cross validation method to predict labels for
the augmented feature space. Default is 2.

makeMultilabel Task 177

Value

Learner.

References

Montanes, E. et al. (2013) Dependent binary relevance models for multi-label classification Artifi-
cial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper (),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper (), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap
makeOverBaggingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret (), makeRemoveConstantFeaturesWi
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

Other multilabel: getMultilabelBinaryPerformances(), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap

Examples

if (requireNamespace("rpart”)) {

d = getTaskData(yeast. task)

drop some labels so example runs faster

d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]

task = makeMultilabelTask(data = d, target = c("labell”, "label2"))

1rn = makelLearner(”"classif.rpart”)

1rn = makeMultilabelBinaryRelevanceWrapper(lrn)

1rn = setPredictType(lrn, "prob")

train, predict and evaluate

mod = train(lrn, task)

pred = predict(mod, task)

performance(pred, measure = list(multilabel.hamloss, multilabel.subset@1, multilabel.f1))
the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))

above works also with predictions from resample!

3

makeMultilabelTask Create a multilabel task.

Description

Create a multilabel task.

178

Usage

makeMultilabel Task

makeMultilabelTask(
id = deparse(substitute(data)),

data,
target,
weights =

NULL,

blocking = NULL,

coordinates
fixup.data
check.data

Arguments

id

data

target

weights

blocking

coordinates

fixup.data

check.data

NULL,

"Warn” ,
TRUE

(character(1))
Id string for object. Default is the name of the R variable passed to data.

(data.frame)
A data frame containing the features and target variable(s).

(character(1) | character(2) | character(n.classes))

Name(s) of the target variable(s). For survival analysis these are the names of
the survival time and event columns, so it has length 2. For multilabel classifi-
cation it contains the names of the logical columns that encode whether a label
is present or not and its length corresponds to the number of classes.

(numeric)

Optional, non-negative case weight vector to be used during fitting. Cannot
be set for cost-sensitive learning. Default is NULL which means no (= equal)
weights.

(factor)

An optional factor of the same length as the number of observations. Obser-
vations with the same blocking level “belong together”. Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.

(data.frame)

Coordinates of a spatial data set that will be used for spatial partitioning of the
data in a spatial cross-validation resampling setting. Coordinates have to be
numeric values. Provided data.frame needs to have the same number of rows as
data and consist of at least two dimensions.

(character(1))

Should some basic cleaning up of data be performed? Currently this means
removing empty factor levels for the columns. Possible choices are: “no” =
Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent.
Default is “warn”.

(logical(1))
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.

makeOverBagging Wrapper 179

Details

For multilabel classification we assume that the presence of labels is encoded via logical columns
in data. The name of the column specifies the name of the label. target is then a char vector that
points to these columns.

Note

For multilabel classification we assume that the presence of labels is encoded via logical columns
in data. The name of the column specifies the name of the label. target is then a char vector that
points to these columns.

See Also

Task ClassifTask ClusterTask CostSensTask RegrTask SurvTask

makeOverBaggingWrapper
Fuse learner with the bagging technique and oversampling for imbal-
ancy correction.

Description

Fuses a classification learner for binary classification with an over-bagging method for imbalancy
correction when we have strongly unequal class sizes. Creates a learner object, which can be used
like any other learner object. Models can easily be accessed via getLearnerModel.

OverBagging is implemented as follows: For each iteration a random data subset is sampled. Class
examples are oversampled with replacement with a given rate. Members of the other class are either
simply copied into each bag, or bootstrapped with replacement until we have as many majority class
examples as in the original training data. Features are currently not changed or sampled.

Prediction works as follows: For classification we do majority voting to create a discrete label and
probabilities are predicted by considering the proportions of all predicted labels.

Usage

makeOverBaggingWrapper (
learner,
obw.iters = 10L,
obw.rate = 1,
obw.maxcl = "boot”,
obw.cl = NULL

180 makePreproc Wrapper
Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
obw.iters (integer(1))
Number of fitted models in bagging. Default is 10.
obw.rate (numeric(1))
Factor to upsample a class in each bag. Must be between 1 and Inf, where 1
means no oversampling and 2 would mean doubling the class size. Default is 1.
obw.maxcl (character(1))
How should other class (usually larger class) be handled? “all” means every
instance of the class gets in each bag, “boot” means the class instances are boot-
strapped in each iteration. Default is “boot”.
obw.cl (character(1))
Which class should be over- or undersampled. If NULL, makeOverBaggingWrapper
will take the smaller class.
Value
Learner.
See Also
Other imbalancy: makeUndersampleWrapper (), oversample(), smote()
Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper (), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makePreprocWrapper (), makePreprocWrapperCaret(),
makeRemoveConstantFeaturesWrapper (), makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper(),
makeWeightedClassesWrapper()
makePreprocWrapper Fuse learner with preprocessing.
Description

Fuses a base learner with a preprocessing method. Creates a learner object, which can be used like
any other learner object, but which internally preprocesses the data as requested. If the train or
predict function is called on data / a task, the preprocessing is always performed automatically.

makePreprocWrapper 181

Usage

makePreprocWrapper (
learner,
train,
predict,
par.set = makeParamSet(),
par.vals = list()

)
Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
train (function(data, target, args))
Function to preprocess the data before training. target is a string and denotes
the target variable in data. args is a list of further arguments and parameters to
influence the preprocessing. Must return a 1ist(data, control), where data
is the preprocessed data and control stores all information necessary to do the
preprocessing before predictions.
predict (function(data, target, args, control))
Function to preprocess the data before prediction. target is a string and denotes
the target variable in data. args are the args that were passed to train. control
is the object you returned in train. Must return the processed data.
par.set (ParamHelpers::ParamSet)
Parameter set of ParamHelpers::LearnerParam objects to describe the parame-
ters in args. Default is empty set.
par.vals (list)
Named list of default values for params in args respectively par.set. Default
is empty list.
Value
(Learner).
See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper (), makeFeatSelWrapper (), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makeOverBaggingWrapper (), makePreprocWrapperCaret(),
makeRemoveConstantFeaturesWrapper (), makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper(),
makeWeightedClassesWrapper()

182 makePreproc WrapperCaret

makePreprocWrapperCaret
Fuse learner with preprocessing.

Description

Fuses a learner with preprocessing methods provided by caret::preProcess. Before training the
preprocessing will be performed and the preprocessing model will be stored. Before prediction the
preprocessing model will transform the test data according to the trained model.

After being wrapped the learner will support missing values although this will only be the case if
ppc.knnImpute, ppc.bagImpute or ppc.medianImpute is set to TRUE.

Usage
makePreprocWrapperCaret(learner, ...)
Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
(any)
See caret::preProcess for parameters not listed above. If you use them you might
want to define them in the add. par.set so that they can be tuned.
Value
Learner.
See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makeOverBaggingWrapper (), makePreprocWrapper(), makeRemoveConstantFea
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

makeRegrTask

183

makeRegrTask

Create a regression task.

Description

Create a regression task.

Usage

makeRegrTask(

id = deparse(substitute(data)),

data,
target,

weights = NULL,
blocking = NULL,
coordinates = NULL,

fixup.data

"warn",

check.data = TRUE

Arguments

id

data

target

weights

blocking

coordinates

(character(1))
Id string for object. Default is the name of the R variable passed to data.

(data.frame)
A data frame containing the features and target variable(s).

(character (1) | character(2) | character(n.classes))

Name(s) of the target variable(s). For survival analysis these are the names of
the survival time and event columns, so it has length 2. For multilabel classifi-
cation it contains the names of the logical columns that encode whether a label
is present or not and its length corresponds to the number of classes.

(numeric)

Optional, non-negative case weight vector to be used during fitting. Cannot
be set for cost-sensitive learning. Default is NULL which means no (= equal)
weights.

(factor)

An optional factor of the same length as the number of observations. Obser-
vations with the same blocking level “belong together”. Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.

(data.frame)

Coordinates of a spatial data set that will be used for spatial partitioning of the
data in a spatial cross-validation resampling setting. Coordinates have to be
numeric values. Provided data.frame needs to have the same number of rows as
data and consist of at least two dimensions.

184 makeRemoveConstantFeatures Wrapper

fixup.data (character(1))
Should some basic cleaning up of data be performed? Currently this means
removing empty factor levels for the columns. Possible choices are: “no” =
Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent.
Default is “warn”.

check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.

See Also
Task ClassifTask CostSensTask ClusterTask MultilabelTask SurvTask

makeRemoveConstantFeaturesWrapper
Fuse learner with removal of constant features preprocessing.

Description

Fuses a base learner with the preprocessing implemented in removeConstantFeatures.

Usage

makeRemoveConstantFeaturesWrapper(
learner,
perc = 0,
dont.rm = character(@L),
na.ignore = FALSE,
wrap.tol = .Machine$double.eps*0.5

)
Arguments

learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.

perc (numeric(1))
The percentage of a feature values in [0, 1) that must differ from the mode value.
Default is 0, which means only constant features with exactly one observed level
are removed.

dont.rm (character)
Names of the columns which must not be deleted. Default is no columns.

na.ignore (logical(1))
Should NAs be ignored in the percentage calculation? (Or should they be treated
as a single, extra level in the percentage calculation?) Note that if the feature
has only missing values, it is always removed. Default is FALSE.

wrap.tol (numeric(1))

Numerical tolerance to treat two numbers as equal. Variables stored as double
will get rounded accordingly before computing the mode. Defaultis sqrt(.Maschine$double.eps).

makeResampleDesc 185

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper (),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makeOverBaggingWrapper (), makePreprocWrapper(), makePreprocWrapperCar:
makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper (), makeWeightedClassesWrapper ()

makeResampleDesc Create a description object for a resampling strategy.

Description

A description of a resampling algorithm contains all necessary information to create a Resampleln-
stance, when given the size of the data set.

Usage

makeResampleDesc(
method,
predict = "test”,
stratify = FALSE,
stratify.cols = NULL,
fixed = FALSE,
blocking.cv = FALSE

)
Arguments

method (character(1))
“CV” for cross-validation, “LOQ” for leave-one-out, “RepCV” for repeated
cross-validation, “Bootstrap” for out-of-bag bootstrap, “Subsample” for sub-
sampling, “Holdout” for holdout, “GrowingWindowCV” for growing window
cross-validation, “FixedWindowCV” for fixed window cross validation.

predict (character(1))
What to predict during resampling: “train”, “test” or “both” sets. Default is
“test”.
(any)

Further parameters for strategies.

186 makeResampleDesc

iters (integer (1)) Number of iterations, for “CV”, “Subsample” and “Boot-
strap”.

split (numeric(1)) Proportion of training cases for “Holdout” and “Subsam-
ple” between 0 and 1. Defaultis 2 / 3.

reps (integer (1)) Repeats for “RepCV”. Here iters = folds * reps. De-
fault is 10.

folds (integer (1)) Folds in the repeated CV for RepCV. Here iters = folds
* reps. Default is 10.

horizon (numeric(1)) Number of observations in the forecast test set for “Grow-
ingWindowCV” and “FixedWindowCV”. When horizon > 1 this will be
treated as the number of observations to forecast, else it will be a fraction
of the initial window. IE, for 100 observations, initial window of .5, and
horizon of .2, the test set will have 10 observations. Default is 1.

initial.window (numeric (1)) Fraction of observations to start with in the train-
ing set for “GrowingWindowCV” and “FixedWindowCV”. When initial.window
> 1 this will be treated as the number of observations in the initial window,
else it will be treated as the fraction of observations to have in the initial
window. Default is 0.5.

skip (numeric(1)) How many resamples to skip to thin the total amount for
“GrowingWindowCV” and “FixedWindowCV”. This is passed through as
the “by” argument in seq(). When skip > 1 this will be treated as the
increment of the sequence of resampling indices, else it will be a fraction
of the total training indices. IE for 100 training sets and a value of .2, the
increment of the resampling indices will be 20. Default is “horizon” which
gives mutually exclusive chunks of test indices.

stratify (logical(1))
Should stratification be done for the target variable? For classification tasks, this
means that the resampling strategy is applied to all classes individually and the
resulting index sets are joined to make sure that the proportion of observations
in each training set is as in the original data set. Useful for imbalanced class
sizes. For survival tasks stratification is done on the events, resulting in training
sets with comparable censoring rates.

stratify.cols (character)
Stratify on specific columns referenced by name. All columns have to be factor
or integer. Note that you have to ensure yourself that stratification is possible,
i.e. that each strata contains enough observations. This argument and stratify
are mutually exclusive.

fixed (logical(1))
Whether indices supplied via argument *blocking’ in the task should be used
as fully pre-defined indices. Default is FALSE which means they will be used
following the ’blocking’ approach. fixed only works with ResampleDesc CV
and the supplied indices must match the number of observations. When fixed
= TRUE, the iters argument will be ignored and is interally set to the number of
supplied factor levels in blocking.

blocking.cv (logical(1))
Should *blocking’ be used in CV? Default to FALSE. This is different to fixed

makeResampleDesc 187

= TRUE and cannot be combined. Please check the mlr online tutorial for more
details.

Details

Some notes on some special strategies:
Repeated cross-validation Use “RepCV”. Then you have to set the aggregation function for your
preferred performance measure to “testgroup.mean” via setAggregation.

B632 bootstrap Use “Bootstrap” for bootstrap and set predict to “both”. Then you have to set the
aggregation function for your preferred performance measure to “b632” via setAggregation.

B632+ bootstrap Use “Bootstrap” for bootstrap and set predict to “both”. Then you have to set the
aggregation function for your preferred performance measure to “b632plus” via setAggrega-
tion.

Fixed Holdout set Use makeFixedHoldoutInstance.
Object slots:

id (character (1)) Name of resampling strategy.

iters (integer (1)) Number of iterations. Note that this is always the complete number of gener-
ated train/test sets, so for a 10-times repeated 5fold cross-validation it would be 50.

predict (character (1)) See argument.
stratify (Logical(1)) See argument.

All parameters passed in ... under the respective argument name See arguments.

Value

(ResampleDesc).

Standard ResampleDesc objects

For common resampling strategies you can save some typing by using the following description
objects:

hout holdout a.k.a. test sample estimation (two-thirds training set, one-third testing set)

cv2 2-fold cross-validation

cv3 3-fold cross-validation

cvS 5-fold cross-validation

c¢v10 10-fold cross-validation

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(),
getRRPredictions(), getRRTaskDesc(), getRRTaskDescription(), makeResampleInstance(),
resample()

188

Examples

Bootstraping
makeResampleDesc("Bootstrap”, iters
makeResampleDesc("Bootstrap”, iters

Subsampling
makeResampleDesc("”Subsample”, iters
makeResampleDesc("Subsample”, iters

makeResamplelnstance

10)

10, predict = "both")

10, split = 3 / 4)
10)

Holdout a.k.a. test sample estimation

makeResampleDesc("Holdout")

makeResampleInstance Instantiates a resampling strategy object.

Description

This class encapsulates training and test sets generated from the data set for a number of iterations.
It mainly stores a set of integer vectors indicating the training and test examples for each iteration.

Usage
makeResampleInstance(desc, task, size, ...)
Arguments
desc (ResampleDesc | character (1))
Resampling description object or name of resampling strategy. In the latter case
makeResampleDesc will be called internally on the string.
task (Task)
Data of task to resample from. Prefer to pass this instead of size.
size (integer)
Size of the data set to resample. Can be used instead of task.
(any)
Passed down to makeResampleDesc in case you passed a string in desc. Other-
wise ignored.
Details
Object slots:

desc (ResampleDesc) See argument.
size (integer (1)) See argument.

train.inds (list of integer) List of of training indices for all iterations.

test.inds (list of integer) List of of test indices for all iterations.

group (factor) Optional grouping of resampling iterations. This encodes whether specific itera-
tions "belong together’ (e.g. repeated CV), and it can later be used to aggregate performance
values accordingly. Default is *factor()’.

makeRLearner.classif.fdausc.glm 189

Value

(Resamplelnstance).

See Also
Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(),
getRRPredictions(), getRRTaskDesc(), getRRTaskDescription(), makeResampleDesc(), resample()

Examples

rdesc = makeResampleDesc("Bootstrap”, iters = 10)
rin = makeResamplelnstance(rdesc, task = iris.task)

rdesc = makeResampleDesc("CV", iters = 50)
rin = makeResamplelnstance(rdesc, size = nrow(iris))

rin = makeResamplelnstance("CV", iters = 10, task = iris.task)

makeRLearner.classif.fdausc.glm
Classification of functional data by Generalized Linear Models.

Description

Learner for classification using Generalized Linear Models.

Usage

S3 method for class 'classif.fdausc.glm'
makeRLearner ()

makeRLearner.classif.fdausc.kernel
Learner for kernel classification for functional data.

Description

Learner for kernel Classification.

Usage

S3 method for class 'classif.fdausc.kernel'
makeRLearner ()

190 makeSMOTEWrapper

makeRLearner.classif.fdausc.np
Learner for nonparametric classification for functional data.

Description

Learner for Nonparametric Supervised Classification.

Usage
S3 method for class 'classif.fdausc.np'
makeRLearner ()
makeSMOTEWrapper Fuse learner with SMOTE oversampling for imbalancy correction in
binary classification.
Description

Creates a learner object, which can be used like any other learner object. Internally uses smote
before every model fit.

Note that observation weights do not influence the sampling and are simply passed down to the next
learner.

Usage

makeSMOTEWrapper (
learner,
sw.rate =1,
sw.nn = 5L,
sw.standardize = TRUE,
sw.alt.logic = FALSE

)
Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
sw.rate (numeric(1))
Factor to oversample the smaller class. Must be between 1 and Inf, where 1
means no oversampling and 2 would mean doubling the class size. Default is 1.
sw.nn (integer(1))

Number of nearest neighbors to consider. Default is 5.

makeStackedLearner 191

sw.standardize (logical(1))
Standardize input variables before calculating the nearest neighbors for data sets
with numeric input variables only. For mixed variables (numeric and factor) the
gower distance is used and variables are standardized anyway. Default is TRUE.

sw.alt.logic (logical(1))
Use an alternative logic for selection of minority class observations. Instead
of sampling a minority class element AND one of its nearest neighbors, each
minority class element is taken multiple times (depending on rate) for the in-
terpolation and only the corresponding nearest neighbor is sampled. Default is
FALSE.

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper (), makeFeatSelWrapper (), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper(), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makeOverBaggingWrapper (), makePreprocWrapper(), makePreprocWrapperCar:
makeRemoveConstantFeaturesWrapper (), makeTuneWrapper (), makeUndersampleWrapper(),
makeWeightedClassesWrapper()

makeStackedLearner Create a stacked learner object.

Description

A stacked learner uses predictions of several base learners and fits a super learner using these pre-
dictions as features in order to predict the outcome. The following stacking methods are available:

* average
Averaging of base learner predictions without weights.

* stack.nocv
Fits the super learner, where in-sample predictions of the base learners are used.

* stack.cv
Fits the super learner, where the base learner predictions are computed by cross-validated
predictions (the resampling strategy can be set via the resampling argument).

* hill.climb
Select a subset of base learner predictions by hill climbing algorithm.

* compress
Train a neural network to compress the model from a collection of base learners.

192

Usage

makeStackedLearner

makeStackedLearner (
base.learners,

super.learner = NULL,
predict.type = NULL,

method = "stack.nocv”,

use.feat = FALSE,
resampling = NULL,

parset = list()

Arguments

base.learners

super.learner

predict.type

method

use.feat

((list of) Learner)
A list of learners created with makeLearner.

(Learner | character(1))

The super learner that makes the final prediction based on the base learners. If
you pass a string, the super learner will be created via makeLearner. Not used
for method = 'average'. Default is NULL.

(character(1))

Sets the type of the final prediction for method = 'average'. For other methods,
the predict type should be set within super.learner. If the type of the base
learner prediction, which is set up within base.learners, is

° llprobll
then predict.type = 'prob' will use the average of all base learner pre-
dictions and predict.type = 'response’ will use the class with highest
probability as final prediction.

* "response”
then, for classification tasks with predict.type = 'prob’, the final pre-
diction will be the relative frequency based on the predicted base learner
classes and classification tasks with predict.type = 'response' will use
majority vote of the base learner predictions to determine the final predic-
tion. For regression tasks, the final prediction will be the average of the
base learner predictions.

(character(1))

“average” for averaging the predictions of the base learners, “stack.nocv” for
building a super learner using the predictions of the base learners, “stack.cv” for
building a super learner using cross-validated predictions of the base learners.
“hill.climb” for averaging the predictions of the base learners, with the weights
learned from hill climbing algorithm and “compress” for compressing the model
to mimic the predictions of a collection of base learners while speeding up the
predictions and reducing the size of the model. Default is “stack.nocv”,

(logical(1))
Whether the original features should also be passed to the super learner. Not
used for method = 'average'. Default is FALSE.

makeStackedLearner 193

resampling (ResampleDesc)
Resampling strategy for method = 'stack.cv'. Currently only CV is allowed
for resampling. The default NULL uses 5-fold CV.

parset the parameters for hill.climb method, including
* replace
Whether a base learner can be selected more than once.
e init
Number of best models being included before the selection algorithm.

* bagprob
The proportion of models being considered in one round of selection.

* bagtime
The number of rounds of the bagging selection.

* metric
The result evaluation metric function taking two parameters pred and true,
the smaller the score the better.

the parameters for compress method, including

e k

the size multiplier of the generated data

* prob
the probability to exchange values
*s
the standard deviation of each numerical feature

Examples

Classification

data(iris)

tsk = makeClassifTask(data = iris, target = "Species")
base = c("classif.rpart”, "classif.lda”, "classif.svm")
lrns = lapply(base, makelLearner)

lrns = lapply(lrns, setPredictType, "prob")

m = makeStackedLearner(base.learners = lrns,
predict.type = "prob”, method = "hill.climb")

tmp = train(m, tsk)

res = predict(tmp, tsk)

Regression
data(BostonHousing, package = "mlbench")
tsk = makeRegrTask(data = BostonHousing, target = "medv"”)
base = c("regr.rpart”, "regr.svm")
lrns = lapply(base, makelLearner)
m = makeStackedLearner(base.learners = lrns,
predict.type = "response”, method = "compress")
tmp = train(m, tsk)
res = predict(tmp, tsk)

194

makeSurvTask

makeSurvTask

Create a survival task.

Description

Create a survival task.

Usage

makeSurvTask(

id = deparse(substitute(data)),

data,
target,

weights = NULL,
blocking = NULL,
coordinates = NULL,

fixup.data = "warn”,
check.data = TRUE
)
Arguments
id (character(1))
Id string for object. Default is the name of the R variable passed to data.
data (data.frame)
A data frame containing the features and target variable(s).
target (character (1) | character(2) | character(n.classes))
Name(s) of the target variable(s). For survival analysis these are the names of
the survival time and event columns, so it has length 2. For multilabel classifi-
cation it contains the names of the logical columns that encode whether a label
is present or not and its length corresponds to the number of classes.
weights (numeric)
Optional, non-negative case weight vector to be used during fitting. Cannot
be set for cost-sensitive learning. Default is NULL which means no (= equal)
weights.
blocking (factor)

An optional factor of the same length as the number of observations. Obser-
vations with the same blocking level “belong together”. Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.

makeTuneControl CMAES 195

coordinates (data.frame)
Coordinates of a spatial data set that will be used for spatial partitioning of the
data in a spatial cross-validation resampling setting. Coordinates have to be
numeric values. Provided data.frame needs to have the same number of rows as
data and consist of at least two dimensions.

fixup.data (character(1))
Should some basic cleaning up of data be performed? Currently this means
removing empty factor levels for the columns. Possible choices are: “no” =
Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent.
Default is “warn”.

check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.
See Also

Task ClassifTask ClusterTask CostSensTask MultilabelTask RegrTask

makeTuneControlCMAES Create control object for hyperparameter tuning with CMAES.

Description

CMA Evolution Strategy with method cmaes::cma_es. Can handle numeric(vector) and integer(vector)
hyperparameters, but no dependencies. For integers the internally proposed numeric values are
automatically rounded. The sigma variance parameter is initialized to 1/4 of the span of box-
constraints per parameter dimension.

Usage

makeTuneControlCMAES(
same.resampling.instance = TRUE,
impute.val = NULL,
start = NULL,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL,

Arguments

same.resampling.instance
(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

196

impute.val

start

tune. threshold

makeTuneControl CMAES

(numeric)

If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on. learner.error is configured not to stop in configureMlIr. It
is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

(list)
Named list of initial parameter values.

(logical(1))

Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune.threshold.args

log.fun

final.dw.perc

budget

Value

(list)
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

(function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character (1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

(boolean)

If a Learner wrapped by a makeDownsampleWrapper is used, you can define
the value of dw.perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

(integer(1))

Maximum budget for tuning. This value restricts the number of function eval-
uations. The budget corresponds to the product of the number of generations
(maxit) and the number of offsprings per generation (1ambda).

(any)
Further control parameters passed to the control arguments of cmaes::cma_es
or GenSA::GenSA, as well as towards the tunerConfig argument of irace::irace.

(TuneControlCMAES)

makeTuneControlDesign 197

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet(),
makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControllIrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

makeTuneControlDesign Create control object for hyperparameter tuning with predefined de-
sign.

Description

Completely pre-specifiy a data. frame of design points to be evaluated during tuning. All kinds of
parameter types can be handled.

Usage

makeTuneControlDesign(
same.resampling.instance = TRUE,
impute.val = NULL,
design = NULL,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”

Arguments

same.resampling.instance
(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

impute.val (numeric)

If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on. learner.error is configured not to stop in configureMlIr. It
is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

design (data.frame)
data.frame containing the different parameter settings to be evaluated. The
columns have to be named according to the ParamSet which will be used in

198 makeTuneControlGenSA

tune(). Proper designs can be created with ParamHelpers::generateDesign for
instance.

tune. threshold (logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune.threshold.args
(list)
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

log.fun (function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character (1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

Value

(TuneControlDesign)

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet(),
makeTuneControlCMAES(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControlIrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

makeTuneControlGenSA Create control object for hyperparameter tuning with GenSA.

Description

Generalized simulated annealing with method GenSA::GenSA. Can handle numeric(vector) and
integer(vector) hyperparameters, but no dependencies. For integers the internally proposed numeric
values are automatically rounded.

Usage

makeTuneControlGenSA(
same.resampling.instance = TRUE,
impute.val = NULL,
start = NULL,

makeTuneControlGenSA 199

tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”,

final.dw.perc

= NULL,

budget = NULL,

Arguments

same.resampling.instance

impute.val

start

tune. threshold

(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

(numeric)

If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on.learner.error is configured not to stop in configureMIr. It
is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

(list)

Named list of initial parameter values.

(logical(1))

Should the threshold be tuned for the measure at hand, after each hyperparam-

eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune. threshold.args

log. fun

final.dw.perc

(list)
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

(function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character (1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

(boolean)
If a Learner wrapped by a makeDownsampleWrapper is used, you can define

200 makeTuneControlGrid

the value of dw.perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

budget (integer(1))
Maximum budget for tuning. This value restricts the number of function evalu-
ations. GenSA::GenSA defines the budget via the argument max.call. How-
ever, one should note that this algorithm does not stop its local search before its
end. This behavior might lead to an extension of the defined budget and will
result in a warning.

(any)
Further control parameters passed to the control arguments of cmaes::cma_es
or GenSA::GenSA, as well as towards the tunerConfig argument of irace::irace.

Value

(TuneControlGenSA).

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet(),
makeTuneControlCMAES (), makeTuneControlDesign(), makeTuneControlGrid(), makeTuneControllIrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

makeTuneControlGrid Create control object for hyperparameter tuning with grid search.

Description

A basic grid search can handle all kinds of parameter types. You can either use their correct param
type and resolution, or discretize them yourself by always using ParamHelpers::makeDiscreteParam
in the par.set passed to tuneParams.

Usage

makeTuneControlGrid(
same.resampling.instance = TRUE,
impute.val = NULL,
resolution = 10L,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL

makeTuneControlGrid

Arguments

201

same.resampling.instance

impute.val

resolution

tune. threshold

tune. threshold.

log.fun

final.dw.perc

budget

(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

(numeric)

If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on. learner.error is configured not to stop in configureMlIr. It
is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

(integer)

Resolution of the grid for each numeric/integer parameter in par.set. For vec-
tor parameters, it is the resolution per dimension. FEither pass one resolution
for all parameters, or a named vector. See ParamHelpers::generateGridDesign.
Default is 10.

(logical(1))

Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

args

(list)

Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

(function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character (1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

(boolean)

If a Learner wrapped by a makeDownsampleWrapper is used, you can define
the value of dw.perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

(integer (1))
Maximum budget for tuning. This value restricts the number of function evalu-
ations. If set, must equal the size of the grid.

202 makeTuneControllrace

Value

(TuneControlGrid)

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet(),
makeTuneControlCMAES (), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControllIrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper(), tuneParams(), tuneThreshold()

makeTuneControlIrace Create control object for hyperparameter tuning with Irace.

Description

Tuning with iterated F-Racing with method irace::irace. All kinds of parameter types can be han-
dled. We return the best of the final elite candidates found by irace in the last race. Its estimated
performance is the mean of all evaluations ever done for that candidate. More information on irace
can be found in package vignette: vignette(”irace-package”, package = "irace")

For resampling you have to pass a ResampleDesc, not a Resamplelnstance. The resampling strat-
egy is randomly instantiated n.instances times and these are the instances in the sense of irace
(instances element of tunerConfig in irace::irace). Also note that irace will always store its tun-
ing results in a file on disk, see the package documentation for details on this and how to change
the file path.

Usage

makeTuneControlIrace(
impute.val = NULL,
n.instances = 100L,
show.irace.output = FALSE,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL,

Arguments

impute.val (numeric)
If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on. learner.error is configured not to stop in configureMlIr. It
is not stored in the optimization path, an NA and a corresponding error message

makeTuneControllrace 203

are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

n.instances (integer(1))
Number of random resampling instances for irace, see details. Default is 100.
show.irace.output
(logical(1))
Show console output of irace while tuning? Default is FALSE.
tune.threshold (logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.
tune.threshold. args
(list)
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

log. fun (function | character(1))
Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character (1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

final.dw.perc (boolean)
If a Learner wrapped by a makeDownsampleWrapper is used, you can define
the value of dw.perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

budget (integer(1))
Maximum budget for tuning. This value restricts the number of function evalu-
ations. It is passed to maxExperiments.
(any)
Further control parameters passed to the control arguments of cmaes::cma_es
or GenSA::GenSA, as well as towards the tunerConfig argument of irace::irace.

Value

(TuneControllrace)

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet(),

204 makeTuneControIMBO

makeTuneControlCMAES (), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

makeTuneControlMBO Create control object for hyperparameter tuning with MBO.

Description

Model-based / Bayesian optimization with the function mIrMBO::mbo from the mlrMBO package.
Please refer to https://github.com/mlr-org/mlrMBO for further info.

Usage

makeTuneControlMBO(
same.resampling.instance = TRUE,
impute.val = NULL,
learner = NULL,
mbo.control = NULL,
tune.threshold = FALSE,
tune.threshold.args = list(),
continue = FALSE,
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL,
mbo.design = NULL

Arguments

same.resampling.instance
(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

impute.val (numeric)

If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on. learner.error is configured not to stop in configureMIr. It
is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

learner (Learner | NULL)
The surrogate learner: A regression learner to model performance landscape.
For the default, NULL, mlrMBO will automatically create a suitable learner
based on the rules described in mlirMBO::makeMBOLearner.

https://github.com/mlr-org/mlrMBO

makeTuneControIMBO 205

mbo.control (mlrMBO::MBOControl | NULL)
Control object for model-based optimization tuning. For the default, NULL, the
control object will be created with all the defaults as described in mIrMBO::makeMBOControl.

tune.threshold (logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune.threshold.args
(list)
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

continue (logical(1))
Resume calculation from previous run using mirMBO::mboContinue? Requires
“save.file.path” to be set. Note that the ParamHelpers::OptPath in the mIrMBO::OptResult
will only include the evaluations after the continuation. The complete OptPath
will be found in the slot $mbo. result$opt.path.

log.fun (function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character (1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

final.dw.perc (boolean)
If a Learner wrapped by a makeDownsampleWrapper is used, you can define
the value of dw.perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

budget (integer(1))
Maximum budget for tuning. This value restricts the number of function evalu-
ations.

mbo.design (data.frame | NULL)

Initial design as data frame. If the parameters have corresponding trafo func-
tions, the design must not be transformed before it is passed! For the default,
NULL, a default design is created like described in mlrMBO::mbo.

Value

(TuneControIMBO)

References

Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas and Michel Lang; ml-
rMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions,
Preprint: https://arxiv.org/abs/1703.03373 (2017).

https://arxiv.org/abs/1703.03373

206 makeTuneControlRandom

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet(),
makeTuneControlCMAES (), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(),
makeTuneControlIrace(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

makeTuneControlRandom Create control object for hyperparameter tuning with random search.

Description

Random search. All kinds of parameter types can be handled.

Usage

makeTuneControlRandom(
same.resampling.instance = TRUE,
maxit = NULL,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL

Arguments

same.resampling.instance
(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

maxit (integer (1) INULL)
Number of iterations for random search. Default is 100.

tune.threshold (logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune.threshold.args
(list)
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

log.fun (function | character(1))
Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character (1) function

makeTune Wrapper 207

with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.
final.dw.perc (boolean)
If a Learner wrapped by a makeDownsampleWrapper is used, you can define
the value of dw. perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.
budget (integer(1))
Maximum budget for tuning. This value restricts the number of function eval-
uations. The budget equals the number of iterations (maxit) performed by the
random search algorithm.

Value

(TuneControlRandom)

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet(),
makeTuneControlCMAES(), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(),
makeTuneControlIrace(), makeTuneControlMBO(), makeTuneWrapper (), tuneParams(), tuneThreshold()

makeTuneWrapper Fuse learner with tuning.

Description

Fuses a base learner with a search strategy to select its hyperparameters. Creates a learner object,
which can be used like any other learner object, but which internally uses tuneParams. If the train
function is called on it, the search strategy and resampling are invoked to select an optimal set of
hyperparameter values. Finally, a model is fitted on the complete training data with these optimal
hyperparameters and returned. See tuneParams for more details.

After training, the optimal hyperparameters (and other related information) can be retrieved with
getTuneResult.

Usage

makeTuneWrapper (
learner,
resampling,
measures,
par.set,
control,
show.info = getMlrOption("show.info")

208 makeTuneWrapper

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
resampling (Resamplelnstance | ResampleDesc)
Resampling strategy to evaluate points in hyperparameter space. If you pass a
description, it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets. If you want to change that behavior,
look at TuneControl.
measures (list of Measure | Measure)
Performance measures to evaluate. The first measure, aggregated by the first
aggregation function is optimized, others are simply evaluated. Default is the
default measure for the task, see here getDefaultMeasure.
par.set (ParamHelpers::ParamSet)
Collection of parameters and their constraints for optimization. Dependent pa-
rameters with a requires field must use quote and not expression to define
it.
control (TuneControl)
Control object for search method. Also selects the optimization algorithm for
tuning.
show. info (logical(1))
Print verbose output on console? Default is set via configureMIr.
Value
Learner.
See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer (), makeModelMultiplexerParamSet(),
makeTuneControlCMAES (), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(),
makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), tuneParams(),
tuneThreshold()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makeOverBaggingWrapper (), makePreprocWrapper(), makePreprocWrapperCar:
makeRemoveConstantFeaturesWrapper (), makeSMOTEWrapper (), makeUndersampleWrapper(),
makeWeightedClassesWrapper()

Examples

task = makeClassifTask(data = iris, target = "Species")
1rn = makelLearner(”classif.rpart")

makeUndersample Wrapper 209

stupid mini grid
ps = makeParamSet (
makeDiscreteParam(”cp”, values = c(0.05, 0.1)),
makeDiscreteParam("minsplit”, values = c(10, 20))
)
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
1rn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control = ctrl)
mod = train(lrn, task)
print(getTuneResult(mod))
nested resampling for evaluation
we also extract tuned hyper pars in each iteration
r = resample(lrn, task, outer, extract = getTuneResult)
print(r$extract)
getNestedTuneResultsOptPathDf (r)
getNestedTuneResultsX(r)

makeUndersampleWrapper
Fuse learner with simple ove/underrsampling for imbalancy correc-
tion in binary classification.

Description

Creates a learner object, which can be used like any other learner object. Internally uses oversample
or undersample before every model fit.

Note that observation weights do not influence the sampling and are simply passed down to the next
learner.

Usage

makeUndersampleWrapper(learner, usw.rate = 1, usw.cl = NULL)

makeOversampleWrapper (learner, osw.rate = 1, osw.cl = NULL)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
usw.rate (numeric(1))

Factor to downsample a class. Must be between 0 and 1, where 1 means no
downsampling, 0.5 implies reduction to 50 percent and 0 would imply reduction
to 0 observations. Default is 1.

210 makeWeightedClasses Wrapper

usw.cl (character(1))
Class that should be undersampled. Default is NULL, which means the larger
one.

osw.rate (numeric(1))

Factor to oversample a class. Must be between 1 and Inf, where 1 means no
oversampling and 2 would mean doubling the class size. Default is 1.

osw.cl (character(1))
Class that should be oversampled. Default is NULL, which means the smaller
one.
Value
Learner.
See Also

Other imbalancy: makeOverBaggingWrapper (), oversample(), smote()

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper (), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper (), makeMulticlassWrapper(), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makeOverBaggingWrapper (), makePreprocWrapper(), makePreprocWrapperCar:
makeRemoveConstantFeaturesWrapper (), makeSMOTEWrapper (), makeTuneWrapper (), makeWeightedClassesWrapper

makeWeightedClassesWrapper
Wraps a classifier for weighted fitting where each class receives a
weight.

Description

Creates a wrapper, which can be used like any other learner object.

Fitting is performed in a weighted fashion where each observation receives a weight, depending on
the class it belongs to, see wew.weight. This might help to mitigate problems caused by imbalanced
class distributions.

This weighted fitting can be achieved in two ways:

a) The learner already has a parameter for class weighting, so one weight can directly be defined
per class. Example: “classif.ksvm” and parameter class.weights. In this case we don’t really
do anything fancy. We convert wcw.weight a bit, but basically simply bind its value to the class
weighting param. The wrapper in this case simply offers a convenient, consistent fashion for class
weighting - and tuning! See example below.

b) The learner does not have a direct parameter to support class weighting, but supports observation
weights, so hasLearnerProperties(learner, 'weights') is TRUE. This means that an individ-
ual, arbitrary weight can be set per observation during training. We set this weight depending on
the class internally in the wrapper. Basically we introduce something like a new “class.weights”
parameter for the learner via observation weights.

make WeightedClasses Wrapper 211

Usage

makeWeightedClassesWrapper(learner, wcw.param = NULL, wcw.weight = 1)

Arguments
learner (Learner | character(1))
The classification learner. If you pass a string the learner will be created via
makeLearner.
wCw. param (character(1))
Name of already existing learner parameter, which allows class weighting. The
default (wcw. param = NULL) will use the parameter defined in the learner (class.weights.param).
During training, the parameter must accept a named vector of class weights,
where length equals the number of classes.
wcw.weight (numeric)
Weight for each class. Must be a vector of the same number of elements as
classes are in task, and must also be in the same order as the class levels are in
getTaskDesc(task)$class.levels. For convenience, one must pass a single
number in case of binary classification, which is then taken as the weight of the
positive class, while the negative class receives a weight of 1. Default is 1.
Value
Learner.
See Also

Other wrapper: makeBaggingWrapper (), makeClassificationViaRegressionWrapper(), makeConstantClassWrapper (
makeCostSensClassifWrapper(), makeCostSensRegrWrapper (), makeDownsampleWrapper(),
makeDummyFeaturesWrapper (), makeExtractFDAFeatsWrapper(), makeFeatSelWrapper(), makeFilterWrapper(),
makeImputeWrapper(), makeMulticlassWrapper (), makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(), makeMultilabelDBRWrapper (), makeMultilabelNestedStackingWrap
makeMultilabelStackingWrapper (), makeOverBaggingWrapper (), makePreprocWrapper(), makePreprocWrapperCar:
makeRemoveConstantFeaturesWrapper (), makeSMOTEWrapper (), makeTuneWrapper (), makeUndersampleWrapper ()

Examples

set.seed(123)

using the direct parameter of the SVM (which is already defined in the learner)
1rn = makeWeightedClassesWrapper(”classif.ksvm”, wcw.weight = 0.01)

res = holdout(lrn, sonar.task)

print(calculateConfusionMatrix(res$pred))

using the observation weights of logreg

1rn = makeWeightedClassesWrapper(”classif.logreg”, wcw.weight = 0.01)
res = holdout(lrn, sonar.task)
print(calculateConfusionMatrix(res$pred))

tuning the imbalancy param and the SVM param in one go

212 makeWrappedModel

1rn = makeWeightedClassesWrapper(”classif.ksvm”, wcw.param = "class.weights")
ps = makeParamSet (
makeNumericParam("wcw.weight”, lower = 1, upper = 10),
makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2"x),
makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2*x)
)
ctrl = makeTuneControlRandom(maxit = 3L)
rdesc = makeResampleDesc("CV", iters = 2L, stratify = TRUE)
res = tuneParams(lrn, sonar.task, rdesc, par.set = ps, control = ctrl)
print(res)
print(res$opt.path)

makeWrappedModel Induced model of learner.

Description

Result from train.

It internally stores the underlying fitted model, the subset used for training, features used for train-
ing, levels of factors in the data set and computation time that was spent for training.

Object members: See arguments.

The constructor makeWrappedModel is mainly for internal use.

Usage

makeWrappedModel (
learner,
learner.model,
task.desc,
subset,
features,
factor.levels,
time

Arguments

learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.

learner.model (any)
Underlying model.

task.desc TaskDesc
Task description object.

MeasureProperties 213

subset (integer | logical | NULL)
Selected cases. Either a logical or an index vector. By default NULL if all obser-
vations are used.

features (character)
Features used for training.

factor.levels (named list of character)
Levels of factor variables (features and potentially target) in training data. Named
by variable name, non-factors do not occur in the list.

time (numeric(1))
Computation time for model fit in seconds.

Value

WrappedModel.

MeasureProperties Query properties of measures.

Description

Properties can be accessed with getMeasureProperties(measure), which returns a character vec-
tor.

The measure properties are defined in Measure.

Usage

getMeasureProperties(measure)

hasMeasureProperties(measure, props)

Arguments
measure (Measure)
Performance measure. Default is the first measure used in the benchmark exper-
iment.
props (character)
Vector of properties to query.
Value

getMeasureProperties returns a character vector with measure properties. hasMeasureProperties
returns a logical vector of the same length as props.

214 measures

measures Performance measures.

Description

A performance measure is evaluated after a single train/predict step and returns a single number to
assess the quality of the prediction (or maybe only the model, think AIC). The measure itself knows
whether it wants to be minimized or maximized and for what tasks it is applicable.

All supported measures can be found by listMeasures or as a table in the tutorial appendix: https:
//mlr.mlr-org.com/articles/tutorial/measures.html.

If you want a measure for a misclassification cost matrix, look at makeCostMeasure. If you want to
implement your own measure, look at makeMeasure.

Most measures can directly be accessed via the function named after the scheme measureX (e.g.
measureSSE).

For clustering measures, we compact the predicted cluster IDs such that they form a continuous
series starting with 1. If this is not the case, some of the measures will generate warnings.

Some measure have parameters. Their defaults are set in the constructor makeMeasure and can be
overwritten using setMeasurePars.

Usage

measureSSE(truth, response)
measureMSE (truth, response)
measureRMSE (truth, response)
measureMEDSE (truth, response)
measureSAE(truth, response)
measureMAE (truth, response)
measureMEDAE (truth, response)
measureRSQ(truth, response)
measureEXPVAR(truth, response)
measureRRSE(truth, response)
measureRAE(truth, response)

measureMAPE (truth, response)

https://mlr.mlr-org.com/articles/tutorial/measures.html
https://mlr.mlr-org.com/articles/tutorial/measures.html

measures 215

measureMSLE (truth, response)

measureRMSLE(truth, response)
measureKendallTau(truth, response)
measureSpearmanRho(truth, response)

measureMMCE (truth, response)

measureACC(truth, response)

measureBER(truth, response)
measureAUNU(probabilities, truth)

measureAUNP (probabilities, truth)
measureAUTU(probabilities, truth)
measureAUTP(probabilities, truth)
measureMulticlassBrier(probabilities, truth)
measurelLogloss(probabilities, truth)
measureSSR(probabilities, truth)
measureQSR(probabilities, truth)
measureLSR(probabilities, truth)

measureKAPPA(truth, response)

measureWKAPPA(truth, response)
measureAUC(probabilities, truth, negative, positive)
measureBrier(probabilities, truth, negative, positive)
measureBrierScaled(probabilities, truth, negative, positive)
measureBAC(truth, response)

measureTP(truth, response, positive)

measureTN(truth, response, negative)

216

measureFP(truth, response, positive)
measureFN(truth, response, negative)
measureTPR(truth, response, positive)
measureTNR(truth, response, negative)
measureFPR(truth, response, negative, positive)

measureFNR(truth, response, negative, positive)

measurePPV(truth, response, positive, probabilities = NULL)

measureNPV(truth, response, negative)
measureFDR(truth, response, positive)
measureMCC(truth, response, negative, positive)
measureF1(truth, response, positive)
measureGMEAN(truth, response, negative, positive)
measureGPR(truth, response, positive)
measureMultilabelHamloss(truth, response)
measureMultilabelSubset@1(truth, response)
measureMultilabelF1(truth, response)
measureMultilabelACC(truth, response)
measureMultilabelPPV(truth, response)

measureMultilabelTPR(truth, response)

Arguments
truth (factor)
Vector of the true class.
response (factor)

Vector of the predicted class.

probabilities (numeric | matrix)

measures

a) For purely binary classification measures: The predicted probabilities for the
positive class as a numeric vector. b) For multiclass classification measures:
The predicted probabilities for all classes, always as a numeric matrix, where

mergeBenchmarkResults 217

columns are named with class labels.

negative (character(1))
The name of the negative class.

positive (character(1))
The name of the positive class.

References

He, H. & Garcia, E. A. (2009) Learning from Imbalanced Data. IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 9. pp. 1263-1284.

H. Uno et al. On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Proce-
dures with Censored Survival Data Statistics in medicine. 2011;30(10):1105-1117. doi:10.1002/
sim.4154.

H. Uno et al. Evaluating Prediction Rules for T-Year Survivors with Censored Regression Models
Journal of the American Statistical Association 102, no. 478 (2007): 527-37.

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(),
estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(),
performance(), setAggregation(), setMeasurePars()

mergeBenchmarkResults Merge different BenchmarkResult objects.

Description
The function automatically combines a list of BenchmarkResult objects into a single BenchmarkRe-
sult object as long as the full crossproduct of all task-learner combinations are available.

Usage

mergeBenchmarkResults(bmrs)

Arguments
bmrs (list of BenchmarkResult)
BenchmarkResult objects that should be merged.
Details

Note that if you want to merge several BenchmarkResult objects, you must ensure that all possible
learner and task combinations will be contained in the returned object. Otherwise, the user will be
notified which task-learner combinations are missing or duplicated.

When merging BenchmarkResult objects with different measures, all missing measures will auto-
matically be recomputed.

https://doi.org/10.1002/sim.4154
https://doi.org/10.1002/sim.4154

218 mergeSmallFactorLevels

Value

BenchmarkResult

mergeSmallFactorLevels
Merges small levels of factors into new level.

Description

Merges factor levels that occur only infrequently into combined levels with a higher frequency.

Usage
mergeSmallFactorLevels(
task,
cols = NULL,
min.perc = 0.01,
new.level = ".merged”
)
Arguments
task (Task)
The task.
cols (character) Which columns to convert. Default is all factor and character columns.
min.perc (numeric(1))
The smallest levels of a factor are merged until their combined proportion w.r.t.
the length of the factor exceeds min.perc. Must be between 0 and 1. Default is
0.01.
new.level (character(1))
New name of merged level. Default is “.merged”
Value

Task, where merged levels are combined into a new level of name new. level.

See Also

Other eda_and_preprocess: capLargeValues(), createDummyFeatures(), dropFeatures(), normalizeFeatures(),
removeConstantFeatures(), summarizeColumns(), summarizelLevels()

mlirFamilies 219

mlrFamilies mlr documentation families

Description

List of all mlr documentation families with members.

Arguments

benchmark batchmark, reduceBatchmarkResults, benchmark, benchmarkParallel, getBM-
RTasklds, getBMRLearners, getBMRLearnerlds, getBMRLearnerShortNames,
getBMRMeasures, getBMRMeasurelds, getBMRPredictions, getBMRPerfor-
mances, getBMRAggrPerformances, getBMRTuneResults, getBMRFeatSelRe-
sults, getBMRFilteredFeatures, getBMRModels, getBMRTaskDescs, convertBM-
RToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, plotBMRBox-
plots, plotBMRRanksAsBarChart, generateCritDifferencesData, plotCritDiffer-
ences

calibration generateCalibrationData, plotCalibration

configure configureMIr, getMIrOptions

costsens makeCostSensTask, makeCostSens WeightedPairsWrapper

debug predictFailureModel, getPredictionDump, getRRDump, print.ResampleResult

downsample downsample

eda_and_preprocess
capLargeValues, createDummyFeatures, dropFeatures, mergeSmallFactorLevels,
normalizeFeatures, removeConstantFeatures, summarizeColumns, summarizelLevels
extractFDAFeatures
reextractFDAFeatures
fda_featextractor
extractFDAFourier, extractFDAWavelets, extractFDAFPCA, extractFDAMultiRes-

Features
fda makeExtractFDAFeatMethod, extractFDAFeatures
featsel analyzeFeatSelResult, makeFeatSelControl, getFeatSelResult, selectFeatures
filter filterFeatures, makeFilter, listFilterMethods, getFilteredFeatures, generateFilter-

ValuesData, getFilterValues

generate_plot_data
generateFeatureImportanceData, plotFilterValues, generatePartialDependence-

Data
help helpLearner, helpLearnerParam
imbalancy oversample, smote

impute makelmputeMethod, imputeConstant, impute, reimpute

220 mtcars.task

learner getClassWeightParam, getHyperPars, getParamSet.Learner, getLearnerType, getLearnerld,
getLearnerPredictType, getLearnerPackages, getLearnerParamSet, getLearner-
ParVals, setLearnerld, getLearnerShortName, getLearnerProperties, makeLearner,
makeLearners, removeHyperPars, setHyperPars, setld, setPredictThreshold, set-
PredictType

learning_curve generateLearningCurveData

multilabel getMultilabelBinaryPerformances, makeMultilabelBinaryRelevanceWrapper, make-
MultilabelClassifierChainsWrapper, makeMultilabeIDBRWrapper, makeMulti-
labelNestedStackingWrapper, makeMultilabelStackingWrapper

performance calculateConfusionMatrix, calculateROCMeasures, makeCustomResampledMea-
sure, makeCostMeasure, setMeasurePars, setAggregation, makeMeasure, feat-
perc, performance, estimateRelativeOverfitting

plot createSpatialResamplingPlots, plotLearningCurve, plotPartialDependence, plotBMR-
Summary, plotResiduals

predict asROCRPrediction, getPredictionProbabilities, getPredictionTaskDesc, getPre-
dictionResponse, predict. WrappedModel

resample makeResampleDesc, makeResamplelnstance, makeResamplePrediction, resam-
ple, getRRPredictions, getRRTaskDescription, getRRTaskDesc, getRRPredic-
tionList, addRRMeasure

task getTaskDesc, getTaskType, getTaskld, getTaskTargetNames, getTaskClassLevels,
getTaskFeatureNames, getTaskNFeats, getTaskSize, getTaskFormula, getTask-
Targets, getTaskData, getTaskCosts, subsetTask

thresh_vs_perf generateThreshVsPerfData, plotThreshVsPerf, plotROCCurves

tune getNestedTuneResultsX, getNestedTuneResultsOptPathDf, getResamplingIndices,
getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, make-
TuneControlCMAES, makeTuneControlDesign, makeTuneControlGenS A, make-
TuneControlGrid, makeTuneControllrace, makeTuneControlIMBO, makeTuneCon-
trol, makeTuneControlRandom, tuneParams, tuneThreshold

tune_multicrit plotTuneMultiCritResult, makeTuneMultiCritControl, tuneParamsMultiCrit

wrapper makeBaggingWrapper, makeClassificationViaRegressionWrapper, makeConstant-
ClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, make-
DownsampleWrapper, makeDummyFeatures Wrapper, makeExtractFDAFeats Wrap-
per, makeFeatSelWrapper, makeFilterWrapper, makelmpute Wrapper, makeMul-
ticlassWrapper, makeOverBaggingWrapper, makeUndersampleWrapper, makePre-
procWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrap-
per, makeSMOTEWr apper, makeTuneWrapper, makeWeightedClassesWrapper

mtcars. task Motor Trend Car Road Tests clustering task.

Description

Contains the task (mtcars. task).

normalizeFeatures 221

References

See datasets::mtcars.

normalizeFeatures Normalize features.

Description

Normalize features by different methods. Internally BBmisc::normalize is used for every feature
column. Non numerical features will be left untouched and passed to the result. For constant
features most methods fail, special behaviour for this case is implemented.

Usage
normalizeFeatures(
obj,
target = character(oL),
method = "standardize”,
cols = NULL,
range = c(0, 1),
on.constant = "quiet”
)
Arguments
obj (data.frame | Task)
Input data.
target (character (1) | character(2) | character(n.classes))
Name(s) of the target variable(s). Only used when obj is a data.frame, otherwise
ignored. If survival analysis is applicable, these are the names of the survival
time and event columns, so it has length 2. For multilabel classification these
are the names of logical columns that indicate whether a class label is present
and the number of target variables corresponds to the number of classes.
method (character(1))
Normalizing method. Available are:
“center”’: Subtract mean.
“scale”: Divide by standard deviation.
“standardize”: Center and scale.
“range”: Scale to a given range.
cols (character)
Columns to normalize. Default is to use all numeric columns.
range (numeric(2))

Range for method “range”. Default is c(0,1).

222 oversample

on.constant (character(1))
How should constant vectors be treated? Only used, of “method != center”,
since this methods does not fail for constant vectors. Possible actions are:
“quiet”: Depending on the method, treat them quietly:
“scale”: No division by standard deviation is done, input values. will be returned
untouched.
“standardize”: Only the mean is subtracted, no division is done.
“range”: All values are mapped to the mean of the given range.
“warn”: Same behaviour as “quiet”, but print a warning message.
“stop”: Stop with an error.

Value

data.frame | Task. Same type as obj.

See Also

BBmisc::normalize

Other eda_and_preprocess: capLargeValues(), createDummyFeatures(), dropFeatures(), mergeSmallFactorLevels(
removeConstantFeatures(), summarizeColumns(), summarizelLevels()

oversample Over- or undersample binary classification task to handle class imbal-
ancy.

Description

Oversampling: For a given class (usually the smaller one) all existing observations are taken and
copied and extra observations are added by randomly sampling with replacement from this class.

Undersampling: For a given class (usually the larger one) the number of observations is reduced
(downsampled) by randomly sampling without replacement from this class.

Usage

oversample(task, rate, cl = NULL)

undersample(task, rate, cl = NULL)

Arguments
task (Task)
The task.
rate (numeric(1))

Factor to upsample or downsample a class. For undersampling: Must be be-
tween 0 and 1, where 1 means no downsampling, 0.5 implies reduction to 50
percent and O would imply reduction to 0 observations. For oversampling: Must

parallelization 223

be between 1 and Inf, where 1 means no oversampling and 2 would mean dou-
bling the class size.

cl (character(1))
Which class should be over- or undersampled. If NULL, oversample will select
the smaller and undersample the larger class.

Value

Task.

See Also

Other imbalancy: makeOverBaggingWrapper (), makeUndersampleWrapper (), smote()

parallelization Supported parallelization methods

Description

mlr supports different methods to activate parallel computing capabilities through the integration
of the paralle]lMap::parallelMap package, which supports all major parallelization backends for R.
You can start parallelization with parallelStartx, where * should be replaced with the chosen
backend. parallelMap::parallelStop is used to stop all parallelization backends.

Parallelization is divided into different levels and will automatically be carried out for the first level
that occurs, e.g. if you call resample() after parallelMap::parallelStart, each resampling iteration
is a parallel job and possible underlying calls like parameter tuning won’t be parallelized further.

The supported levels of parallelization are:

"mlr.resample” Each resampling iteration (a train/test step) is a parallel job.
"mlr.benchmark” Each experiment "run this learner on this data set" is a parallel job.

"mlr.tuneParams” Each evaluation in hyperparameter space "resample with these parameter set-
tings" is a parallel job. How many of these can be run independently in parallel depends on
the tuning algorithm. For grid search or random search there is no limit, but for other tuners it
depends on how many points to evaluate are produced in each iteration of the optimization. If
a tuner works in a purely sequential fashion, we cannot work magic and the hyperparameter
evaluation will also run sequentially. But note that you can still parallelize the underlying
resampling.

"mlr.selectFeatures” Each evaluation in feature space "resample with this feature subset" is a
parallel job. The same comments as for "mlr.tuneParams” apply here.

"mlr.ensemble” For all ensemble methods, the training and prediction of each individual learner
is a parallel job. Supported ensemble methods are the makeBaggingWrapper, makeCostSen-
sRegrWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper and the makeOverBag-
gingWrapper.

224 performance

performance Measure performance of prediction.

Description

Measures the quality of a prediction w.r.t. some performance measure.

Usage
performance(
pred,
measures,
task = NULL,
model = NULL,
feats = NULL,
simpleaggr = FALSE
)
Arguments
pred (Prediction)
Prediction object.
measures (Measure | list of Measure)

Performance measure(s) to evaluate. Default is the default measure for the task,
see here getDefaultMeasure.

task (Task)
Learning task, might be requested by performance measure, usually not needed
except for clustering or survival.

model (WrappedModel)
Model built on training data, might be requested by performance measure, usu-
ally not needed except for survival.

feats (data.frame)
Features of predicted data, usually not needed except for clustering. If the pre-
diction was generated from a task, you can also pass this instead and the fea-
tures are extracted from it.

simpleaggr (logical)
If TRUE, aggregation of ResamplePrediction objects is skipped. This is used
internally for threshold tuning. Default is FALSE.

Value

(named numeric). Performance value(s), named by measure(s).

phoneme.task 225

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(),
estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(),
measures, setAggregation(), setMeasurePars()

Examples

training.set = seq(1, nrow(iris), by = 2)
test.set = seq(2, nrow(iris), by = 2)

task = makeClassifTask(data = iris, target = "Species"”)
1rn = makelLearner(”classif.lda")

mod = train(lrn, task, subset = training.set)

pred = predict(mod, newdata = iris[test.set,])
performance(pred, measures = mmce)

Compute multiple performance measures at once
ms = list("mmce” = mmce, "acc” = acc, "timetrain” = timetrain)
performance(pred, measures = ms, task, mod)

phoneme. task Phoneme functional data multilabel classification task.

Description

Contains the task (phoneme. task). The task contains a single functional covariate and 5 equally
big classes (aa, ao, dcl, iy, sh). The aim is to predict the class of the phoneme in the functional. The
dataset is contained in the package fda.usc.

References

F. Ferraty and P. Vieu (2003) "Curve discrimination: a nonparametric functional approach”, Compu-
tational Statistics and Data Analysis, 44(1-2), 161-173. F. Ferraty and P. Vieu (2006) Nonparametric
functional data analysis, New York: Springer. T. Hastie and R. Tibshirani and J. Friedman (2009)
The elements of statistical learning: Data mining, inference and prediction, 2nd edn, New York:
Springer.

pid.task PimalndiansDiabetes classification task.

Description

Contains the task (pid. task).

References

See mlbench::PimalndiansDiabetes. Note that this is the uncorrected version from mlbench.

226

plotBMRBoxplots

plotBMRBoxplots

Create box or violin plots for a BenchmarkResult.

Description

Plots box or violin plots for a selected measure across all iterations of the resampling strategy,
faceted by the task. id.

Usage

plotBMRBoxplots(

bmr,

measure = NULL,
style = "box",

order.lrns =
order.tsks =
pretty.names

NULL,
NULL,
= TRUE,

facet.wrap.nrow = NULL,
facet.wrap.ncol = NULL

Arguments

bmr

measure

style

order.lrns

order.tsks

pretty.names

(BenchmarkResult)
Benchmark result.

(Measure)
Performance measure. Default is the first measure used in the benchmark exper-
iment.

(character(1))
Type of plot, can be “box” for a boxplot or “violin” for a violin plot. Default is
“box”.

(character(n.learners))
Character vector with learner.ids in new order.

(character(n.tasks))

Character vector with task. ids in new order.

(logical(1))

Whether to use the Measure name and the Learner short name instead of the id.
Default is TRUE.

facet.wrap.nrow, facet.wrap.ncol

Value

(integer)
Number of rows and columns for facetting. Default for both is NULL. In this case
ggplot’s facet_wrap will choose the layout itself.

ggplot2 plot object.

plotBMRRanksAsBarChart 227

See Also

Other plot: createSpatialResamplingPlots(), plotBMRRanksAsBarChart(), plotBMRSummary(),
plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(),
plotROCCurves(), plotResiduals(), plotThreshVsPerf ()

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelIds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs (), getBMRTaskIds (), getBMRTuneResults (), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

Examples

see benchmark

plotBMRRanksAsBarChart
Create a bar chart for ranks in a BenchmarkResult.

Description

Plots a bar chart from the ranks of algorithms. Alternatively, tiles can be plotted for every rank-
task combination, see pos for details. In all plot variants the ranks of the learning algorithms are
displayed on the x-axis. Areas are always colored according to the learner.id.

Usage
plotBMRRanksAsBarChart(
bmr,
measure = NULL,
ties.method = "average",
aggregation = "default”,
pos = "stack”

order.lrns = NULL,
order.tsks = NULL,
pretty.names = TRUE

)
Arguments
bmr (BenchmarkResult)
Benchmark result.
measure (Measure)

Performance measure. Default is the first measure used in the benchmark exper-
iment.

228

ties.method

aggregation

pos

order.lrns

order.tsks

pretty.names

Value

plotBMRSummary

(character(1))
See rank for details.

(character(1))
“mean” or “default”. See getBMRAggrPerformances for details on “default”.

(character(1))

Optionally set how the bars are positioned in ggplot2. Ranks are plotted on the
x-axis. “tile” plots a heat map with task as the y-axis. Allows identification of
the performance in a special task. “stack” plots a stacked bar plot. Allows for
comparison of learners within and and across ranks. “dodge” plots a bar plot
with bars next to each other instead of stacked bars.

(character(n.learners))
Character vector with learner.ids in new order.

(character(n.tasks))

Character vector with task. ids in new order.

(logical(1))

Whether to use the short name of the learner instead of its ID in labels. Defaults
to TRUE.

ggplot2 plot object.

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRSummary (), plotCalibration(),
plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotROCCurves(),

plotResiduals(), plotThreshVsPerf ()
Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),

friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(),

plotBMRSummary (), plotCritDifferences(), reduceBatchmarkResults()

Examples

see benchmark

plotBMRSummary

Plot a benchmark summary.

Description

Creates a scatter plot, where each line refers to a task. On that line the aggregated scores for all
learners are plotted, for that task. Optionally, you can apply a rank transformation or just use one
of ggplot2’s transformations like ggplot2::scale_x_log10.

plotBMRSummary 229

Usage
plotBMRSummary (
bmr,
measure = NULL,
trafo = "none”,

order.tsks = NULL,
pointsize = 4L,
jitter = 0.05,
pretty.names = TRUE

)
Arguments

bmr (BenchmarkResult)
Benchmark result.

measure (Measure)
Performance measure. Default is the first measure used in the benchmark exper-
iment.

trafo (character(1))
Currently either “none” or “rank”, the latter performing a rank transformation
(with average handling of ties) of the scores per task. NB: You can add always
add ggplot2::scale_x_log10 to the result to put scores on a log scale. Default is
“none”.

order.tsks (character(n.tasks))
Character vector with task. ids in new order.

pointsize (numeric(1))
Point size for ggplot2 ggplot2::geom_point for data points. Default is 4.

jitter (numeric(1))
Small vertical jitter to deal with overplotting in case of equal scores. Default is
0.05.

pretty.names (logical(1))
Whether to use the short name of the learner instead of its ID in labels. Defaults
to TRUE.

Value

ggplot2 plot object.

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(),
plotBMRRanksAsBarChart (), plotCritDifferences(), reduceBatchmarkResults()

230 plotCalibration

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(),
plotROCCurves(), plotResiduals(), plotThreshVsPerf ()

Examples

see benchmark

plotCalibration Plot calibration data using ggplot2.

Description

Plots calibration data from generateCalibrationData.

Usage

plotCalibration(
obj,
smooth = FALSE,
reference = TRUE,
rag = TRUE,
facet.wrap.nrow = NULL,

facet.wrap.ncol = NULL
)
Arguments
obj (CalibrationData)
Result of generateCalibrationData.
smooth (logical(1))
Whether to use a loess smoother. Default is FALSE.
reference (logical(1))
Whether to plot a reference line showing perfect calibration. Default is TRUE.
rag (logical(1))
Whether to include a rag plot which shows a rug plot on the top which pertains
to positive cases and on the bottom which pertains to negative cases. Default is
TRUE.
facet.wrap.nrow, facet.wrap.ncol
(integer)
Number of rows and columns for facetting. Default for both is NULL. In this case
ggplot’s facet_wrap will choose the layout itself.
Value

ggplot2 plot object.

plotCritDifferences 231

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(),
plotROCCurves(), plotResiduals(), plotThreshVsPerf ()

Other calibration: generateCalibrationData()

Examples

Not run:

lrns = list(makeLearner("classif.rpart”, predict.type = "prob"),
makelLearner("classif.nnet"”, predict.type = "prob"))

fit = lapply(lrns, train, task = iris.task)

pred = lapply(fit, predict, task = iris.task)

names(pred) = c("rpart”, "nnet")
out = generateCalibrationData(pred, groups = 3)
plotCalibration(out)

fit = lapply(lrns, train, task = sonar.task)
pred = lapply(fit, predict, task = sonar.task)
names(pred) = c("rpart”, "lda")

out = generateCalibrationData(pred)
plotCalibration(out)

End(Not run)

plotCritDifferences Plot critical differences for a selected measure.

Description

Plots a critical-differences diagram for all classifiers and a selected measure. If a baseline is selected
for the Bonferroni-Dunn test, the critical difference interval will be positioned around the baseline.
If not, the best performing algorithm will be chosen as baseline.

The positioning of some descriptive elements can be moved by modifying the generated data.

Usage

plotCritDifferences(obj, baseline = NULL, pretty.names = TRUE)

Arguments

obj (critDifferencesData) Result of generateCritDifferencesData().

232 plotFilterValues

baseline (character(1)): (learner.id)
Overwrites baseline from generateCritDifferencesData()!
Select a 1learner. id as baseline for the critical difference diagram, the critical
difference will be positioned around this learner. Defaults to best performing
algorithm.

pretty.names (logical(1))
Whether to use the short name of the learner instead of its ID in labels. Defaults
to TRUE.

Value

ggplot2 plot object.

References

Janez Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets, IMLR, 2006

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCalibration(), plotLearningCurve(), plotPartialDependence(),
plotROCCurves(), plotResiduals(), plotThreshVsPerf ()

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelIds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs (), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(),
plotBMRRanksAsBarChart (), plotBMRSummary (), reduceBatchmarkResults()

Examples

see benchmark

plotFilterValues Plot filter values using ggplot2.

Description

Plot filter values using ggplot2.

Usage

plotFilterValues(
fvalues,
sort = "dec”,
n.show = nrow(fvalues$data),
filter = NULL,
feat.type.cols = FALSE

plotHyperParsEffect 233

Arguments
fvalues (FilterValues)
Filter values.
sort (character(1))
Auvailable options are:
* "dec"-> descending
e "inc" -> increasing
* "none" -> no sorting
Default is decreasing.
n.show (integer(1))
Number of features (maximal) to show. Default is to plot all features.
filter (character (1)) In case fvalues contains multiple filter methods, which method

should be plotted?

feat.type.cols (logical(1))
Whether to color different feature types (e.g. numeric | factor). Default is to use
no colors (feat.type.cols = FALSE).

Value

ggplot2 plot object.

See Also

Other filter: filterFeatures(), generateFilterValuesData(), getFilteredFeatures(), listFilterEnsembleMethoc
listFilterMethods(), makeFilter(), makeFilterEnsemble(), makeFilterWrapper ()

Other generate_plot_data: generateCalibrationData(), generateCritDifferencesData(), generateFeatureImporta
generateFilterValuesData(), generateLearningCurveData(), generatePartialDependenceData(),
generateThreshVsPerfData()

Examples

fv = generateFilterValuesData(iris.task, method = "variance")
plotFilterValues(fv)

plotHyperParskEffect Plot the hyperparameter effects data

Description

Plot hyperparameter validation path. Automated plotting method for HyperParsEffectData ob-
ject. Useful for determining the importance or effect of a particular hyperparameter on some per-
formance measure and/or optimizer.

234 plotHyperParsEffect

Usage

plotHyperParsEffect(
hyperpars.effect.data,
x = NULL,
y = NULL,
z = NULL,
plot.type = "scatter”,
loess.smooth = FALSE,

facet = NULL,
global.only = TRUE,
interpolate = NULL,

show.experiments = FALSE,
show.interpolated = FALSE,
nested.agg = mean,
partial.dep.learn = NULL

Arguments

hyperpars.effect.data
(HyperParsEffectData)
Result of generateHyperParsEffectData
X (character(1))
Specify what should be plotted on the x axis. Must be a column from HyperParsEffectData$data.
For partial dependence, this is assumed to be a hyperparameter.

y (character(1))
Specify what should be plotted on the y axis. Must be a column from HyperParsEffectData$data
z (character(1))

Specify what should be used as the extra axis for a particular geom. This could
be for the fill on a heatmap or color aesthetic for a line. Must be a column from
HyperParskEffectData$data. Default is NULL.

plot.type (character(1))
Specify the type of plot: “scatter” for a scatterplot, “heatmap” for a heatmap,
“line” for a scatterplot with a connecting line, or “contour” for a contour plot
layered ontop of a heatmap. Default is “scatter”.

loess.smooth (logical(1))
If TRUE, will add loess smoothing line to plots where possible. Note that this is
probably only useful when plot. type is set to either “scatter” or “line”. Must
be a column from HyperParsEffectData$data. Not used with partial depen-
dence. Default is FALSE.

facet (character(1))
Specify what should be used as the facet axis for a particular geom. When using
nested cross validation, set this to “nested_cv_run” to obtain a facet for each
outer loop. Must be a column from HyperParsEffectData$data. Please note
that facetting is not supported with partial dependence plots! Default is NULL.

global.only (logical(1))
If TRUE, will only plot the current global optima when setting x = "iteration" and

plotHyperParsEffect

interpolate

235

y as a performance measure from HyperParsEffectData$measures. Set this
to FALSE to always plot the performance of every iteration, even if it is not an
improvement. Not used with partial dependence. Default is TRUE.

(Learner | character (1))

If not NULL, will interpolate non-complete grids in order to visualize a more
complete path. Only meaningful when attempting to plot a heatmap or contour.
This will fill in “empty” cells in the heatmap or contour plot. Note that cases
of irregular hyperparameter paths, you will most likely need to use this to have
a meaningful visualization. Accepts either a regression Learner object or the
learner as a string for interpolation. This cannot be used with partial dependence.
Default is NULL.

show.experiments

(logical(1))

If TRUE, will overlay the plot with points indicating where an experiment ran.
This is only useful when creating a heatmap or contour plot with interpolation
so that you can see which points were actually on the original path. Note: if any
learner crashes occurred within the path, this will become TRUE. Not used with
partial dependence. Default is FALSE.

show.interpolated

nested.agg

(logical(1))

If TRUE, will overlay the plot with points indicating where interpolation ran. This
is only useful when creating a heatmap or contour plot with interpolation so that
you can see which points were interpolated. Not used with partial dependence.
Default is FALSE.

(function)

The function used to aggregate nested cross validation runs when plotting 2
hyperparameters. This is also used for nested aggregation in partial dependence.
Default is mean.

partial.dep.learn

Value

(Learner | character(1))

The regression learner used to learn partial dependence. Must be specified if
“partial.dep” is set to TRUE in generateHyperParsEffectData. Accepts either a
Learner object or the learner as a string for learning partial dependence. Default
is NULL.

ggplot2 plot object.

Note

Any NAs incurred from learning algorithm crashes will be indicated in the plot (except in the case
of partial dependence) and the NA values will be replaced with the column min/max depending
on the optimal values for the respective measure. Execution time will be replaced with the max.
Interpolation by its nature will result in predicted values for the performance measure. Use inter-
polation with caution. If “partial.dep” is set to TRUE in generateHyperParsEffectData, only partial
dependence will be plotted.

Since a ggplot2 plot object is returned, the user can change the axis labels and other aspects of the
plot using the appropriate ggplot2 syntax.

236

Examples

see generateHyperParsEffectData

plotLearnerPrediction

plotLearnerPrediction Visualizes a learning algorithm on a 1D or 2D data set.

Description

Trains the model for 1 or 2 selected features, then displays it via ggplot2::ggplot. Good for teaching

or exploring models.

For classification and clustering, only 2D plots are supported. The data points, the classification
and potentially through color alpha blending the posterior probabilities are shown.

For regression, 1D and 2D plots are supported. 1D shows the data, the estimated mean and po-
tentially the estimated standard error. 2D does not show estimated standard error, but only the

estimated mean via background color.

The plot title displays the model id, its parameters, the training performance and the cross-validation

performance.

Usage

plotLearnerPrediction(
learner,
task,
features = NULL,
measures,
cv = 1oL,
gridsize,
pointsize = 2,
prob.alpha = TRUE,
se.band = TRUE,

The learner. If you pass a string the learner will be created via makeLearner.

err.mark = "train",
bg.cols = c("darkblue”, "green"”, "darkred"),
err.col = "white”,
err.size = pointsize,
greyscale = FALSE,
pretty.names = TRUE

)

Arguments
learner (Learner | character(1))
task (Task)

The task.

plotLearnerPrediction

features

measures

Ccv

gridsize

pointsize

prob.alpha

se.band

err.mark

bg.cols

err.col

err.size

greyscale

pretty.names

Value

237

(character)
Selected features for model. By default the first 2 features are used.

(Measure | list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task,
see here getDefaultMeasure.

(integer(1))
Do cross-validation and display in plot title? Number of folds. 0 means no CV.
Default is 10.

(any)

Parameters for learner.

(integer(1))

Grid resolution per axis for background predictions. Default is 500 for 1D and
100 for 2D.

(numeric(1))

Pointsize for ggplot2 ggplot2::geom_point for data points. Default is 2.
(logical(1))

For classification: Set alpha value of background to probability for predicted
class? Allows visualization of “confidence” for prediction. If not, only a con-
stant color is displayed in the background for the predicted label. Default is
TRUE.

(logical(1))
For regression in 1D: Show band for standard error estimation? Default is TRUE.
(character(1)): For classification: Either mark error of the model on the train-

ing data (“train”) or during cross-validation (“cv”) or not at all with “none”.
Default is “train”.

(character(3))
Background colors for classification and regression. Sorted from low, medium
to high. Default is TRUE.

(character(1))

For classification: Color of misclassified data points. Default is “white”
(integer(1))

For classification: Size of misclassified data points. Default is pointsize.
(logical(1))

Should the plot be greyscale completely? Default is FALSE.

(logical(1))

Whether to use the short name of the learner instead of its ID in labels. Defaults
to TRUE.

The ggplot2 object.

238 plotLearningCurve

plotLearningCurve Plot learning curve data using ggplot2.

Description

Visualizes data size (percentage used for model) vs. performance measure(s).

Usage
plotLearningCurve(
obj,
facet = "measure”,

pretty.names = TRUE,
facet.wrap.nrow = NULL,
facet.wrap.ncol = NULL

)
Arguments
obj (LearningCurveData)
Result of generateLearningCurveData, with class LearningCurveData.
facet (character(1))

Selects “measure” or “learner” to be the facetting variable. The variable mapped
to facet must have more than one unique value, otherwise it will be ignored.
The variable not chosen is mapped to color if it has more than one unique value.
The default is “measure”.

pretty.names (logical(1))
Whether to use the Measure name instead of the id in the plot. Default is TRUE.

facet.wrap.nrow, facet.wrap.ncol
(integer)
Number of rows and columns for facetting. Default for both is NULL. In this case
ggplot’s facet_wrap will choose the layout itself.

Value

ggplot2 plot object.

See Also

Other learning_curve: generatelLearningCurveData()

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCalibration(), plotCritDifferences(), plotPartialDependence(),
plotROCCurves(), plotResiduals(), plotThreshVsPerf ()

plotPartialDependence

239

plotPartialDependence Plot a partial dependence with ggplot2.

Description

Plot a partial dependence from generatePartialDependenceData using ggplot2.

’

Usage
plotPartialDependence(
obj,
geom = "line”
facet = NULL,

facet.wrap.nrow = NULL,

facet.wrap.ncol

p=1,
data = NULL

Arguments

obj

geom

facet

NULL,

PartialDependenceData
Generated by generatePartialDependenceData.

(charater(1))

The type of geom to use to display the data. Can be “line” or “tile”. For tiling
at least two features must be used with interaction = TRUE in the call to gen-
eratePartialDependenceData. This may be used in conjuction with the facet
argument if three features are specified in the call to generatePartialDependence-
Data. Default is “line”.

(character(1))

The name of a feature to be used for facetting. This feature must have been
an element of the features argument to generatePartialDependenceData and is
only applicable when said argument had length greater than 1. The feature must
be a factor or an integer. If generatePartialDependenceData is called with the
interaction argument FALSE (the default) with argument features of length
greater than one, then facet is ignored and each feature is plotted in its own
facet. Default is NULL.

facet.wrap.nrow, facet.wrap.ncol

(integer)
Number of rows and columns for facetting. Default for both is NULL. In this case
ggplot’s facet_wrap will choose the layout itself.

(numeric(1))

If individual = TRUE then sample allows the user to sample without replace-
ment from the output to make the display more readable. Each row is sampled
with probability p. Default is 1.

240 plotResiduals

data (data.frame)
Data points to plot. Usually the training data. For survival and binary classifica-
tion tasks a rug plot wherein ticks represent failures or instances of the positive
class are shown. For regression tasks points are shown. For multiclass clas-
sification tasks ticks are shown and colored according to their class. Both the
features and the target must be included. Default is NULL.

Value

ggplot2 plot object.

See Also

Other partial_dependence: generatePartialDependenceData()

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotROCCurves(),
plotResiduals(), plotThreshVsPerf ()

plotResiduals Create residual plots for prediction objects or benchmark results.

Description

Plots for model diagnostics. Provides scatterplots of true vs. predicted values and histograms of the
model’s residuals.

Usage

plotResiduals(
obj,
type = "scatterplot”,
loess.smooth = TRUE,
rug = TRUE,
pretty.names = TRUE

)
Arguments
obj (Prediction | BenchmarkResult)
Input data.
type Type of plot. Can be “scatterplot”, the default. Or “hist”, for a histogram, or in

case of classification problems a barplot, displaying the residuals.

loess.smooth (logical(1))

Should a loess smoother be added to the plot? Defaults to TRUE. Only applicable
for regression tasks and if type is set to scatterplot.

plotROCCurves 241

rug (logical(1))
Should marginal distributions be added to the plot? Defaults to TRUE. Only
applicable for regression tasks and if type is set to scatterplot.

pretty.names (logical(1))
Whether to use the short name of the learner instead of its ID in labels. Defaults
to TRUE.
Only applicable if a BenchmarkResult is passed to obj in the function call, ig-
nored otherwise.

Value

ggplot2 plot object.

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(
plotROCCurves(), plotThreshVsPerf ()

plotROCCurves Plots a ROC curve using ggplot2.

Description

Plots a ROC curve from predictions.

Usage

plotROCCurves(
obj,
measures,
diagonal = TRUE,
pretty.names = TRUE,
facet.learner = FALSE

)
Arguments
obj (ThreshVsPerfData)
Result of generateThreshVsPerfData.
measures ([list(2)‘ of Measure)
Default is the first 2 measures passed to generate ThreshVsPerfData.
diagonal (logical(1))

Whether to plot a dashed diagonal line. Default is TRUE.

pretty.names (logical(1))
Whether to use the Measure name instead of the id in the plot. Default is TRUE.

242 plotThreshVsPerf

facet.learner (logical(1))
Weather to use facetting or different colors to compare multiple learners. Default
is FALSE.

Value

ggplot2 plot object.

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(
plotResiduals(), plotThreshVsPerf ()

Other thresh_vs_perf: generateThreshVsPerfData(), plotThreshVsPerf ()

Examples

1rn = makelLearner(”classif.rpart”, predict.type = "prob")
fit = train(lrn, sonar.task)

pred = predict(fit, task = sonar.task)

roc = generateThreshVsPerfData(pred, list(fpr, tpr))
plotROCCurves(roc)

r = bootstrapB632plus(lrn, sonar.task, iters = 3)
roc_r = generateThreshVsPerfData(r, list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_r)

r2 = crossval(lrn, sonar.task, iters = 3)
roc_l = generateThreshVsPerfData(list(boot = r, cv =r2), list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_1)

plotThreshVsPerf Plot threshold vs. performance(s) for 2-class classification using gg-
plot2.

Description

Plots threshold vs. performance(s) data that has been generated with generateThreshVsPerfData.

Usage

plotThreshVsPerf(
obj,
measures = obj$measures,
facet = "measure”,
mark.th = NA_real_,

plotThreshVsPerf 243

pretty.names = TRUE,
facet.wrap.nrow = NULL,
facet.wrap.ncol = NULL

)
Arguments

obj (ThreshVsPerfData)
Result of generateThreshVsPerfData.

measures (Measure | list of Measure)
Performance measure(s) to plot. Must be a subset of those used in gener-
ateThreshVsPerfData. Default is all the measures stored in obj generated by
generateThreshVsPerfData.

facet (character(1))
Selects “measure” or “learner” to be the facetting variable. The variable mapped
to facet must have more than one unique value, otherwise it will be ignored.
The variable not chosen is mapped to color if it has more than one unique value.
The default is “measure”.

mark. th (numeric(1))

Mark given threshold with vertical line? Default is NA which means not to do it.
pretty.names (logical(1))

Whether to use the Measure name instead of the id in the plot. Default is TRUE.
facet.wrap.nrow, facet.wrap.ncol

(integer)

Number of rows and columns for facetting. Default for both is NULL. In this case

ggplot’s facet_wrap will choose the layout itself.

Value

ggplot2 plot object.

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(),
plotBMRSummary (), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(
plotROCCurves(), plotResiduals()

Other thresh_vs_perf: generateThreshVsPerfData(), plotROCCurves()

Examples

1rn = makelLearner(”classif.rpart”, predict.type = "prob")

mod = train(lrn, sonar.task)

pred = predict(mod, sonar.task)

pvs = generateThreshVsPerfData(pred, list(acc, setAggregation(acc, train.mean)))
plotThreshVsPerf(pvs)

244

plotTuneMultiCritResult

plotTuneMultiCritResult

Plots multi-criteria results after tuning using ggplot2.

Description

Visualizes the pareto front and possibly the dominated points.

Usage

plotTuneMultiCritResult(

res,
path = TRUE,
col = NULL,

shape = NULL,

pointsize =

2

pretty.names = TRUE

Arguments

res

path

col

shape

pointsize

pretty.names

Value

(TuneMultiCritResult)

Result of tuneParamsMultiCrit.

(logical(1))

Visualize all evaluated points (or only the non-dominated pareto front)? For the
full path, the size of the points on the front is slightly increased. Default is TRUE.

(character(1))
Which column of res$opt.path should be mapped to ggplot2 color? Default
is NULL, which means none.

(character(1))
Which column of res$opt.path should be mapped to ggplot2 shape? Default
is NULL, which means none.

(numeric(1))

Point size for ggplot2 ggplot2::geom_point for data points. Default is 2.
(logical(1))

Whether to use the ID of the measures instead of their name in labels. Defaults
to TRUE.

ggplot2 plot object.

See Also

Other tune_multicrit: TuneMultiCritControl, tuneParamsMultiCrit()

predict. WrappedModel 245

Examples

see tuneParamsMultiCrit

predict.WrappedModel Predict new data.

Description

Predict the target variable of new data using a fitted model. What is stored exactly in the (Prediction)
object depends on the predict.type setting of the Learner. If predict.type was set to “prob”
probability thresholding can be done calling the setThreshold function on the prediction object.

The row names of the input task or newdata are preserved in the output.

Usage
S3 method for class 'WrappedModel'
predict(object, task, newdata, subset = NULL, ...)
Arguments
object (WrappedModel)
Wrapped model, result of train.
task (Task)
The task. If this is passed, data from this task is predicted.
newdata (data.frame)
New observations which should be predicted. Pass this alternatively instead of
task.
subset (integer | logical | NULL)

Selected cases. Either a logical or an index vector. By default NULL if all obser-
vations are used.

(any)
Currently ignored.
Value

(Prediction).

See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionResponse(),
getPredictionTaskDesc(), setPredictThreshold(), setPredictType()

246 predictLearner

Examples

train and predict

train.set = seq(1, 150, 2)

test.set = seq(2, 150, 2)

model = train("classif.lda", iris.task, subset = train.set)
p = predict(model, newdata = iris, subset = test.set)
print(p)

predict(model, task = iris.task, subset = test.set)

predict now probabiliies instead of class labels

1rn = makelLearner(”classif.lda"”, predict.type = "prob")
model = train(lrn, iris.task, subset = train.set)

p = predict(model, task = iris.task, subset = test.set)
print(p)

getPredictionProbabilities(p)

predictLearner Predict new data with an R learner.

Description

Mainly for internal use. Predict new data with a fitted model. You have to implement this method

if you want to add another learner to this package.

Usage
predictLearner(.learner, .model, .newdata, ...)
Arguments
.learner (RLearner)
Wrapped learner.
.model (WrappedModel)
Model produced by training.
.newdata (data.frame)
New data to predict. Does not include target column.
(any)
Additional parameters, which need to be passed to the underlying predict func-
tion.
Details

Your implementation must adhere to the following: Predictions for the observations in .newdata

must be made based on the fitted model (.model$learner.model). All parameters in . .
passed to the underlying predict function.

. must be

reduceBatchmarkResults 247

Value

For classification: Either a factor with class labels for type “response” or, if the learner sup-
ports this, a matrix of class probabilities for type “prob”. In the latter case the columns must
be named with the class labels.

For regression: Either a numeric vector for type “response” or, if the learner supports this, a
matrix with two columns for type “se”. In the latter case the first column contains the estimated
response (mean value) and the second column the estimated standard errors.

For survival: Either a numeric vector with some sort of orderable risk for type “response” or,
if supported, a numeric vector with time dependent probabilities for type “prob”.

For clustering: Either an integer with cluster IDs for type “response” or, if supported, a matrix
of membership probabilities for type “prob”.

For multilabel: A logical matrix that indicates predicted class labels for type “response” or, if
supported, a matrix of class probabilities for type “prob”. The columns must be named with
the class labels.

reduceBatchmarkResults

Reduce results of a batch-distributed benchmark.

Description

This creates a BenchmarkResult from a batchtools::ExperimentRegistry. To setup the benchmark
have a look at batchmark.

Usage

reduceBatchmarkResults(
ids = NULL,
keep.pred = TRUE,
keep.extract = FALSE,
show.info = getMlrOption("show.info"),
reg = batchtools::getDefaultRegistry()

)
Arguments
ids (data.frame or integer)
A base::data.frame (or data.table::data.table) with a column named “job.id”. Al-
ternatively, you may also pass a vector of integerish job ids. If not set, defaults
to all successfully terminated jobs (return value of batchtools::findDone.
keep.pred (logical(1))

Keep the prediction data in the pred slot of the result object. If you do many ex-
periments (on larger data sets) these objects might unnecessarily increase object
size / mem usage, if you do not really need them. The default is set to TRUE.

248 reextractFDA Features

keep.extract (logical(1))
Keep the extract slot of the result object. When creating a lot of benchmark
results with extensive tuning, the resulting R objects can become very large in
size. That is why the tuning results stored in the extract slot are removed by
default (keep.extract = FALSE). Note that when keep.extract = FALSE you
will not be able to conduct analysis in the tuning results.

show. info (logical(1))
Print verbose output on console? Default is set via configureMIr.

reg (batchtools::ExperimentRegistry)
Registry, created by batchtools::makeExperimentRegistry. If not explicitly passed,
uses the last created registry.

Value

(BenchmarkResult).

See Also

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(),
friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(),
getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(),
getBMRLearners(), getBMRMeasurelds(), getBMRMeasures(), getBMRModels (), getBMRPerformances(),
getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds (), getBMRTuneResults(), plotBMRBoxplots(),
plotBMRRanksAsBarChart (), plotBMRSummary (), plotCritDifferences()

reextractFDAFeatures Re-extract features from a data set

Description

This function accepts a data frame or a task and an extractFDAFeatDesc (a FDA feature extraction
description) as returned by extractFDAFeatures to extract features from previously unseen data.

Usage
reextractFDAFeatures(obj, desc, ...)
Arguments
obj (Task | data.frame)
Task or data.frame to extract functional features from. Must contain functional
features as matrix columns.
desc (extractFDAFeatDesc)

FDAFeature extraction description as returned by extractFDAFeatures

(any)
Further args passed on to methods.

reimpute 249

Value

data.frame or Task containing the extracted Features

reimpute Re-impute a data set

Description

This function accepts a data frame or a task and an imputation description as returned by impute to
perform the following actions:
1. Restore dropped columns, setting them to NA
. Add dummy variables for columns as specified in impute
. Optionally check factors for new levels to treat them as NAs

. Reorder factor levels to ensure identical integer representation as before

D A W

. Impute missing values using previously collected data

Usage

reimpute(obj, desc)

Arguments
obj (data.frame | Task)
Input data.
desc (ImputationDesc)
Imputation description as returned by impute.
Value

Imputated data. frame or task with imputed data.

See Also

Other impute: imputations, impute(), makeImputeMethod(), makeImputeWrapper()

250 removeConstantFeatures

removeConstantFeatures
Remove constant features from a data set.

Description

Constant features can lead to errors in some models and obviously provide no information in the
training set that can be learned from. With the argument “perc”, there is a possibility to also remove
features for which less than “perc” percent of the observations differ from the mode value.

Usage
removeConstantFeatures(
obj,
perc = 0,

dont.rm = character(@L),

na.ignore = FALSE,

wrap.tol = .Machine$double.eps”0.5,
show.info = getMlrOption("”show.info"),

)
Arguments

obj (data.frame | Task)
Input data.

perc (numeric(1))
The percentage of a feature values in [0, 1) that must differ from the mode value.
Default is 0, which means only constant features with exactly one observed level
are removed.

dont.rm (character)
Names of the columns which must not be deleted. Default is no columns.

na.ignore (logical(1))
Should NAs be ignored in the percentage calculation? (Or should they be treated
as a single, extra level in the percentage calculation?) Note that if the feature
has only missing values, it is always removed. Default is FALSE.

wrap.tol (numeric(1))
Numerical tolerance to treat two numbers as equal. Variables stored as double
will get rounded accordingly before computing the mode. Defaultis sqrt(.Maschine$double.eps).

show. info (logical(1))
Print verbose output on console? Default is set via configureMIr.
To ensure backward compatibility with old argument tol

Value

data.frame | Task. Same type as obj.

removeHyperPars 251

See Also

Other eda_and_preprocess: capLargeValues(), createDummyFeatures(), dropFeatures(), mergeSmallFactorLevels(
normalizeFeatures(), summarizeColumns(), summarizelLevels()

removeHyperPars Remove hyperparameters settings of a learner.

Description

Remove settings (previously set through mlr) for some parameters. Which means that the default
behavior for that param will now be used.

Usage

removeHyperPars(learner, ids = character(QL))

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
ids (character)
Parameter names to remove settings for. Default is character(oL).
Value
Learner.
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getlLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getlLearnerParamSet(),
getlearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet (), helpLearner(),
helpLearnerParam(), makeLearner (), makeLearners(), setHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

252 resample

resample Fit models according to a resampling strategy.

Description

The function resample fits a model specified by Learner on a Task and calculates predictions and
performance measures for all training and all test sets specified by a either a resampling description
(ResampleDesc) or resampling instance (Resamplelnstance).

You are able to return all fitted models (parameter models) or extract specific parts of the models
(parameter extract) as returning all of them completely might be memory intensive.

The remaining functions on this page are convenience wrappers for the various existing resampling
strategies. Note that if you need to work with precomputed training and test splits (i.e., resampling
instances), you have to stick with resample.

Usage

resample(
learner,
task,
resampling,
measures,
weights = NULL,
models = FALSE,
extract,
keep.pred = TRUE,
show.info = getMlrOption("”show.info")

)

crossval(

learner,

task,

iters = 10L,

stratify = FALSE,

measures,

models = FALSE,

keep.pred = TRUE,

show.info = getMlrOption("show.info")
)

repcv(
learner,
task,
folds = 10L,
reps = 10L,

resample 253

stratify = FALSE,

measures,

models = FALSE,

keep.pred = TRUE,

show.info = getMlrOption("show.info")

)

holdout(
learner,
task,
split = 2/3,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
show.info = getMlrOption("”show.info")

)

subsample(
learner,
task,
iters = 30,
split = 2/3,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
show.info = getMlrOption("show.info")

)

bootstrap00B(
learner,
task,
iters = 30,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
show.info = getMlrOption("show.info")

)

bootstrapB632(
learner,
task,

254 resample

iters = 30,

stratify = FALSE,

measures,

models = FALSE,

keep.pred = TRUE,

show.info = getMlrOption("”show.info")

)

bootstrapB632plus(
learner,
task,
iters = 30,
stratify = FALSE,
measures,
models = FALSE,
keep.pred = TRUE,
show.info = getMlrOption("show.info")

)

growingcv(
learner,
task,
horizon = 1,
initial.window = 0.5,
skip = 0,
measures,
models = FALSE,
keep.pred = TRUE,

show.info = getMlrOption("show.info")

)

fixedcv(
learner,
task,
horizon = 1L,
initial.window = 0.5,
skip = 0,
measures,
models = FALSE,
keep.pred = TRUE,

show.info = getMlrOption("”show.info")

resample

Arguments

learner
task
resampling

measures

weights

models

extract

keep.pred

show. info
iters
stratify
folds
reps
split

horizon

initial.window

skip

255

(Learner | character (1))

The learner. If you pass a string the learner will be created via makeLearner.
(Task)

The task.

(ResampleDesc or Resamplelnstance)

Resampling strategy. If a description is passed, it is instantiated automatically.
(Measure | list of Measure)

Performance measure(s) to evaluate. Default is the default measure for the task,
see here getDefaultMeasure.

(numeric)

Optional, non-negative case weight vector to be used during fitting. If given,
must be of same length as observations in task and in corresponding order. Over-
writes weights specified in the task. By default NULL which means no weights
are used unless specified in the task.

(logical(1))

Should all fitted models be returned? Default is FALSE.

(function)

Function used to extract information from a fitted model during resampling. Is
applied to every WrappedModel resulting from calls to train during resampling.
Default is to extract nothing.

(logical(1))

Keep the prediction data in the pred slot of the result object. If you do many ex-
periments (on larger data sets) these objects might unnecessarily increase object
size / mem usage, if you do not really need them. The default is set to TRUE.
(any)

Further hyperparameters passed to learner.

(logical(1))

Print verbose output on console? Default is set via configureMIr.

(integer(1))

See ResampleDesc.

(logical(1))

See ResampleDesc.

(integer(1))

See ResampleDesc.

(integer(1))

See ResampleDesc.

(numeric(1))

See ResampleDesc.

(numeric(1))

See ResampleDesc.

(numeric(1))

See ResampleDesc.

(integer(1))

See ResampleDesc.

256 ResamplePrediction

Value

(ResampleResult).

Note

If you would like to include results from the training data set, make sure to appropriately adjust the
resampling strategy and the aggregation for the measure. See example code below.

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure(), getRRPredictionList(),
getRRPredictions(), getRRTaskDesc(), getRRTaskDescription(), makeResampleDesc(), makeResampleInstance()

Examples

task = makeClassifTask(data = iris, target = "Species")
rdesc = makeResampleDesc("CV", iters = 2)

r = resample(makelLearner(”classif.qda"), task, rdesc)
print(r$aggr)

print(r$measures.test)

print(r$pred)

include the training set performance as well

rdesc = makeResampleDesc("CV", iters = 2, predict = "both")

r = resample(makeLearner(”classif.qda"), task, rdesc,
measures = list(mmce, setAggregation(mmce, train.mean)))

print(r$aggr)

ResamplePrediction Prediction from resampling.

Description

Contains predictions from resampling, returned (among other stuff) by function resample. Can
basically be used in the same way as Prediction, its super class. The main differences are: (a) The
internal data.frame (member data) contains an additional column iter, specifying the iteration of
the resampling strategy, and and additional columns set, specifying whether the prediction was
from an observation in the “train” or “test” set. (b) The prediction time is a numeric vector, its
length equals the number of iterations.

See Also

Other resample: ResampleResult, addRRMeasure(), getRRPredictionList(), getRRPredictions(),
getRRTaskDesc(), getRRTaskDescription(), makeResampleDesc(), makeResampleInstance(),
resample()

ResampleResult 257

ResampleResult ResampleResult object.

Description

A container for resample results.

Details

Resample Result:

A resample result is created by resample and contains the following object members:

task.id (character(1)): Name of the Task.
learner.id (character(1)): Name of the Learner.

measures.test (data.frame): Gives you access to performance measurements on the individual test
sets. Rows correspond to sets in resampling iterations, columns to performance measures.

measures.train (data.frame): Gives you access to performance measurements on the individual
training sets. Rows correspond to sets in resampling iterations, columns to performance mea-
sures. Usually not available, only if specifically requested, see general description above.

aggr (numeric): Named vector of aggregated performance values. Names are coded like this
<measure>.<aggregation>.

err.msgs (data.frame): Number of rows equals resampling iterations and columns are: iter,
train, predict. Stores error messages generated during train or predict, if these were caught
via configureMIr.

err.dumps (list of list of dump.frames): List with length equal to number of resampling itera-
tions. Contains lists of dump.frames objects that can be fed to debugger () to inspect error
dumps generated on learner errors. One iteration can generate more than one error dump de-
pending on which of training, prediction on training set, or prediction on test set, operations
fail. Therefore the lists have named slots $train, $predict.train, or $predict.test if
relevant. The error dumps are only saved when option on.error.dump is TRUE.

pred (ResamplePrediction): Container for all predictions during resampling.

models [list of WrappedModel): List of fitted models or NULL.

extract (list): List of extracted parts from fitted models or NULL.

runtime (numeric(1)): Time in seconds it took to execute the resampling.

The print method of this object gives a short overview, including task and learner ids, aggregated
measures and runtime for the resampling.

See Also

Other resample: ResamplePrediction, addRRMeasure(), getRRPredictionList(), getRRPredictions(),
getRRTaskDesc(), getRRTaskDescription(), makeResampleDesc(), makeResampleInstance(),
resample()

Other debug: FailureModel, getPredictionDump(), getRRDump ()

258

RLearner

RLearner

Internal construction / wrapping of learner object.

Description

Wraps an already implemented learning method from R to make it accessible to mlr. Call this
method in your constructor. You have to pass an id (name), the required package(s), a description
object for all changeable parameters (you do not have to do this for the learner to work, but it is

strongly recommended), and use property tags to define features of the learner.

For a general overview on how to integrate a learning algorithm into mlr’s system, please read the
section in the online tutorial: https://mlr.mlr-org.com/articles/tutorial/create_learner.
html

To see all possible properties of a learner, go to: LearnerProperties.

Usage

makeRLearner ()

makeRLearnerClassif(

)

cl,

package,

par.set,

par.vals = list(),
properties = character(@L),
name = cl,

short.name = cl,

note = "",
class.weights.param = NULL,
callees = character(QL)

makeRLearnerMultilabel(

)

cl,

package,

par.set,

par.vals = list(),
properties = character(QL),
name = cl,

short.name = cl,

note = "",

callees = character(QL)

makeRLearnerRegr(

cl,
package,

https://mlr.mlr-org.com/articles/tutorial/create_learner.html
https://mlr.mlr-org.com/articles/tutorial/create_learner.html

RLearner 259

par.set,

par.vals = list(),
properties = character(0L),
name = cl,

short.name = cl,

note = "",

callees = character(QL)

makeRLearnerSurv (
cl,
package,
par.set,
par.vals = list(),
properties = character(@L),
name = cl,
short.name = cl,
note = "",
callees = character(oL)

makeRLearnerCluster(
cl,
package,
par.set,
par.vals = list(),
properties = character(@L),
name = cl,
short.name = cl,
note = "",
callees = character(QL)

makeRLearnerCostSens(
cl,
package,
par.set,
par.vals = list(),
properties = character(QL),

name = cl,
short.name = cl,
note = "",
callees = character(QL)
)
Arguments
cl (character(1))

Class of learner. By convention, all classification learners start with “classif.”

260

package

par.set

par.vals

properties

name

short.name

note

selectFeatures

all regression learners with “regr.”” all survival learners start with “surv.” all
clustering learners with “cluster.” and all multilabel classification learners start
with “multilabel.”. A list of all integrated learners is available on the learners
help page.

(character)

Package(s) to load for the implementation of the learner.
(ParamHelpers::ParamSet)

Parameter set of (hyper)parameters and their constraints. Dependent parameters
with a requires field must use quote and not expression to define it.

(list)

Always set hyperparameters to these values when the object is constructed. Use-
ful when default values are missing in the underlying function. The values can
later be overwritten when the user sets hyperparameters. Default is empty list.
(character)

Set of learner properties. See above. Default is character ().
(character(1))

Meaningful name for learner. Default is id.

(character(1))

Short name for learner. Should only be a few characters so it can be used in
plots and tables. Default is id.

(character(1))

Additional notes regarding the learner and its integration in mlr. Default is .

class.weights.param

callees

Value

(character(1))

Name of the parameter, which can be used for providing class weights.
(character)

Character vector naming all functions of the learner’s package being called
which have a relevant R help page. Default is character ().

(RLearner). The specific subclass is one of RLearnerClassif, RLearnerCluster, RLearnerMultilabel,
RLearnerRegr, RLearnerSurv.

selectFeatures

Feature selection by wrapper approach.

Description

Optimizes the features for a classification or regression problem by choosing a variable selection
wrapper approach. Allows for different optimization methods, such as forward search or a genetic
algorithm. You can select such an algorithm (and its settings) by passing a corresponding control
object. For a complete list of implemented algorithms look at the subclasses of (FeatSelControl).

All algorithms operate on a 0-1-bit encoding of candidate solutions. Per default a single bit corre-
sponds to a single feature, but you are able to change this by using the arguments bit.names and
bits.to.features. Thus allowing you to switch on whole groups of features with a single bit.

selectFeatures 261

Usage
selectFeatures(
learner,
task,
resampling,
measures,
bit.names,
bits.to.features,
control,
show.info = getMlrOption("”show.info")
)
Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
task (Task)
The task.
resampling (Resamplelnstance | ResampleDesc)
Resampling strategy for feature selection. If you pass a description, it is instan-
tiated once at the beginning by default, so all points are evaluated on the same
training/test sets. If you want to change that behavior, look at FeatSelControl.
measures (list of Measure | Measure)
Performance measures to evaluate. The first measure, aggregated by the first
aggregation function is optimized, others are simply evaluated. Default is the
default measure for the task, see here getDefaultMeasure.
bit.names character

Names of bits encoding the solutions. Also defines the total number of bits in
the encoding. Per default these are the feature names of the task. Has to be used
together with bits. to.features.

bits.to.features
(function(x, task))
Function which transforms an integer-0-1 vector into a character vector of se-
lected features. Per default a value of 1 in the ith bit selects the ith feature to be
in the candidate solution. The vector x will correspond to the bit.names and
has to be of the same length.

control [see FeatSelControl) Control object for search method. Also selects the opti-
mization algorithm for feature selection.

show.info (logical(1))
Print verbose output on console? Default is set via configureMIr.

Value

(FeatSelResult).

See Also
Other featsel: FeatSelControl, analyzeFeatSelResult(), getFeatSelResult(), makeFeatSelWrapper()

262 setAggregation
Examples

rdesc = makeResampleDesc("Holdout")

ctrl = makeFeatSelControlSequential(method = "sfs”, maxit = NA)

res = selectFeatures(”classif.rpart”, iris.task, rdesc, control = ctrl)
analyzeFeatSelResult(res)

setAggregation Set aggregation function of measure.

Description

Set how this measure will be aggregated after resampling. To see possible aggregation functions:
aggregations.

Usage

setAggregation(measure, aggr)

Arguments
measure (Measure)
Performance measure.
aggr (Aggregation)
Aggregation function.
Value

(Measure) with changed aggregation behaviour.

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(),
estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(),
measures, performance(), setMeasurePars()

setHyperPars 263

setHyperPars Set the hyperparameters of a learner object.

Description

Set the hyperparameters of a learner object.

Usage
setHyperPars(learner, ..., par.vals = list())
Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
(any)
Optional named (hyper)parameters. If you want to set specific hyperparameters
for a learner during model creation, these should go here. You can get a list
of available hyperparameters using getParamSet(<learner>). Alternatively
hyperparameters can be given using the par.vals argument but . . . should be
preferred!
par.vals (list)
Optional list of named (hyper)parameters. The arguments in ... take prece-
dence over values in this list. We strongly encourage you to use . . . for passing
hyperparameters.
Value
Learner.
Note

If a named (hyper)parameter can’t be found for the given learner, the 3 closest (hyper)parameter
names will be output in case the user mistyped.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getlLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getlLearnerParamSet(),
getlearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet (), helpLearner(),
helpLearnerParam(), makeLearner (), makeLearners(), removeHyperPars(), setId(), setLearnerId(),
setPredictThreshold(), setPredictType()

264 setld

Examples

cl1 = makelLearner(”classif.ksvm”, sigma = 1)
cl2 = setHyperPars(cll, sigma = 10, par.vals = list(C = 2))

print(cl1)
note the now set and altered hyperparameters:
print(cl2)
setHyperPars?2 Only exported for internal use.
Description

Only exported for internal use.

Usage

setHyperPars2(learner, par.vals)

Arguments
learner (Learner)
The learner.
par.vals (list)
List of named (hyper)parameter settings.
setld Set the id of a learner object.
Description

Deprecated, use setLearnerld instead.

Usage

setId(learner, id)

Arguments
learner (Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.
id (character(1))

New id for learner.

setLearnerld 265

Value

Learner.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearner(),
helpLearnerParam(), makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(),
setlLearnerId(), setPredictThreshold(), setPredictType()

setlearnerld Set the ID of a learner object.

Description

Set the ID of the learner.

Usage

setLearnerId(learner, id)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
id (character(1))
New ID for learner.
Value
Learner.
See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getlLearnerPackages(), getlLearnerParVals(), getLearnerParamSet(),
getlLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearner(),
helpLearnerParam(), makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(),

setId(), setPredictThreshold(), setPredictType()

266 setPredictThreshold

setMeasurePars Set parameters of performance measures

Description

Sets hyperparameters of measures.

Usage
setMeasurePars(measure, ..., par.vals = list())
Arguments
measure (Measure)
Performance measure.
(any)
Named (hyper)parameters with new settings. Alternatively these can be passed
using the par.vals argument.
par.vals (list)
Optional list of named (hyper)parameter settings. The arguments in ... take
precedence over values in this list.
Value
Measure.
See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix(), calculateROCMeasures(),
estimateRelativeOverfitting(), makeCostMeasure(), makeCustomResampledMeasure(), makeMeasure(),

measures, performance(), setAggregation()

setPredictThreshold Set the probability threshold the learner should use.

Description

See predict. threshold in makeLearner and setThreshold.

For complex wrappers only the top-level predict. type is currently set.

Usage

setPredictThreshold(learner, predict.threshold)

setPredictType 267

Arguments

learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
predict.threshold
(numeric)
Threshold to produce class labels. Has to be a named vector, where names corre-
spond to class labels. Only for binary classification it can be a single numerical
threshold for the positive class. See setThreshold for details on how it is applied.
Default is NULL which means 0.5 / an equal threshold for each class.

Value

Learner.

See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionResponse(),
getPredictionTaskDesc(), predict.WrappedModel (), setPredictType()

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearner(),
helpLearnerParam(), makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(),

setId(), setLearnerId(), setPredictType()

setPredictType Set the type of predictions the learner should return.

Description

Possible prediction types are: Classification: Labels or class probabilities (including labels). Re-
gression: Numeric or response or standard errors (including numeric response). Survival: Linear
predictor or survival probability.

For complex wrappers the predict type is usually also passed down the encapsulated learner in a
recursive fashion.

Usage

setPredictType(learner, predict.type)

Arguments

learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.

predict.type (character(1))
Classification: “response” or “prob”. Regression: “response” or “se”. Survival:
“response” (linear predictor) or “prob”. Clustering: “response” or “prob”. De-
fault is “response”.

268 setThreshold

Value

Learner.

See Also

Other predict: asROCRPrediction(), getPredictionProbabilities(), getPredictionResponse(),
getPredictionTaskDesc(), predict.WrappedModel (), setPredictThreshold()

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(),
getLearnerNote(), getlLearnerPackages(), getLearnerParVals(), getLearnerParamSet(),
getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearner(),
helpLearnerParam(), makeLearner (), makeLearners(), removeHyperPars(), setHyperPars(),

setId(), setLearnerId(), setPredictThreshold()

setThreshold Set threshold of prediction object.

Description

Set threshold of prediction object for classification or multilabel classification. Creates correspond-
ing discrete class response for the newly set threshold. For binary classification: The positive class
is predicted if the probability value exceeds the threshold. For multiclass: Probabilities are divided
by corresponding thresholds and the class with maximum resulting value is selected. The result of
both are equivalent if in the multi-threshold case the values are greater than 0 and sum to 1. For
multilabel classification: A label is predicted (with entry TRUE) if a probability matrix entry exceeds
the threshold of the corresponding label.

Usage
setThreshold(pred, threshold)

Arguments
pred (Prediction)
Prediction object.
threshold (numeric)
Threshold to produce class labels. Has to be a named vector, where names corre-
spond to class labels. Only for binary classification it can be a single numerical
threshold for the positive class.
Value

(Prediction) with changed threshold and corresponding response.

See Also

predict. WrappedModel

simplifyMeasureNames 269

Examples

create task and train learner (LDA)

task = makeClassifTask(data = iris, target = "Species”)
1rn = makelLearner(”classif.lda”, predict.type = "prob")
mod = train(lrn, task)

predict probabilities and compute performance
pred = predict(mod, newdata = iris)
performance(pred, measures = mmce)
head(as.data.frame(pred))

adjust threshold and predict probabilities again

threshold = c(setosa = 0.4, versicolor = 0.3, virginica = 0.3)
pred = setThreshold(pred, threshold = threshold)
performance(pred, measures = mmce)

head(as.data.frame(pred))

simplifyMeasureNames Simplify measure names.

Description

Clips aggregation names from character vector. E.g: 'mmce.test. mean’ becomes "'mmce’. Elements
that don’t contain a measure name are ignored and returned unchanged.

Usage

simplifyMeasureNames(xs)

Arguments
XS (character)
Character vector that (possibly) contains aggregated measure names.
Value

(character).

270 smote

smote Synthetic Minority Oversampling Technique to handle class imbalancy
in binary classification.

Description

In each iteration, samples one minority class element x1, then one of x1’s nearest neighbors: x2.
Both points are now interpolated / convex-combined, resulting in a new virtual data point x3 for the
minority class.

The method handles factor features, too. The gower distance is used for nearest neighbor calcula-
tion, see cluster::daisy. For interpolation, the new factor level for x3 is sampled from the two given
levels of x1 and x2 per feature.

Usage
smote(task, rate, nn = 5L, standardize = TRUE, alt.logic = FALSE)

Arguments
task (Task)
The task.
rate (numeric(1))
Factor to upsample the smaller class. Must be between 1 and Inf, where 1
means no oversampling and 2 would mean doubling the class size.
nn (integer(1))
Number of nearest neighbors to consider. Default is 5.
standardize (integer(1))
Standardize input variables before calculating the nearest neighbors for data sets
with numeric input variables only. For mixed variables (numeric and factor) the
gower distance is used and variables are standardized anyway. Default is TRUE.
alt.logic (integer(1))
Use an alternative logic for selection of minority class observations. Instead
of sampling a minority class element AND one of its nearest neighbors, each
minority class element is taken multiple times (depending on rate) for the in-
terpolation and only the corresponding nearest neighbor is sampled. Default is
FALSE.
Value
Task.
References

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, P. (2000) SMOTE: Synthetic Minority Over-
sampling TEchnique. In International Conference of Knowledge Based Computer Systems, pp.
46-57. National Center for Software Technology, Mumbai, India, Allied Press.

sonar.task 271

See Also

Other imbalancy: makeOverBaggingWrapper (), makeUndersampleWrapper (), oversample()

sonar.task Sonar classification task.

Description

Contains the task (sonar. task).

References

See mlbench::Sonar.

spam. task Spam classification task.

Description

Contains the task (spam. task).

References

See kernlab::spam.

spatial.task J. Muenchow’s Ecuador landslide data set

Description

Data set created by Jannes Muenchow, University of Erlangen-Nuremberg, Germany. These data
should be cited as Muenchow et al. (2012) (see reference below). This publication also contains
additional information on data collection and the geomorphology of the area. The data set provded
here is (a subset of) the one from the "natural’ part of the RBSF area and corresponds to landslide
distribution in the year 2000.

Format
a data.frame with point samples of landslide and non-landslide locations in a study area in the
Andes of southern Ecuador.

References

Muenchow, J., Brenning, A., Richter, M., 2012. Geomorphic process rates of landslides along a
humidity gradient in the tropical Andes. Geomorphology, 139-140: 271-284.

Brenning, A., 2005. Spatial prediction models for landslide hazards: review, comparison and eval-
uation. Natural Hazards and Earth System Sciences, 5(6): 853-862.

272 subsetTask

subsetTask Subset data in task.

Description

See title.

Usage

subsetTask(task, subset = NULL, features)

Arguments

task (Task)
The task.

subset (integer | logical | NULL)
Selected cases. Either a logical or an index vector. By default NULL if all obser-
vations are used.

features (character | integer | logical)
Vector of selected inputs. You can either pass a character vector with the feature
names, a vector of indices, or a logical vector.
In case of an index vector each element denotes the position of the feature name
returned by getTaskFeatureNames.
Note that the target feature is always included in the resulting task, you should
not pass it here. Default is to use all features.

Value

(Task). Task with subsetted data.

See Also

Other task: getTaskClassLevels(), getTaskCosts(), getTaskData(), getTaskDesc(), getTaskFeatureNames(),
getTaskFormula(), getTaskId(), getTaskNFeats(), getTaskSize(), getTaskTargetNames(),
getTaskTargets(), getTaskType()

Examples

task = makeClassifTask(data = iris, target = "Species")
subsetTask(task, subset = 1:100)

summarizeColumns 273

summarizeColumns Summarize columns of data.frame or task.

Description

Summarizes a data.frame, somewhat differently than the normal summary function of R. The func-
tion is mainly useful as a basic EDA tool on data.frames before they are converted to tasks, but can
be used on tasks as well.

Columns can be of type numeric, integer, logical, factor, or character. Characters and logicals will
be treated as factors.

Usage

summarizeColumns(obj)

Arguments
obj (data.frame | Task)
Input data.
Value

(data.frame). With columns:

name Name of column.

type Data type of column.

na Number of NAs in column.

disp Measure of dispersion, for numerics and integers sd is used, for categorical
columns the qualitative variation.

mean Mean value of column, NA for categorical columns.

median Median value of column, NA for categorical columns.

mad MAD of column, NA for categorical columns.

min Minimal value of column, for categorical columns the size of the smallest cate-
gory.

max Maximal value of column, for categorical columns the size of the largest cate-
gory.

nlevs For categorical columns, the number of factor levels, NA else.

See Also

Other eda_and_preprocess: capLargeValues(), createDummyFeatures(), dropFeatures(), mergeSmallFactorLevels(
normalizeFeatures(), removeConstantFeatures(), summarizelLevels()

Examples

summarizeColumns(iris)

274 Task

summarizelevels Summarizes factors of a data.frame by tabling them.

Description

Characters and logicals will be treated as factors.

Usage

summarizelevels(obj, cols = NULL)

Arguments
obj (data.frame | Task)
Input data.
cols (character)
Restrict result to columns in cols. Default is all factor, character and logical
columns of obj.
Value

(list). Named list of tables.

See Also
Other eda_and_preprocess: capLargeValues(), createDummyFeatures(), dropFeatures(), mergeSmallFactorLevels(

normalizeFeatures(), removeConstantFeatures(), summarizeColumns()

Examples

summarizelevels(iris)

Task Create a classification, regression, survival, cluster, cost-sensitive
classification or multilabel task.

Description

The task encapsulates the data and specifies - through its subclasses - the type of the task. It also
contains a description object detailing further aspects of the data.

Useful operators are:

* getTaskFormula,
* getTaskFeatureNames,

 getTaskData,

Task

275

» getTaskTargets, and

¢ subsetTask.

Object members:

env (environment) Environment where data for the task are stored. Use getTaskData in order to

access it.

weights (numeric) See argument. NULL if not present.

blocking (factor) See argument. NULL if not present.

task.desc (TaskDesc) Encapsulates further information about the task.

Functional data can be added to a task via matrix columns. For more information refer to make-

FunctionalData.

Arguments

id

data

target

costs

weights

blocking

positive

fixup.data

(character(1))
Id string for object. Default is the name of the R variable passed to data.

(data.frame)
A data frame containing the features and target variable(s).

(character(1) | character(2) | character(n.classes))

Name(s) of the target variable(s). For survival analysis these are the names of
the survival time and event columns, so it has length 2. For multilabel classifi-
cation it contains the names of the logical columns that encode whether a label
is present or not and its length corresponds to the number of classes.

(data.frame)

A numeric matrix or data frame containing the costs of misclassification. We
assume the general case of observation specific costs. This means we have n
rows, corresponding to the observations, in the same order as data. The columns
correspond to classes and their names are the class labels (if unnamed we use
y1 to yk as labels). Each entry (i,j) of the matrix specifies the cost of predicting
class j for observation i.

(numeric)

Optional, non-negative case weight vector to be used during fitting. Cannot
be set for cost-sensitive learning. Default is NULL which means no (= equal)
weights.

(factor)

An optional factor of the same length as the number of observations. Obser-
vations with the same blocking level “belong together”. Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.

(character(1))
Positive class for binary classification (otherwise ignored and set to NA). Default
is the first factor level of the target attribute.

(character(1))
Should some basic cleaning up of data be performed? Currently this means

276 TaskDesc
removing empty factor levels for the columns. Possible choices are: “no” =
Don’t do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent.
Default is “warn”.
check.data (logical(1))
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.
coordinates (data.frame)
Coordinates of a spatial data set that will be used for spatial partitioning of the
data in a spatial cross-validation resampling setting. Coordinates have to be
numeric values. Provided data.frame needs to have the same number of rows as
data and consist of at least two dimensions.
Value
Task.
See Also
ClassifTask ClusterTask CostSensTask MultilabelTask RegrTask SurvTask
Examples
if (requireNamespace("mlbench”)) {
library(mlbench)
data(BostonHousing)
data(Ionosphere)
makeClassifTask(data = iris, target = "Species”)
makeRegrTask(data = BostonHousing, target = "medv")
an example of a classification task with more than those standard arguments:
blocking = factor(c(rep(1, 51), rep(2, 300)))
makeClassifTask(id = "myIonosphere”, data = Ionosphere, target = "Class”,
positive = "good”, blocking = blocking)
makeClusterTask(data = iris[, -5L1)
3
TaskDesc Description object for task.
Description

Description object for task, encapsulates basic properties of the task without having to store the
complete data set.

train 277

Details
Object members:

id (character (1)) Id string of task.

type (character (1)) Type of task, “classif” for classification, “regr” for regression, “surv” for
survival and “cluster” for cluster analysis, “costsens” for cost-sensitive classification, and
“multilabel” for multilabel classification.

target (character (@) | character(1) | character(2) | character(n.classes)) Name(s) of the
target variable(s). For “surv” these are the names of the survival time and event columns, so
it has length 2. For “costsens” it has length 0, as there is no target column, but a cost matrix
instead. For “multilabel” these are the names of logical columns that indicate whether a class
label is present and the number of target variables corresponds to the number of classes.

size (integer (1)) Number of cases in data set.

9 <

n.feat (integer(2)) Number of features, named vector with entries: “numerics”, “factors”, “or-
dered”, “functionals”.

has.missings (logical(1)) Are missing values present?
has.weights (logical (1)) Are weights specified for each observation?
has.blocking (Llogical(1)) Is a blocking factor for cases available in the task?

class.levels (character) All possible classes. Only present for “classif”, “costsens”, and “multil-
abel”.

positive (character (1)) Positive class label for binary classification. Only present for “classif”,
NA for multiclass.

negative (character (1)) Negative class label for binary classification. Only present for “classif”,
NA for multiclass.

train Train a learning algorithm.

Description
Given a Task, creates a model for the learning machine which can be used for predictions on new
data.

Usage

train(learner, task, subset = NULL, weights = NULL)

Arguments
learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.
task (Task)

The task.

278 trainLearner

subset (integer | logical | NULL)
Selected cases. Either a logical or an index vector. By default NULL if all obser-
vations are used.

weights (numeric)
Optional, non-negative case weight vector to be used during fitting. If given,
must be of same length as subset and in corresponding order. By default NULL
which means no weights are used unless specified in the task (Task). Weights
from the task will be overwritten.

Value

(WrappedModel).

See Also

predict. WrappedModel

Examples

training.set = sample(seq_len(nrow(iris)), nrow(iris) / 2)

use linear discriminant analysis to classify iris data
task = makeClassifTask(data = iris, target = "Species”)

learner = makelLearner(”classif.lda”, method = "mle")
mod = train(learner, task, subset = training.set)
print(mod)

use random forest to classify iris data
task = makeClassifTask(data = iris, target = "Species")

learner = makelLearner(”"classif.rpart”, minsplit = 7, predict.type = "prob")
mod = train(learner, task, subset = training.set)
print(mod)
trainLearner Train an R learner.
Description

Mainly for internal use. Trains a wrapped learner on a given training set. You have to implement
this method if you want to add another learner to this package.

Usage

trainLearner(.learner, .task, .subset, .weights = NULL, ...)

TuneControl

279

Arguments
.learner (RLearner)
Wrapped learner.
.task (Task)
Task to train learner on.
.subset (integer)
Subset of cases for training set, index the task with this. You probably want to
use getTaskData for this purpose.
.weights (numeric)
Weights for each observation.
(any)
Additional (hyper)parameters, which need to be passed to the underlying train
function.
Details
Your implementation must adhere to the following: The model must be fitted on the subset of . task
given by .subset. All parameters in . .. must be passed to the underlying training function.
Value

(any). Model of the underlying learner.

TuneControl

Control object for tuning

Description

General tune control object.

Arguments

same.resampling.instance

impute.val

(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

(numeric)

If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on.learner.error is configured not to stop in configureMlIr. It
is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

280 TuneMultiCritControl

start (list)
Named list of initial parameter values.

tune.threshold (logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune.threshold.args
(list)
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

log.fun (function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character(1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

final.dw.perc (boolean)
If a Learner wrapped by a makeDownsampleWrapper is used, you can define
the value of dw.perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

(any)
Further control parameters passed to the control arguments of cmaes::cma_es
or GenSA::GenSA, as well as towards the tunerConfig argument of irace::irace.

See Also

Other tune: getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(), getResamplingIndices(),
getTuneResult (), makeModelMultiplexer (), makeModelMultiplexerParamSet (), makeTuneControlCMAES(),
makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(), makeTuneControlIrace(),
makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper (), tuneParams(), tuneThreshold()

TuneMultiCritControl Create control structures for multi-criteria tuning.

Description
The following tuners are available:

makeTuneMultiCritControlGrid Grid search. All kinds of parameter types can be handled. You
can either use their correct param type and resolution, or discretize them yourself by always
using ParamHelpers::makeDiscreteParam in the par. set passed to tuneParams.

TuneMultiCritControl 281

makeTuneMultiCritControlRandom Random search. All kinds of parameter types can be han-
dled.

makeTuneMultiCritControINSGA2 Evolutionary method mco::nsga2. Can handle numeric(vector)
and integer(vector) hyperparameters, but no dependencies. For integers the internally pro-
posed numeric values are automatically rounded.

makeTuneMultiCritControlMBO Model-based/ Bayesian optimization. All kinds of parameter
types can be handled.

Usage

makeTuneMultiCritControlGrid(
same.resampling.instance = TRUE,
resolution = 10L,
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL

)

makeTuneMultiCritControlMBO(
n.objectives = mbo.control$n.objectives,
same.resampling.instance = TRUE,
impute.val = NULL,
learner = NULL,
mbo.control = NULL,
tune.threshold = FALSE,
tune.threshold.args = list(),
continue = FALSE,
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL,
mbo.design = NULL

)

makeTuneMultiCritControlNSGA2(
same.resampling.instance = TRUE,
impute.val = NULL,
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL,

)

makeTuneMultiCritControlRandom(
same.resampling.instance = TRUE,
maxit = 100L,
log.fun = "default”,
final.dw.perc = NULL,
budget = NULL

282

Arguments

TuneMultiCritControl

same.resampling.instance

resolution

log. fun

final.dw.perc

budget

n.objectives

impute.val

(logical(1))
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

(integer)

Resolution of the grid for each numeric/integer parameter in par.set. For vec-
tor parameters, it is the resolution per dimension. FEither pass one resolution
for all parameters, or a named vector. See ParamHelpers::generateGridDesign.
Default is 10.

(function | character(1))

Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory” the memory usage for each evaluation will also be displayed, with
character (1) small increase in run time. Otherwise character (1) function
with arguments learner, resampling, measures, par.set, control, opt.path,
dob, x, y, remove.nas, stage and prev.stage is expected. The default dis-
plays the performance measures, the time needed for evaluating, the currently
used memory and the max memory ever used before (the latter two both taken
from gc). See the implementation for details.

(boolean)

If a Learner wrapped by a makeDownsampleWrapper is used, you can define
the value of dw. perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

(integer(1))

Maximum budget for tuning. This value restricts the number of function evalua-
tions. In case of makeTuneMultiCritControlGrid this number must be identi-
cal to the size of the grid. For makeTuneMultiCritControlRandom the budget
equals the number of iterations (maxit) performed by the random search algo-
rithm. In case of makeTuneMultiCritControlNSGA2 the budget corresponds
to the product of the maximum number of generations (max(generations))
+ 1 (for the initial population) and the size of the population (popsize). For
makeTuneMultiCritControlMBO the budget equals the number of objective
function evaluations, i.e. the number of MBO iterations + the size of the ini-
tial design. If not NULL, this will overwrite existing stopping conditions in
mbo.control.

(integer(1))
Number of objectives, i.e. number of Measures to optimize.

(numeric)

If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. Imputation
is only active if on.learner.error is configured not to stop in configureMlIr. It
is not stored in the optimization path, an NA and a corresponding error message
are logged instead. Note that this value is later multiplied by -1 for maximization

TuneMultiCritControl 283

measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

learner (Learner | NULL)
The surrogate learner: A regression learner to model performance landscape.
For the default, NULL, mlrMBO will automatically create a suitable learner
based on the rules described in mirMBO::makeMBOLearner.

mbo.control (mIrMBO::MBOControl | NULL)
Control object for model-based optimization tuning. For the default, NULL, the
control object will be created with all the defaults as described in mirMBO::makeMBOControl.

tune. threshold (logical(1))
Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune.threshold.args
(list)
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

continue (logical(1))
Resume calculation from previous run using mirMBO::mboContinue? Requires
“save.file.path” to be set. Note that the ParamHelpers::OptPath in the mIrMBO::OptResult
will only include the evaluations after the continuation. The complete OptPath
will be found in the slot $mbo. result$opt.path.

mbo.design (data.frame | NULL)
Initial design as data frame. If the parameters have corresponding trafo func-
tions, the design must not be transformed before it is passed! For the default,
NULL, a default design is created like described in mlrMBO::mbo.

(any)
Further control parameters passed to the control arguments of cmaes::cma_es
or GenSA::GenSA, as well as towards the tunerConfig argument of irace::irace.

maxit (integer(1))
Number of iterations for random search. Default is 100.
Value
(TuneMultiCritControl). The specific subclass is one of TuneMultiCritControlGrid, TuneMultiCrit-
ControlRandom, TuneMultiCritControINSGA?2, TuneMultiCritControIMBO.
See Also

Other tune_multicrit: plotTuneMultiCritResult(), tuneParamsMultiCrit()

284 tuneParams

TuneMultiCritResult Result of multi-criteria tuning.

Description

Container for results of hyperparameter tuning. Contains the obtained pareto set and front and the
optimization path which lead there.

Object members:

learner (Learner) Learner that was optimized.

control (TuneControl) Control object from tuning.

x (list) List of lists of non-dominated hyperparameter settings in pareto set. Note that when you
have trafos on some of your params, x will always be on the TRANSFORMED scale so you
directly use it.

y (matrix) Pareto front for x.

threshold Currently NULL.

opt.path (ParamHelpers::OptPath) Optimization path which lead to x. Note that when you have
trafos on some of your params, the opt.path always contains the UNTRANSFORMED values
on the original scale. You can simply call trafoOptPath(opt.path) to transform them, or,
as.data.frame{trafoOptPath(opt.path)}

ind (integer(n)) Indices of Pareto optimal params in opt.path.

measures [(list of) Measure) Performance measures.

tuneParams Hyperparameter tuning.

Description

Optimizes the hyperparameters of a learner. Allows for different optimization methods, such as
grid search, evolutionary strategies, iterated F-race, etc. You can select such an algorithm (and its
settings) by passing a corresponding control object. For a complete list of implemented algorithms
look at TuneControl.

Multi-criteria tuning can be done with tuneParamsMultiCrit.

Usage

tuneParams(
learner,
task,
resampling,
measures,
par.set,
control,
show.info = getMlrOption("show.info"),
resample.fun = resample

tuneParams 285

Arguments

learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.

task (Task)
The task.

resampling (Resamplelnstance | ResampleDesc)
Resampling strategy to evaluate points in hyperparameter space. If you pass a
description, it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets. If you want to change that behavior,
look at TuneControl.

measures (list of Measure | Measure)
Performance measures to evaluate. The first measure, aggregated by the first
aggregation function is optimized, others are simply evaluated. Default is the
default measure for the task, see here getDefaultMeasure.

par.set (ParamHelpers::ParamSet)
Collection of parameters and their constraints for optimization. Dependent pa-
rameters with a requires field must use quote and not expression to define
it.

control (TuneControl)
Control object for search method. Also selects the optimization algorithm for
tuning.

show.info (logical(1))

Print verbose output on console? Default is set via configureMIr.

resample. fun (closure)
The function to use for resampling. Defaults to resample. If a user-given func-
tion is to be used instead, it should take the arguments “learner”, “task”, “re-
sampling”, “measures”, and “show.info”; see resample. Within this function, it
is easiest to call resample and possibly modify the result. However, it is pos-
sible to return a list with only the following essential slots: the “aggr” slot for
general tuning, additionally the “pred” slot if threshold tuning is performed (see
TuneControl), and the “err.msgs” and “err.dumps” slots for error reporting. This

parameter must be the default when mbo tuning is performed.

Value

(TuneResult).

Note
If you would like to include results from the training data set, make sure to appropriately adjust the
resampling strategy and the aggregation for the measure. See example code below.

See Also

generateHyperParsEffectData

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer(), makeModelMultiplexerParamSet(),

286 tuneParams

makeTuneControlCMAES (), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(),
makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper(),
tuneThreshold()

Examples

set.seed(123)

a grid search for an SVM (with a tiny number of points...)

note how easily we can optimize on a log-scale

ps = makeParamSet (
makeNumericParam("C"”, lower = -12, upper = 12, trafo = function(x) 2"x),
makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2*x)

)

ctrl = makeTuneControlGrid(resolution = 2L)

rdesc = makeResampleDesc("CV", iters = 2L)

res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps, control = ctrl)

print(res)

access data for all evaluated points

df = as.data.frame(res$opt.path)

df1 = as.data.frame(res$opt.path, trafo = TRUE)

print(head(df[, -ncol(df)1))

print(head(df1[, -ncol(df)1))

access data for all evaluated points - alternative

df2 = generateHyperParsEffectData(res)

df3 = generateHyperParsEffectData(res, trafo = TRUE)

print(head(df2$datal, -ncol(df2$data)l))

print(head(df3$datal, -ncol(df3$data)l))

Not run:
we optimize the SVM over 3 kernels simultanously
note how we use dependent params (requires = ...) and iterated F-racing here
ps = makeParamSet (
makeNumericParam("C"”, lower = -12, upper = 12, trafo = function(x) 2"x),
makeDiscreteParam("kernel”, values = c("vanilladot”, "polydot"”, "rbfdot")),
makeNumericParam("sigma"”, lower = -12, upper = 12, trafo = function(x) 2"x,
requires = quote(kernel == "rbfdot")),
makeIntegerParam("degree”, lower = 2L, upper = 5L,
requires = quote(kernel == "polydot"))
)
print(ps)

ctrl = makeTuneControlIrace(maxExperiments = 5, nbIterations = 1, minNbSurvival = 1)
rdesc = makeResampleDesc("Holdout")

res = tuneParams(”classif.ksvm”, iris.task, rdesc, par.set = ps, control = ctrl)
print(res)

df = as.data.frame(res$opt.path)

print(head(df[, -ncol(df)1))

include the training set performance as well
rdesc = makeResampleDesc("Holdout"”, predict = "both")
res = tuneParams(”classif.ksvm”, iris.task, rdesc, par.set = ps,
control = ctrl, measures = list(mmce, setAggregation(mmce, train.mean)))
print(res)

tuneParamsMultiCrit 287

df2 = as.data.frame(res$opt.path)
print(head(df2[, -ncol(df2)1))

End(Not run)

tuneParamsMultiCrit Hyperparameter tuning for multiple measures at once.

Description

Optimizes the hyperparameters of a learner in a multi-criteria fashion. Allows for different opti-
mization methods, such as grid search, evolutionary strategies, etc. You can select such an algorithm
(and its settings) by passing a corresponding control object. For a complete list of implemented al-
gorithms look at TuneMultiCritControl.

Usage

tuneParamsMultiCrit(
learner,
task,
resampling,
measures,
par.set,
control,
show.info = getMlrOption("”show.info"),
resample.fun = resample

)
Arguments

learner (Learner | character (1))
The learner. If you pass a string the learner will be created via makeLearner.

task (Task)
The task.

resampling (Resamplelnstance | ResampleDesc)
Resampling strategy to evaluate points in hyperparameter space. If you pass a
description, it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets. If you want to change that behavior,
look at TuneMultiCritControl.

measures [list of Measure)
Performance measures to optimize simultaneously.

par.set (ParamHelpers::ParamSet)

Collection of parameters and their constraints for optimization. Dependent pa-
rameters with a requires field must use quote and not expression to define
it.

288 TuneResult

control (TuneMultiCritControl)
Control object for search method. Also selects the optimization algorithm for
tuning.

show. info (logical(1))

Print verbose output on console? Default is set via configureMIr.

resample. fun (closure)
The function to use for resampling. Defaults to resample and should take the
same arguments as, and return the same result type as, resample.

Value

(TuneMultiCritResult).

See Also

Other tune_multicrit: TuneMultiCritControl, plotTuneMultiCritResult()

Examples

multi-criteria optimization of (tpr, fpr) with NGSA-II
1rn = makelLearner(”classif.ksvm")
rdesc = makeResampleDesc("Holdout")
ps = makeParamSet (
makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2"x),
makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2*x)
)
ctrl = makeTuneMultiCritControlNSGA2(popsize = 4L, generations = 1L)
res = tuneParamsMultiCrit(lrn, sonar.task, rdesc, par.set = ps,
measures = list(tpr, fpr), control = ctrl)
plotTuneMultiCritResult(res, path = TRUE)

TuneResult Result of tuning.

Description

Container for results of hyperparameter tuning. Contains the obtained point in search space, its
performance values and the optimization path which lead there.

Object members:

learner (Learner) Learner that was optimized.

tuneThreshold 289

control (TuneControl) Control object from tuning.

x (list) Named list of hyperparameter values identified as optimal. Note that when you have trafos
on some of your params, x will always be on the TRANSFORMED scale so you directly use
it.

y (numeric) Performance values for optimal x.

threshold (numeric) Vector of finally found and used thresholds if tune.threshold was enabled
in TuneControl, otherwise not present and hence NULL.

opt.path (ParamHelpers::OptPath) Optimization path which lead to x. Note that when you have
trafos on some of your params, the opt.path always contains the UNTRANSFORMED values
on the original scale. You can simply call trafoOptPath(opt.path) to transform them,
or, as.data.frame{trafoOptPath(opt.path)}. If mlr option on.error.dump is TRUE,
OptPath will have a . dump object in its extra column which contains error dump traces from
failed optimization evaluations. It can be accessed by getOptPathEl (opt.path)$extra$.dump.

tuneThreshold Tune prediction threshold.

Description

Optimizes the threshold of predictions based on probabilities. Works for classification and multi-
label tasks. Uses BBmisc::optimizeSublnts for normal binary class problems and GenSA::GenSA
for multiclass and multilabel problems.

Usage

tuneThreshold(pred, measure, task, model, nsub = 20L, control = list())

Arguments
pred (Prediction)
Prediction object.
measure (Measure)
Performance measure to optimize. Default is the default measure for the task.
task (Task)
Learning task. Rarely neeeded, only when required for the performance mea-
sure.
model (WrappedModel)
Fitted model. Rarely neeeded, only when required for the performance measure.
nsub (integer(1))
Passed to BBmisc::optimizeSublnts for 2class problems. Default is 20.
control (list)

Control object for GenSA::GenSA when used. Default is empty list.

290 yeast.task

Value

(list). A named list with with the following components: th is the optimal threshold, perf the
performance value.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf (), getNestedTuneResultsX(),
getResamplingIndices(), getTuneResult(), makeModelMultiplexer (), makeModelMultiplexerParamSet(),
makeTuneControlCMAES (), makeTuneControlDesign(), makeTuneControlGenSA(), makeTuneControlGrid(),
makeTuneControlIrace(), makeTuneControlMBO(), makeTuneControlRandom(), makeTuneWrapper(),
tuneParams()

wpbc. task Wisonsin Prognostic Breast Cancer (WPBC) survival task.

Description

Contains the task (wpbc. task).

References

See TH.data::wpbc. Incomplete cases have been removed from the task.

yeast. task Yeast multilabel classification task.

Description

Contains the task (yeast. task).

Source

https://archive.ics.uci.edu/ml/datasets/Yeast (In long instead of wide format)

References

Elisseeff, A., & Weston, J. (2001): A kernel method for multi-labelled classification. In Advances
in neural information processing systems (pp. 681-687).

https://archive.ics.uci.edu/ml/datasets/Yeast

Index

* benchmark

batchmark, 13

benchmark, 15
BenchmarkResult, 17
convertBMRToRankMatrix, 26
friedmanPostHocTestBMR, 50
friedmanTestBMR, 51
generateCritDifferencesData, 54
getBMRAggrPerformances, 67
getBMRFeatSelResults, 68
getBMRFilteredFeatures, 70
getBMRLearnerIds, 71
getBMRLearners, 72
getBMRLearnerShortNames, 72
getBMRMeasurelds, 73
getBMRMeasures, 74
getBMRModels, 74
getBMRPerformances, 75
getBMRPredictions, 76
getBMRTaskDescs, 78
getBMRTaskIds, 79
getBMRTuneResults, 80
plotBMRBoxplots, 226
plotBMRRanksAsBarChart, 227
plotBMRSummary, 228
plotCritDifferences, 231
reduceBatchmarkResults, 247

x calibration

generateCalibrationData, 52
plotCalibration, 230

* configure

configureMlr, 23
getMlrOptions, 96

* costsens

makeCostSensClassifWrapper, 141
makeCostSensRegrWrapper, 142
makeCostSensTask, 143

makeCostSensWeightedPairsWrapper,

144

+ datasets
aggregations, 11
measures, 214
spatial.task, 271

+ data
agri.task, 12
bc.task, 15
bh.task, 18
costiris. task, 27
fuelsubset. task, 52
gunpoint.task, 117
iris.task, 124
lung. task, 133
mtcars. task, 220
phoneme. task, 225
pid.task, 225
sonar. task, 271
spam. task, 271
wpbc. task, 290
yeast. task, 290

* debug
FailureModel, 43
getPredictionDump, 100
getRRDump, 104
ResampleResult, 257

+ downsample
downsample, 32
makeDownsampleWrapper, 146

+ eda_and_preprocess
capLargeValues, 22
createDummyFeatures, 28
dropFeatures, 33
mergeSmallFactorLevels, 218
normalizeFeatures, 221
removeConstantFeatures, 250
summarizeColumns, 273
summarizelevels, 274

x extractFDAFeatures
reextractFDAFeatures, 248

292

x fda_featextractor
extractFDABsignal, 36
extractFDADTWKernel, 36
extractFDAFourier, 39
extractFDAFPCA, 39
extractFDAMultiResFeatures, 40
extractFDATsfeatures, 41
extractFDAWavelets, 42

x fda
extractFDAFeatures, 37
makeExtractFDAFeatMethod, 148
makeExtractFDAFeatsWrapper, 149

x featsel
analyzeFeatSelResult, 12
FeatSelControl, 44
getFeatSelResult, 85
makeFeatSelWrapper, 150
selectFeatures, 260

« filter
filterFeatures, 48
generateFilterValuesData, 58
getFilteredFeatures, 87
listFilterEnsembleMethods, 127
listFilterMethods, 128
makeFilter, 152
makeFilterEnsemble, 153
makeFilterWrapper, 154
plotFilterValues, 232

* generate_plot_data
generateCalibrationData, 52
generateCritDifferencesData, 54
generateFeatureImportanceData, 56
generateFilterValuesData, 58
generatelLearningCurveData, 61
generatePartialDependenceData, 63
generateThreshVsPerfData, 66
plotFilterValues, 232

* help
helpLearner, 119
helpLearnerParam, 119

+ imbalancy
makeOverBaggingWrapper, 179
makeUndersampleWrapper, 209
oversample, 222
smote, 270

* impute
imputations, 120
impute, 122

INDEX

makeImputeMethod, 158
makeImputeWrapper, 159
reimpute, 249

* learner

getClassWeightParam, 82
getHyperPars, 89
getLearnerlId, 90
getlLearnerNote, 91
getlLearnerPackages, 92
getlLearnerParamSet, 92
getlLearnerParVals, 93
getlLearnerPredictType, 94
getlLearnerShortName, 94
getLearnerType, 95
getParamSet, 99
helpLearner, 119
helpLearnerParam, 119
LearnerProperties, 126
makelLearner, 160
makelLearners, 164
removeHyperPars, 251
setHyperPars, 263
setld, 264
setLearnerld, 265
setPredictThreshold, 266
setPredictType, 267

+ learning_curve

generatelLearningCurveData, 61
plotLearningCurve, 238

* multilabel

getMultilabelBinaryPerformances,
96
makeMultilabelBinaryRelevanceWrapper,
171
makeMultilabelClassifierChainsWrapper,
172
makeMultilabelDBRWrapper, 173
makeMultilabelNestedStackingWrapper,
175
makeMultilabelStackingWrapper, 176

+ multiplexer

makeModelMultiplexer, 167
makeModelMultiplexerParamSet, 169

+ partial_dependence

generatePartialDependenceData, 63
plotPartialDependence, 239

* performance

calculateConfusionMatrix, 19

INDEX

calculateROCMeasures, 20
ConfusionMatrix, 25
estimateRelativeOverfitting, 34
makeCostMeasure, 140
makeCustomResampledMeasure, 145
makeMeasure, 165

measures, 214

performance, 224
setAggregation, 262
setMeasurePars, 266

* plot

createSpatialResamplingPlots, 29
plotBMRBoxplots, 226
plotBMRRanksAsBarChart, 227
plotBMRSummary, 228
plotCalibration, 230
plotCritDifferences, 231
plotLearningCurve, 238
plotPartialDependence, 239
plotResiduals, 240
plotROCCurves, 241
plotThreshVsPerf, 242

* predict

asROCRPrediction, 13
getPredictionProbabilities, 100
getPredictionResponse, 101
getPredictionTaskDesc, 102
predict.WrappedModel, 245
setPredictThreshold, 266
setPredictType, 267

* resample

addRRMeasure, 10
getRRPredictionList, 105
getRRPredictions, 105
getRRTaskDesc, 106
getRRTaskDescription, 107
makeResampleDesc, 185
makeResampleInstance, 188
resample, 252
ResamplePrediction, 256
ResampleResult, 257

* TocC

asROCRPrediction, 13
calculateROCMeasures, 20

* task

getTaskClassLevels, 108
getTaskCosts, 108
getTaskData, 109

293

getTaskDesc, 110
getTaskFeatureNames, 111
getTaskFormula, 112
getTaskId, 113
getTaskNFeats, 113
getTaskSize, 114
getTaskTargetNames, 114
getTaskTargets, 115
getTaskType, 116
subsetTask, 272

* thresh_vs_perf

generateThreshVsPerfData, 66
plotROCCurves, 241
plotThreshVsPerf, 242

* tune_multicrit

plotTuneMultiCritResult, 244
TuneMultiCritControl, 280
tuneParamsMultiCrit, 287

* tune

getNestedTuneResultsOptPathDf, 97
getNestedTuneResultsX, 98
getResamplingIndices, 103
getTuneResult, 116
makeModelMultiplexer, 167
makeModelMultiplexerParamSet, 169
makeTuneControlCMAES, 195
makeTuneControlDesign, 197
makeTuneControlGenSA, 198
makeTuneControlGrid, 200
makeTuneControlIrace, 202
makeTuneControlMBO, 204
makeTuneControlRandom, 206
makeTuneWrapper, 207
TuneControl, 279

tuneParams, 284

tuneThreshold, 289

* wrapper

makeBaggingWrapper, 134

makeClassificationViaRegressionWrapper,

135
makeConstantClassWrapper, 139
makeCostSensClassifWrapper, 141
makeCostSensRegrWrapper, 142
makeDownsampleWrapper, 146
makeDummyFeaturesWrapper, 147
makeExtractFDAFeatsWrapper, 149
makeFeatSelWrapper, 150
makeFilterWrapper, 154

294

makeImputeWrapper, 159
makeMulticlassWrapper, 170
makeMultilabelBinaryRelevanceWrapper,
171
makeMultilabelClassifierChainsWrapper,
172
makeMultilabelDBRWrapper, 173
makeMultilabelNestedStackingWrapper,
175
makeMultilabelStackingWrapper, 176
makeOverBaggingWrapper, 179
makePreprocWrapper, 180
makePreprocWrapperCaret, 182
makeRemoveConstantFeaturesWrapper,
184
makeSMOTEWrapper, 190
makeTuneWrapper, 207
makeUndersampleWrapper, 209
makeWeightedClassesWrapper, 210

acc (measures), 214
addRRMeasure, 10, 105-107, 187, 189, 256,
257
Aggregation, 11, 12, 134, 166, 262
aggregations, 11, 11, 134, 262
agri.task, 12
analyzeFeatSelResult, 12,47, 85, 151, 261
as.data.frame, 17
asROCRPrediction, 13, 22, 101, 102, 245,
267, 268
auc (measures), 214

b632 (aggregations), 11

b632plus (aggregations), 11

bac (measures), 214

base::data.frame, 247

base::expand.grid, 14

base: :rank, 26

batchmark, 13, 17, 18, 26, 51, 52, 55, 68, 69,
71-77,79, 81, 227-229, 232, 247,
248

batchtools: :ExperimentRegistry, 247,
248

batchtools: :findDone, 247

batchtools: :makeExperimentRegistry, 13,
15,248

batchtools: :Registry, 15

batchtools: :submitJobs, 13, 14

batchtools: :waitForJobs, /4

INDEX

BBmisc: :normalize, 221, 222

BBmisc: :optimizeSubInts, 289

bc.task, 15

benchmark, 13, 15, 15,17, 18, 26, 51, 52, 55,
62,68, 69,71-77,79,81,227-229,
232,248

BenchmarkResult, 14-17, 17, 26, 50-55,
66-81, 217, 218, 226-229, 232, 240,
241,247, 248

ber (measures), 214

bh.task, 18

bootstrapB632 (resample), 252

bootstrapB632plus (resample), 252

bootstrap00B (resample), 252

brier (measures), 214

cache_helpers, 18
calculateConfusionMatrix, 19, 22, 25, 35,
83,141, 146, 166, 217,225, 262, 266
calculateROCMeasures, 13, 20, 20, 21, 25,
35,141, 146, 166, 217,225, 262, 266
CalibrationData, 53, 230
CalibrationData
(generateCalibrationData), 52
caplLargeValues, 22, 28, 33, 218, 222, 251,
273,274
caret: :preProcess, 182
character, 11, 14, 16, 22, 28, 29, 33,47, 49,
56, 59,64, 65,71,73,79, 82,87, 88,
91, 92,100, 108, 109, 112, 115,
121-123, 126, 129-133, 141, 145,
146, 148, 151, 152, 155, 158, 159,
164-166, 172,175, 184, 186, 213,
218,221, 237,250, 251, 260, 261,
269, 272,274,277
cindex (measures), 214
ClassifTask, 139, 144, 179, 184, 195, 276
ClassifTask (makeClassifTask), 137
closure, 285, 288
cluster::agriculture, 12
cluster::daisy, 270
ClusterTask, 138, 144, 179, 184, 195, 276
ClusterTask (makeClusterTask), 138
cmaes: :cma_es, 195, 196, 200, 203, 280, 283
configureMlr, 16, 23, 43,46, 62, 84, 85, 96,
100, 104, 124, 151, 162, 196, 197,
199, 201, 202, 204, 208, 248, 250,
255,257,261, 279, 282, 285, 288

INDEX

ConfusionMatrix, 19, 20, 22, 25, 35, 141,
146, 166, 217, 225, 262, 266

convertBMRToRankMatrix, 15, 17, 18, 26, 51,
52,55,68, 69,71-77,79, 81,
227-229, 232, 248

convertMLBenchObjToTask, 27

costiris.task, 27

CostSensClassifModel
(makeCostSensClassifWrapper),
141

CostSensClassifWrapper
(makeCostSensClassifWrapper),
141

CostSensRegrModel
(makeCostSensRegrWrapper), 142

CostSensRegrWrapper
(makeCostSensRegrWrapper), 142

CostSensTask, 108, 138, 139, 179, 184, 195,
276

CostSensTask (makeCostSensTask), 143

CostSensWeightedPairsModel

(makeCostSensWeightedPairsWrapper),

144
CostSensWeightedPairsWrapper, 129
CostSensWeightedPairsWrapper

(makeCostSensWeightedPairsWrapper),

144

cowplot: :save_plot, 30

createDummyFeatures, 23, 28, 33, 147, 218,
222,251,273, 274

createSpatialResamplingPlots, 29, 227,
228, 230-232, 238, 240-243

crossover, 32, 32

crossval (resample), 252

cv10 (makeResampleDesc), 185

cv2 (makeResampleDesc), 185

cv3 (makeResampleDesc), 185

cv5 (makeResampleDesc), 185

data.frame, 22, 23, 28, 34-40, 42, 53, 57, 62,
64, 65,68-71,76, 77,80, 88, 97, 98,
101, 107,117,122, 123,127, 128,
137-139, 143, 148, 158, 166, 178,
183,194, 195, 197, 205, 221, 222,
224, 240, 245-250, 257, 273-276,
283

data.table, 15

data.table::data.table, 247

datasets::iris, 27, 124

295

datasets: :mtcars, 221

db (measures), 214

deleteCacheDir (cache_helpers), 18

downsample, 32, 147

dropFeatures, 23, 28, 33, 218, 222, 251, 273,
274

dump.frames, 257

environment, 712
estimateRelativeOverfitting, 20, 22, 25,
34,141, 146, 166, 217, 225, 262, 266
estimateResidualVariance, 35
expvar (measures), 214
extractFDABsignal, 36, 37, 39, 40, 42, 43
extractFDADTWKernel, 36, 36, 39, 40, 42, 43
extractFDAFeatures, 37, 37, 38, 149, 150,
248
extractFDAFourier, 36, 37, 39, 40, 42, 43
extractFDAFPCA, 36, 37, 39, 39, 40, 42, 43
extractFDAMultiResFeatures, 36, 37, 39,
40, 40, 42, 43
extractFDATsfeatures, 36, 37, 39, 40, 41, 43
extractFDAWavelets, 36, 37, 39, 40, 42, 42

f1 (measures), 214
factor, 134, 137, 139, 143, 146, 178, 183,
188,194,216, 275
FailureModel, 25, 43, 100, 104, 257
FDboost: :bsignal (), 36
FDboost: : FDboost, 52
fdr (measures), 214
featperc (measures), 214
FeatSelControl, 13,44, 47, 48, 85, 150, 151,
260, 261
FeatSelControlExhaustive, 47
FeatSelControlExhaustive
(FeatSelControl), 44
FeatSelControlGA, 47
FeatSelControlGA (FeatSelControl), 44
FeatSelControlRandom, 47
FeatSelControlRandom (FeatSelControl),
44
FeatSelControlSequential, 47
FeatSelControlSequential
(FeatSelControl), 44
FeatSelResult, 12,47, 68, 85, 261
FeatureImportanceData
(generateFeaturelmportanceData),
56

296

filterFeatures, 48, 59, 87, 127, 128,
153—-155, 233

FilterValues, 48, 59, 233

FilterValues
(generateFilterValuesData), 58

fixedcv (resample), 252

fn (measures), 214

fnr (measures), 214

formula, 112

fp (measures), 214

fpr (measures), 214

friedman.test, 50

friedmanPostHocTestBMR, 15, 17, 18, 26, 50,
52,55,68,69,71-77,79, 81,
227-229, 232, 248

friedmanTestBMR, 15, 17, 18, 26, 51, 51, 55,
68, 69,71-77,79, 81,227-229, 232,
248

fuelsubset. task, 52

G1 (measures), 214

G2 (measures), 214

gbm: :relative.influence(), 86

gc, 46, 196, 198, 199, 201, 203, 205, 207, 280,
282

generateCalibrationData, 52, 55, 58, 59,
63, 66, 67,230, 231, 233

generateCritDifferencesData, 15, 17, 18
26,51, 52, 54, 54, 58, 59, 63, 66-69,
71-77,79, 81, 227-229, 232, 233,
248

generateCritDifferencesData(), 231, 232

generateFeatureImportanceData, 54, 55,
56, 59, 63, 66, 67, 233

generateFilterValuesData, 48, 49, 54, 55,
58, 58, 63, 606, 67,87,127, 128, 153,
155,233

generateHyperParsEffectData, 60, 234
235,285

generateLearningCurveData, 54, 55, 58, 59,
61,062,066, 67,233,238

generatePartialDependenceData, 54, 55,
58, 59, 63, 63, 67, 233, 239, 240

generateThreshVsPerfData, 54, 55, 58, 59,
63, 66, 66, 233, 241-243

GenSA: :GenSA, 196, 198, 200, 203, 280, 283,
289

getBMRAggrPerformances, 15, 17, 18, 26,
50-52, 55, 67,69, 71-77,79, 81,

INDEX

227-229, 232, 248
getBMRFeatSelResults, 15, 17, 18, 26, 51,
52,55,68,68,71-77,79, 81,
227-229, 232, 248
getBMRFilteredFeatures, 15, 17, 18, 26, 51,
52, 55,68, 69,70,71-77,79, 81,
227-229, 232, 248
getBMRLearnerlds, 15, 17, 18, 26, 51, 52, 55,
68, 69,71,71,72-77,79, 81,
227-229, 232, 248
getBMRLearners, 15, 17, 18, 26, 51, 52, 55,
68, 69,71,72,73-77,79, 81,
227-229, 232, 248
getBMRLearnerShortNames, 15, 17, 18, 26,
51, 52,55,68, 69,71,72,72,73-77,
79, 81, 227-229, 232, 248
getBMRMeasurelds, 15, 17, 18, 26, 51, 52, 55,
68, 69, 71-73,73,74-77,79, 81,
227-229, 232, 248
getBMRMeasures, 15, 17, 18, 26, 51, 52, 55,
68, 69, 71-73,74, 75-77,79, 81,
227-229, 232, 248
getBMRModels, 15, 17, 18, 26, 51, 52, 55, 68,
69,71-74,74,76, 77,79, 81,
227-229, 232, 248
getBMRPerformances, 15, 17, 18, 26, 51, 52,
55,68, 69,71-75,75,77,79, 81,
227-229, 232, 248
getBMRPredictions, 15, 17, 18, 26, 51, 52,
55,68, 69, 71-76,76, 79, 81,
227-229, 232, 248
getBMRTaskDescriptions, 78
getBMRTaskDescs, 15, 17, 18, 26, 51, 52, 55,
68, 69,71-77,78,79, 81, 227-229,
232,248
getBMRTaskIds, 15, 17, 18, 26, 51, 52, 55, 68,
69,71-77,79,79, 81, 227-229, 232,
248
getBMRTuneResults, 15, 17, 18, 26, 51, 52,
55,68, 69,71-77,79, 80, 227-229,
232,248
getCacheDir (cache_helpers), 18
getCaretParamSet, 81
getClassWeightParam, 82, 90, 92-95, 99,
119, 120, 127, 163, 164, 251, 263,
265, 267, 268
getConfMatrix, 83
getDefaultMeasure, 10, 34,67, 84, 151, 208,

INDEX

224,237,255, 261, 285
getFailureModelDump, 25, 84
getFailureModelMsg, 85
getFeatSelResult, 13,47, 85, 150, 151, 261
getFeatureImportance, 86
getFilteredFeatures, 49, 59, 87, 127, 128,

153,155,233
getFunctionalFeatures, 88
getHomogeneousEnsembleModels, 89
getHyperPars, 82, 89, 90, 92-95, 99, 119,

120, 127, 163, 164, 251, 263, 265,

267, 268
getLearnerld, 82, 90, 90, 92-95, 99, 119

120, 127, 163, 164,251, 263, 265,

267, 268
getlLearnerModel, 91, 134, 141, 142, 144,

171-173, 175, 176, 179
getlearnerNote, 82, 90, 91, 92-95, 99, 119,

120, 127, 163, 164, 251, 263, 265,

267, 268
getlLearnerPackages, 82, 90, 92, 92, 93-95,

99,119, 120, 127, 163, 164, 251,

263, 265, 267, 268
getLearnerParamSet, 82, 90, 92, 92, 93-95,

99,119, 120, 127, 163, 164, 251,

263, 265, 267, 268
getLearnerParVals, 82, 90, 92, 93, 93, 94,

95,99, 119, 120, 127, 163, 164, 251,

263, 265, 267, 268
getlearnerPredictType, 82, 90, 92, 93, 94,

95,99, 119, 120, 127, 163, 164, 251,

263, 265, 267, 268
getlLearnerProperties, 167
getLearnerProperties

(LearnerProperties), 126
getLearnerShortName, 82, 90, 92-94, 94, 95,

99,119, 120, 127, 163, 164, 251,

263, 265, 267, 268
getLearnerType, 82, 90, 92-95, 95, 99, 119,

120, 127,163, 164, 251, 263, 265,

267, 268
getMeasureProperties

(MeasureProperties), 213
getMlrOptions, 25, 96
getMultilabelBinaryPerformances, 96,

171,173, 174, 176, 177
getNestedTuneResultsOptPathDf, 97, 98,

103,117,167, 169, 197, 198, 200,

297

202, 203, 206-208, 280, 285, 290
getNestedTuneResultsX, 97,98, 103, 117,
167, 169, 197, 198, 200, 202, 203,
206-208, 280, 285, 290
getO0BPreds, 98
getParamSet, 82, 90, 92-95,99, 119, 120,
127,163, 164, 251, 263, 265, 267,
268
getParamSet (), 89
getPredictionDump, 25, 43, 100, 104, 257
getPredictionProbabilities, /3, 100, 102,
245, 267, 268
getPredictionResponse, 13, 101, 101, 102,
245,267, 268
getPredictionSE
(getPredictionResponse), 101
getPredictionTaskDesc, 13, 101, 102, 102,
245,267, 268
getPredictionTruth
(getPredictionResponse), 101
getProbabilities, 103
getResamplingIndices, 97, 98, 103, 117
167, 169, 197, 198, 200, 202, 203,
206-208, 280, 285, 290
getRRDump, 25, 43, 100, 104, 257
getRRPredictionList, 10, 105, 106, 107
187, 189, 256, 257
getRRPredictions, 10, 105, 105, 106, 107,
187, 189, 256, 257
getRRTaskDesc, 10, 105, 106, 106, 107, 187,
189, 256, 257
getRRTaskDescription, 10, 105, 106, 107,
187, 189, 256, 257
getStackedBaselearnerPredictions, 107
getTaskClasslLevels, 108, 108, 109-116,
272
getTaskCosts, 108, 108, 110-116, 272
getTaskData, 108, 109, 109, 111-116, 272,
274, 275,279
getTaskDesc, 108—-110, 110, 111-116, 272
getTaskDescription, 111
getTaskFeatureNames, 88, 108-111, 111,
112-116,272, 274
getTaskFormula, 108-112, 112, 113-116,
272,274
getTaskId, 108-112, 113, 114-116,272
getTaskNFeats, 108-113, 113, 114-116, 272
getTaskSize, 108-114,114, 115, 116,272

298

getTaskTargetNames, 108-114, 114, 115,
116,272

getTaskTargets, 108-115, 115, 116, 272,
275

getTaskType, 108-115, 116, 272

getTuneResult, 97, 98, 103, 116, 167, 169,
197, 198, 200, 202, 203, 206-208,
280, 285, 290

getTuneResultOptPath, 117

ggplot2::coord_sf, 30

ggplot2: :geom_point, 229, 237, 244

ggplot2::ggplot, 236

ggplot2::scale_x_logl0, 228, 229

gmean (measures), 214

gpr (measures), 214

graphics::hist, 121

growingcv (resample), 252

gunpoint.task, 117

h2o::h2o.varimp(), 86

hasFunctionalFeatures, 118

hasLearnerProperties
(LearnerProperties), 126

hasMeasureProperties
(MeasureProperties), 213

hasProperties, 118

helpLearner, 82, 90, 92-95, 99, 119, 120,
127,163, 164,251, 263, 265, 267,
268

helpLearnerParam, 82, 90, 92-95, 99, 119,
119, 127,163, 164, 251, 263, 265,
267, 268

hist, 53

holdout (resample), 252

hout (makeResampleDesc), 185

iauc.uno (measures), 214

ibrier (measures), 214
imputations, 120, 122, 123, 159, 160, 249
impute, 121, 122, 159, 160, 249
imputeConstant (imputations), 120
imputeHist (imputations), 120
imputelLearner (imputations), 120
imputeMax (imputations), 120
imputeMean (imputations), 120
imputeMedian (imputations), 120
imputeMin (imputations), 120
imputeMode (imputations), 120
imputeNormal (imputations), 120

INDEX

imputeUniform (imputations), 120

integer, 29, 34, 88, 108, 109, 157, 158, 188,
201, 213, 226, 230, 238, 239, 243,
245,247,272, 278, 279, 282

irace::irace, 196, 200, 202, 203, 280, 283

iris.task, 124

isFailureModel, 124

joinClasslLevels, 125

kappa (measures), 214
kendalltau (measures), 214
kernlab: :spam, 271

Learner, 14, 16, 17, 34, 35,47, 51, 56, 62, 82,
84, 89-95, 98, 99, 119, 121, 126,
131,135, 136, 139-142, 144,
147-151, 154, 155, 159, 160, 162,
164, 167, 170-172, 174177,
180-182, 184, 185, 190-192, 204,
208-212, 226, 235, 236, 245, 251,
252,255,261, 263-265, 267, 268,
277, 283-285, 287, 288

Learner (makeLearner), 160

learnerArgsToControl, 125

LearnerParam, 82

LearnerProperties, 82, 90, 92-95, 99, 119,
120, 126, 160, 163, 164, 251, 258,
263, 265, 267, 268

learners, 127, 161, 260

LearningCurveData, 62, 238

LearningCurveData
(generatelLearningCurveData), 61

list, 17, 30, 38, 46, 53, 59, 68, 69, 71-78, 80,
89, 93, 96, 103-105, 122, 123, 146,
149, 158, 159, 162, 166, 181, 196,
198, 199, 201, 203, 205, 206, 213,
257,260, 263, 264, 266, 274, 280,
283, 284, 289, 290

list(), 38, 149

listFilterEnsembleMethods, 49, 59, 87.
127, 128, 153155, 233

listFilterMethods, 48, 49, 58, 59, 87, 127,
128, 152-155, 233

listLearnerProperties, 129

listLearners, 127,129

listMeasureProperties, 131

listMeasures, 132, 2714

listTaskTypes, 132

INDEX

logical, 32,49, 88, 103, 108, 109, 155, 169,
213,224, 245,272,278

logloss (measures), 214

1sr (measures), 214

lung. task, 133

mae (measures), 214
makeAggregation, /1, 133
makeBaggingWrapper, 134, 136, 140, 142,
147, 148, 150, 151, 155, 160, 170,
171, 173-175, 177, 180-182, 185,
191,208, 210, 211,223
makeClassificationViaRegressionWrapper,
135,135, 140, 142, 147, 148, 150
151,155,160, 170, 171, 173—175,
177, 180-182, 185, 191, 208, 210
211
makeClassifTask, 137
makeClusterTask, 138
makeConstantClassWrapper, 135, 136, 139,
142, 147, 148, 150, 151, 155, 160,
170, 171, 173—-175, 177, 180-182,
185, 191, 208, 210, 211
makeCostMeasure, 20, 22, 25, 35, 140, 146,
166, 214,217,225, 262, 266
makeCostSensClassifWrapper, 135, 136,
140, 141, 142, 144, 145, 147, 148,
150, 151, 155, 160, 170, 171,
173-175, 177, 180-182, 185, 191,
208, 210, 211
makeCostSensRegrWrapper, 135, 136, 140,
142,142, 144, 145, 147, 148, 150,
151,155,160, 170, 171, 173—175,
177, 180-182, 185, 191, 208, 210,
211,223
makeCostSensTask, 142, 143, 145
makeCostSensWeightedPairsWrapper, 142,
144, 144
makeCustomResampledMeasure, 20, 22, 25,
35,141,145, 166, 217,225, 262, 266
makeDownsampleWrapper, 33, 62, 135, 136,
140, 142, 146, 148, 150, 151, 155,
160, 170, 171, 173-175, 177,
180-182, 185, 191, 196, 199, 201,
203, 205, 207, 208, 210, 211, 280,
282
makeDummyFeaturesWrapper, 135, 136, 140,
142,147,147, 150, 151, 155, 160,
170, 171, 173—-175, 177, 180-182,

299

185, 191, 208, 210, 211
makeExtractFDAFeatMethod, 38, 148, 150
makeExtractFDAFeatsWrapper, 38, 135, 136,

140, 142, 147-149, 149, 151, 155,

160, 170, 171, 173-175, 177,

180-182, 185, 191, 208, 210, 211
makeFeatSelControlExhaustive

(FeatSelControl), 44
makeFeatSelControlGA (FeatSelControl),

44
makeFeatSelControlRandom

(FeatSelControl), 44
makeFeatSelControlSequential

(FeatSelControl), 44
makeFeatSelWrapper, 13, 47,85, 135, 136,

140, 142, 147, 148, 150, 150, 155,

160, 170, 171, 173-175, 177,

180-182, 185, 191, 208, 210, 211,

261
makeFilter, 49, 59, 87, 127, 128, 152, 153,

155,233
makeFilterEnsemble, 49, 59, 87, 127, 128,

153,153, 155,233
makeFilterWrapper, 49, 59, 87, 127, 128,

135, 136, 140, 142, 147, 148, 150,

151,153,154, 160, 170, 171,

173-175, 177, 180-182, 185, 191,

208, 210, 211, 233
makeFixedHoldoutInstance, 157, 187
makeFunctionalData, 157, 275
makeImputeMethod, 121-123, 158, 160, 249
makeImputeWrapper, 121, 123, 135, 136, 140,

142, 147, 148, 150, 151, 155, 159,

159, 170, 171, 173-175, 177,

180-182, 185, 191, 208, 210, 211,

249
makelLearner, 14, 16, 34, 56, 82, 90-95, 99,

119-121, 126, 127, 135, 136, 139,

141, 142, 144, 147, 149, 150, 154,

159, 160, 164, 170-172, 174-176,

180-182, 184, 190, 208, 209, 211,

212,236,251, 255, 261, 263-268,

277,285,287
makeLearners, 82, 90, 92-95, 99, 119, 120,

127,163,164, 251, 263, 265, 267,

268
makeMeasure, 20, 22, 25, 35, 141, 146, 165,

214,217, 225, 262, 266

300

makeModelMultiplexer, 97, 98, 103, 117,
167, 169, 197, 198, 200, 202, 203,
206-208, 280, 285, 290

makeModelMultiplexerParamSet, 97, 98,
103,117,167, 169, 197, 198, 200,
202, 203, 206-208, 280, 285, 290

makeMulticlassWrapper, 135, 136, 140, 142,
147, 148, 150, 151, 155, 160, 170,
171,173-175,177, 180-182, 185,
191, 208, 210, 211, 223

makeMultilabelBinaryRelevanceWrapper,
97,129, 135, 136, 140, 142, 147,
148, 150, 151, 155, 160, 170, 171,
173-177, 180-182, 185, 191, 208,
210, 211,223

makeMultilabelClassifierChainsWrapper,
97,135, 136, 140, 142, 147, 148,
150, 151, 155, 160, 170, 171, 172,
174,176, 177, 180-182, 185, 191,
208, 210, 211

makeMultilabelDBRWrapper, 97, 135, 136,
140, 142, 143, 147, 148, 150, 151,
155,160, 170, 171, 173,173, 176,
177, 180-182, 185, 191, 208, 210
211

makeMultilabelNestedStackingWrapper,
97,135, 136, 140, 142, 143, 147,
148, 150, 151, 155, 160, 170, 171,
173, 174,175, 177, 180-182, 185,
191,208, 210, 211

makeMultilabelStackingWrapper, 97, 135,
136, 140, 142, 143, 147, 148, 150,
151,155,160, 170, 171, 173, 174,
176, 176, 180-182, 185, 191, 208,
210, 211

makeMultilabelTask, 177

makeOverBaggingWrapper, 135, 136, 140,
142, 143, 147, 148, 150, 151, 155,
160, 170, 171,173, 174, 176, 177,
179, 181, 182, 185, 191, 208, 210
211,223,271

makeOversampleWrapper
(makeUndersampleWrapper), 209

makePrediction, 105

makePreprocWrapper, 135, 136, 140, 142,
143, 147, 148, 150, 151, 155, 160,
170, 171,173, 174, 176, 177, 180,
180, 182, 185, 191, 208, 210, 211

INDEX

makePreprocWrapperCaret, 135, 136, 140,
142, 143, 147, 148, 150, 151, 155,
160, 170, 171,173, 174, 176, 177,
180, 181,182, 185, 191, 208, 210,
211
makeRegrTask, 183
makeRemoveConstantFeaturesWrapper, 135,
136, 140, 142, 143, 147, 148, 150,
151,155,160, 170, 171, 173, 174,
176, 177, 180-182, 184, 191, 208,
210, 211
makeResampleDesc, 10, 105-107, 185, 188,
189, 256, 257
makeResamplelInstance, 10, 33, 105-107.
187, 188, 256, 257
makeRLearner (RLearner), 258
makeRLearner.classif.fdausc.glm, 189
makeRLearner.classif.fdausc.kernel
189
makeRLearner.classif.fdausc.np, 190
makeRLearnerClassif (RLearner), 258
makeRLearnerCluster (RLearner), 258
makeRLearnerCostSens (RLearner), 258
makeRLearnerMultilabel (RLearner), 258
makeRLearnerRegr (RLearner), 258
makeRLearnerSurv (RLearner), 258
makeSMOTEWrapper, 135, 136, 140, 142, 143,
147, 148, 150, 151, 155, 160, 170,
171,173, 174, 176, 177, 180182,
185,190, 208, 210, 211
makeStackedLearner, 191
makeSurvTask, 194
makeTuneControlCMAES, 97, 98, 103, 117.
167, 169, 195, 198, 200, 202, 204,
206-208, 280, 286, 290
makeTuneControlDesign, 97, 98, 103, 117,
167, 169, 197,197, 200, 202, 204,
206-208, 280, 286, 290
makeTuneControlGenSA, 97, 98, 103, 117.
167, 169, 197, 198, 198, 202, 204,
206-208, 280, 286, 290
makeTuneControlGrid, 97, 98, 103, 117, 167,
169, 197, 198, 200, 200, 204,
206-208, 280, 286, 290
makeTuneControllrace, 97, 98, 103, 117.
167, 169, 197, 198, 200, 202, 202,
206-208, 280, 286, 290
makeTuneControlMBO, 97, 98, 103, 117, 167,

INDEX

169, 197, 198, 200, 202, 204, 204,
207, 208, 280, 286, 290

makeTuneControlRandom, 97, 98, 103, 117,
167, 169, 197, 198, 200, 202, 204,
206, 206, 208, 280, 286, 290

makeTuneMultiCritControlGrid
(TuneMultiCritControl), 280

makeTuneMultiCritControlMBO
(TuneMultiCritControl), 280

makeTuneMultiCritControlNSGA2
(TuneMultiCritControl), 280

makeTuneMultiCritControlRandom
(TuneMultiCritControl), 280

makeTuneWrapper, 13, 15, 97, 98, 103, 116,
117,135, 136, 140, 142, 143, 147,
148, 150, 151, 155, 160, 167,
169-171, 173, 174, 176, 177,
180-182, 185, 191, 197, 198, 200,
202, 204, 206, 207,207, 210, 211,
280, 286, 290

makeUndersampleWrapper, 135, 136, 140,
142, 143, 147, 148, 150, 151, 155,
160, 170, 171, 173, 174, 176, 177,
180-182, 185, 191, 208, 209, 211,
223,271

makeWeightedClassesWrapper, 135, 136,
140, 142, 143, 147, 148, 150, 151,
155,160, 170, 171, 173, 174, 176,
177, 180-182, 185, 191, 208, 210,
210

makeWrappedModel, 212

mape (measures), 214

matrix, 25, 26, 83, 140, 216, 284

mcc (measures), 214

mco: :nsgaz2, 281

mcp (measures), 214

mean, /41

meancosts (measures), 214

Measure, 10, 14, 16, 17, 26, 34, 50, 51, 54, 57,
62,67,84, 96, 132, 134, 141, 145
146, 151, 166, 208, 213, 224, 226,
227,229,237, 238, 241, 243, 255,
261, 262, 266, 282, 284, 285, 287,
289

Measure (makeMeasure), 165

measureACC (measures), 214

measureAU1P (measures), 214

measureAU1U (measures), 214

301

measureAUC (measures), 214
measureAUNP (measures), 214
measureAUNU (measures), 214
measureBAC (measures), 214
measureBER (measures), 214
measureBrier (measures), 214
measureBrierScaled (measures), 214
measureEXPVAR (measures), 214
measurefF1 (measures), 214
measureFDR (measures), 214
measureFN (measures), 214
measureFNR (measures), 214
measureFP (measures), 214
measureFPR (measures), 214
measureGMEAN (measures), 214
measureGPR (measures), 214
measureKAPPA (measures), 214
measureKendallTau (measures), 214
measurelLogloss (measures), 214
measurelL SR (measures), 214
measureMAE (measures), 214
measureMAPE (measures), 214
measureMCC (measures), 214
measureMEDAE (measures), 214
measureMEDSE (measures), 214
measureMMCE (measures), 214
measureMSE (measures), 214
measureMSLE (measures), 214
measureMulticlassBrier (measures), 214
measureMultilabelACC (measures), 214
measureMultilabelF1 (measures), 214
measureMultilabelHamloss (measures), 214
measureMultilabelPPV (measures), 214
measureMultilabelSubset@1 (measures),
214
measureMultilabelTPR (measures), 214
measureNPV (measures), 214
measurePPV (measures), 214
MeasureProperties, 213
measureQSR (measures), 214
measureRAE (measures), 214
measureRMSE (measures), 214
measureRMSLE (measures), 214
measureRRSE (measures), 214
measureRSQ (measures), 214
measures, 20-22, 25, 35, 141, 146, 165, 166,
214, 225, 252, 262, 266
measureSAE (measures), 214

302

measureSpearmanRho (measures), 214

measureSSE (measures), 214

measureSSR (measures), 214

measureTN (measures), 214

measureTNR (measures), 214

measureTP (measures), 214

measureTPR (measures), 214

measureWKAPPA (measures), 214

medae (measures), 214

medse (measures), 214

mergeBenchmarkResults, 217

mergeSmallFactorLevels, 23, 28, 33, 218,
222,251,273, 274

mlbench: :BostonHousing, I8

mlbench: :BreastCancer, 15

mlbench: :PimaIndiansDiabetes, 225

mlbench: :Sonar, 271

mlr (mlr-package), 8

mlr-package, 8

mlrFamilies, 219

mlrMBO: : makeMBOControl, 205, 283

mlrMBO: : makeMBOLearner, 204, 283

mlrMBO: :mbo, 204, 205, 283

mlrMBO: :mboContinue, 205, 283

mlrMBO: :MBOControl, 205, 283

mlrMBO: :OptResult, 205, 283

mmce (measures), 214

model.matrix, 28

ModelMultiplexer, 167, 169

ModelMultiplexer
(makeModelMultiplexer), 167

mse (measures), 214

msle (measures), 214

mtcars. task, 220

multiclass.aulp (measures), 214

multiclass.aulu (measures), 214

multiclass.aunp (measures), 214

multiclass.aunu (measures), 214

multiclass.brier (measures), 214

multilabel.acc (measures), 214

multilabel.f1 (measures), 214

multilabel.hamloss (measures), 214

multilabel.ppv (measures), 214

multilabel.subset@1 (measures), 214

multilabel.tpr (measures), 214

MultilabelTask, 138, 139, 144, 184, 195, 276

MultilabelTask (makeMultilabelTask), 177

normalizeFeatures, 23, 28, 33, 218, 221,

INDEX

251,273,274

npv (measures), 214

numDeriv::grad, 64

numDeriv::jacobian, 64

numeric, 30, 4648, 53, 59, 62, 82, 134, 137,
138,161, 178, 183, 194, 196, 197,
199, 201, 202, 204, 211, 216, 224,
255,257,267, 268, 275, 278, 279,
282, 289

options, 23
OptPath, 205, 283
oversample, 180, 209, 210, 222, 271

parallelization, 223

parallelMap: :parallelMap, 223

parallelMap: :parallelStart, 223

parallelMap: :parallelStop, 223

parallelStart, 223

ParamHelpers: :generateDesign, 198

ParamHelpers: :generateGridDesign, 201,
282

ParamHelpers: :LearnerParam, 89, 93, 181

ParamHelpers: :makeDiscreteParam, 200,

280
ParamHelpers: :OptPath, 48, 117, 205, 283,
284, 289

ParamHelpers: :Param, 169

ParamHelpers: :ParamSet, 81, 99, 169, 181,
208, 260, 285, 287

ParamSet, 93, 99, 149, 169

PartialDependenceData, 65, 239

PartialDependenceData
(generatePartialDependenceData),
63

party::varimp(), 86

performance, 20, 22, 25, 35, 134, 141, 146,
166, 217,224, 262, 266

phoneme. task, 225

pid.task, 225

plotBMRBoxplots, 15, 17, 18, 26, 30, 51, 52,
55,68, 69,71-77,79, 81, 226,
228-232, 238, 240-243, 248

plotBMRRanksAsBarChart, 15, 17, 18, 26, 30,
51, 52, 55,68, 69,71-77,79, 81,
227,227, 229-232, 238, 240-243,
248

plotBMRSummary, 15, 17, 18, 26, 30, 51, 52,
55,68, 69,71-77,79, 81,227, 228,

INDEX

228,231, 232, 238, 240-243, 248
plotCalibration, 30, 54, 227, 228, 230, 230,
232,238, 240-243
plotCritDifferences, 15, 17, 18, 26, 30, 51,
52,55,68, 69,71-77,79, 81,
227-231,231, 238, 240-243, 248
plotFilterValues, 49, 54, 55, 58, 59, 63, 66,
67,87,127, 128, 153, 155, 232
plotHyperParsEffect, 60, 61, 233
plotLearnerPrediction, 236
plotLearningCurve, 30, 63, 227, 228,
230-232, 238, 240-243
plotPartialDependence, 30, 64, 66, 227,
228, 230-232, 238, 239, 241-243
plotResiduals, 30, 227, 228, 230-232, 238,
240, 240, 242, 243
plotROCCurves, 30, 67, 227, 228, 230-232,
238, 240, 241, 241, 243
plotThreshVsPerf, 30, 67, 227, 228,
230-232, 238, 240-242, 242
plotTuneMultiCritResult, 244, 283, 288
PMCMRplus: : frdAllPairsNemenyiTest, 50,
51,55
ppv (measures), 214
predict.WrappedModel, 13, 83, 101, 102,
245, 267, 268, 278
Prediction, 13, 19, 21, 34, 53, 66, 83, 96,
98-100, 102, 105, 134, 146, 166,
224, 240, 245, 256, 268, 289
predictLearner, 246
print.ConfusionMatrix
(calculateConfusionMatrix), 19
print.ROCMeasures
(calculateROCMeasures), 20

gsr (measures), 214

rae (measures), 214
randomForest: : importance(), 86
ranger: :importance(), 87
ranger::ranger, 162
ranger::ranger(), 87
rank, 228
reduceBatchmarkResults, 15, 17, 18, 26, 51,
52,55,68, 69,71-77,79, 81,
227-229, 232, 247
reextractFDAFeatures, 37, 149, 248
RegrTask, 35, 138, 139, 144, 179, 195, 276
RegrTask (makeRegrTask), 183

303

reimpute, 121123, 159, 160, 249
removeConstantFeatures, 23, 28, 33, 184,
218,222,250, 273, 274
removeHyperPars, 82, 90, 92-95, 99, 119,
120, 127, 163, 164, 251, 263, 265,
267, 268

repcv (resample), 252

resample, 10, 29, 60, 67, 75, 76, 104—107
187, 189, 252, 256, 257, 285, 288

ResampleDesc, 14, 16, 34, 62, 150, 187, 188,
193, 202, 208, 252, 255, 261, 285,
287

ResampleDesc (makeResampleDesc), 185

Resamplelnstance, 16, 32, 62, 150, 157, 185,
189, 202, 208, 252, 255, 261, 285,
287

ResampleInstance
(makeResamplelnstance), 188

ResamplePrediction, 10, 34, 67, 76,
105-107, 146, 187, 189, 256, 256,
257

ResampleResult, 10, 14, 16, 17, 29, 43, 53,
60, 66, 67, 97, 98, 100, 103-107.
187, 189, 256, 257

RLearner, 246, 258, 260, 279

RLearnerClassif, 260

RLearnerClassif (RLearner), 258

RLearnerCluster, 260

RLearnerCluster (RLearner), 258

RLearnerMultilabel, 260

RLearnerMultilabel (RLearner), 258

RLearnerRegr, 260

RLearnerRegr (RLearner), 258

RLearnerSurv, 260

RLearnerSurv (RLearner), 258

rmse (measures), 214

rmsle (measures), 214

rpart::rpart, 91

rrse (measures), 214

rsq (measures), 214

sae (measures), 214

sd, 273

selectFeatures, 12, 13,44,47,85, 150, 151,
260

setAggregation, 20, 22, 25, 35, 134, 141,
146, 166, 187, 217, 225, 262, 266

setHyperPars, 82, 90, 92-95, 99, 119, 120,
127,163, 164, 251, 263, 265, 267,

304

268

setHyperPars2, 264

setld, 82, 90, 92-95, 99, 119, 120, 127, 163,
164, 251, 263, 264, 265, 267, 268

setlLearnerld, 82, 90, 92-95, 99, 119, 120,
127,163, 164,251, 263-265, 265,
267, 268

setMeasurePars, 20, 22, 25, 35, 141, 146,
166, 214,217, 225, 262, 266

setMeasurePars(), 166

setPredictThreshold, /3, 82, 90, 92-95, 99,
101, 102, 119, 120, 127, 163, 164,
245,251, 263, 265, 266, 268

setPredictType, 13, 82, 90, 92-95, 99, 101,
102,119, 120, 127,134, 163, 164,
245,251, 263, 265, 267, 267

setThreshold, 160, 161, 171, 245, 266, 267,
268

silhouette (measures), 214

simplifyMeasureNames, 269

smote, 180, 190, 210, 223, 270

sonar. task, 271

spam. task, 271

spatial.task, 271

spearmanrho (measures), 214

sse (measures), 214

ssr (measures), 214

stats::fft, 39

stats::friedman. test, 50-52

subsample (resample), 252

subsetTask, 108-116,272, 275

summarizeColumns, 23, 28, 33, 218, 222, 251,
273, 274

summarizelLevels, 23, 28, 33, 218, 222, 251,
273,274

summary, 273

survival::lung, 133

survival::Surv, 88, 110, 115

SurvTask, 138, 139, 144, 179, 184, 276

SurvTask (makeSurvTask), 194

Task, 14, 16, 22, 28, 29, 32-34, 38, 48, 49, 51,

56, 59, 62,64, 81, 84, 88, 99, 108,
109, 111-116, 122, 125, 130, 132,
134, 138, 139, 144, 146, 166, 179,
184, 188, 195, 218, 221-224, 236,
245, 248-250, 252, 255, 261, 270,
272-274, 274, 276-279, 285, 287,
289

INDEX

TaskDesc, 25, 53, 59, 65, 78, 84, 106—108,
111-114,116,212,275,276
test.join (aggregations), 11
test.max (aggregations), 11
test.mean, 166
test.mean (aggregations), 11
test.median (aggregations), 11
test.min (aggregations), 11
test.range (aggregations), 11
test.rmse (aggregations), 11
test.sd (aggregations), 11
test.sum (aggregations), 11
testgroup.mean (aggregations), 11
testgroup.sd (aggregations), 11
TH.data: :wpbc, 290
ThreshVsPerfData, 67, 241, 243
ThreshVsPerfData
(generateThreshVsPerfData), 66
timeboth (measures), 214
timepredict (measures), 214
timetrain (measures), 214
tn (measures), 214
tnr (measures), 214
tp (measures), 214
tpr (measures), 214
train, 35, 64, 91, 212, 245, 255, 277
train(), 86
train.max (aggregations), 11
train.mean (aggregations), 11
train.median (aggregations), 11
train.min (aggregations), 11
train.range (aggregations), 11
train.rmse (aggregations), 11
train.sd (aggregations), 11
train.sum (aggregations), 11
trainLearner, 109, 278
tsfeatures::tsfeatures(), 41/
TuneControl, 97, 98, 103, 117, 167, 169, 197,
198, 200, 202, 203, 206-208, 279,
284, 285, 289, 290
TuneControlCMAES, 196
TuneControlCMAES
(makeTuneControlCMAES), 195
TuneControlDesign, 7198
TuneControlDesign
(makeTuneControlDesign), 197
TuneControlGenSA, 200
TuneControlGenSA

INDEX

(makeTuneControlGenSA), 198
TuneControlGrid, 202
TuneControlGrid (makeTuneControlGrid),
200
TuneControllIrace, 203
TuneControllIrace
(makeTuneControlIrace), 202
TuneControlMBO, 205
TuneControlMBO (makeTuneControlMBO), 204
TuneControlRandom, 207
TuneControlRandom
(makeTuneControlRandom), 206
TuneMultiCritControl, 244, 280, 283, 287,
288
TuneMultiCritControlGrid, 283
TuneMultiCritControlGrid
(TuneMultiCritControl), 280
TuneMultiCritControlMBO, 283
TuneMultiCritControlMBO
(TuneMultiCritControl), 280
TuneMultiCritControlNSGA2, 283
TuneMultiCritControlNSGA2
(TuneMultiCritControl), 280
TuneMultiCritControlRandom, 283
TuneMultiCritControlRandom
(TuneMultiCritControl), 280
TuneMultiCritResult, 244, 284, 288
tuneParams, 60, 81, 97, 98, 103, 117, 167,
169, 197, 198, 200, 202, 204,
206-208, 280, 284, 290
tuneParamsMultiCrit, 244, 283, 284, 287
TuneResult, 60, 80, 117, 285, 288
tuneThreshold, 46, 97, 98, 103, 117, 167,
169, 171, 196-208, 280, 283, 286,
289

undersample, 209
undersample (oversample), 222

wavelets: :dwt, 42

wkappa (measures), 214

wpbc. task, 290

WrappedModel, 35, 43, 64, 74, 84-87, 91, 99
107,116, 124, 166, 213, 224, 245,
246, 255, 257, 278, 289

WrappedModel (makeWrappedModel), 212

yeast. task, 290

305

	mlr-package
	addRRMeasure
	Aggregation
	aggregations
	agri.task
	analyzeFeatSelResult
	asROCRPrediction
	batchmark
	bc.task
	benchmark
	BenchmarkResult
	bh.task
	cache_helpers
	calculateConfusionMatrix
	calculateROCMeasures
	capLargeValues
	configureMlr
	ConfusionMatrix
	convertBMRToRankMatrix
	convertMLBenchObjToTask
	costiris.task
	createDummyFeatures
	createSpatialResamplingPlots
	crossover
	downsample
	dropFeatures
	estimateRelativeOverfitting
	estimateResidualVariance
	extractFDABsignal
	extractFDADTWKernel
	extractFDAFeatures
	extractFDAFourier
	extractFDAFPCA
	extractFDAMultiResFeatures
	extractFDATsfeatures
	extractFDAWavelets
	FailureModel
	FeatSelControl
	FeatSelResult
	filterFeatures
	friedmanPostHocTestBMR
	friedmanTestBMR
	fuelsubset.task
	generateCalibrationData
	generateCritDifferencesData
	generateFeatureImportanceData
	generateFilterValuesData
	generateHyperParsEffectData
	generateLearningCurveData
	generatePartialDependenceData
	generateThreshVsPerfData
	getBMRAggrPerformances
	getBMRFeatSelResults
	getBMRFilteredFeatures
	getBMRLearnerIds
	getBMRLearners
	getBMRLearnerShortNames
	getBMRMeasureIds
	getBMRMeasures
	getBMRModels
	getBMRPerformances
	getBMRPredictions
	getBMRTaskDescriptions
	getBMRTaskDescs
	getBMRTaskIds
	getBMRTuneResults
	getCaretParamSet
	getClassWeightParam
	getConfMatrix
	getDefaultMeasure
	getFailureModelDump
	getFailureModelMsg
	getFeatSelResult
	getFeatureImportance
	getFilteredFeatures
	getFunctionalFeatures
	getHomogeneousEnsembleModels
	getHyperPars
	getLearnerId
	getLearnerModel
	getLearnerNote
	getLearnerPackages
	getLearnerParamSet
	getLearnerParVals
	getLearnerPredictType
	getLearnerShortName
	getLearnerType
	getMlrOptions
	getMultilabelBinaryPerformances
	getNestedTuneResultsOptPathDf
	getNestedTuneResultsX
	getOOBPreds
	getParamSet
	getPredictionDump
	getPredictionProbabilities
	getPredictionResponse
	getPredictionTaskDesc
	getProbabilities
	getResamplingIndices
	getRRDump
	getRRPredictionList
	getRRPredictions
	getRRTaskDesc
	getRRTaskDescription
	getStackedBaseLearnerPredictions
	getTaskClassLevels
	getTaskCosts
	getTaskData
	getTaskDesc
	getTaskDescription
	getTaskFeatureNames
	getTaskFormula
	getTaskId
	getTaskNFeats
	getTaskSize
	getTaskTargetNames
	getTaskTargets
	getTaskType
	getTuneResult
	getTuneResultOptPath
	gunpoint.task
	hasFunctionalFeatures
	hasProperties
	helpLearner
	helpLearnerParam
	imputations
	impute
	iris.task
	isFailureModel
	joinClassLevels
	learnerArgsToControl
	LearnerProperties
	learners
	listFilterEnsembleMethods
	listFilterMethods
	listLearnerProperties
	listLearners
	listMeasureProperties
	listMeasures
	listTaskTypes
	lung.task
	makeAggregation
	makeBaggingWrapper
	makeClassificationViaRegressionWrapper
	makeClassifTask
	makeClusterTask
	makeConstantClassWrapper
	makeCostMeasure
	makeCostSensClassifWrapper
	makeCostSensRegrWrapper
	makeCostSensTask
	makeCostSensWeightedPairsWrapper
	makeCustomResampledMeasure
	makeDownsampleWrapper
	makeDummyFeaturesWrapper
	makeExtractFDAFeatMethod
	makeExtractFDAFeatsWrapper
	makeFeatSelWrapper
	makeFilter
	makeFilterEnsemble
	makeFilterWrapper
	makeFixedHoldoutInstance
	makeFunctionalData
	makeImputeMethod
	makeImputeWrapper
	makeLearner
	makeLearners
	makeMeasure
	makeModelMultiplexer
	makeModelMultiplexerParamSet
	makeMulticlassWrapper
	makeMultilabelBinaryRelevanceWrapper
	makeMultilabelClassifierChainsWrapper
	makeMultilabelDBRWrapper
	makeMultilabelNestedStackingWrapper
	makeMultilabelStackingWrapper
	makeMultilabelTask
	makeOverBaggingWrapper
	makePreprocWrapper
	makePreprocWrapperCaret
	makeRegrTask
	makeRemoveConstantFeaturesWrapper
	makeResampleDesc
	makeResampleInstance
	makeRLearner.classif.fdausc.glm
	makeRLearner.classif.fdausc.kernel
	makeRLearner.classif.fdausc.np
	makeSMOTEWrapper
	makeStackedLearner
	makeSurvTask
	makeTuneControlCMAES
	makeTuneControlDesign
	makeTuneControlGenSA
	makeTuneControlGrid
	makeTuneControlIrace
	makeTuneControlMBO
	makeTuneControlRandom
	makeTuneWrapper
	makeUndersampleWrapper
	makeWeightedClassesWrapper
	makeWrappedModel
	MeasureProperties
	measures
	mergeBenchmarkResults
	mergeSmallFactorLevels
	mlrFamilies
	mtcars.task
	normalizeFeatures
	oversample
	parallelization
	performance
	phoneme.task
	pid.task
	plotBMRBoxplots
	plotBMRRanksAsBarChart
	plotBMRSummary
	plotCalibration
	plotCritDifferences
	plotFilterValues
	plotHyperParsEffect
	plotLearnerPrediction
	plotLearningCurve
	plotPartialDependence
	plotResiduals
	plotROCCurves
	plotThreshVsPerf
	plotTuneMultiCritResult
	predict.WrappedModel
	predictLearner
	reduceBatchmarkResults
	reextractFDAFeatures
	reimpute
	removeConstantFeatures
	removeHyperPars
	resample
	ResamplePrediction
	ResampleResult
	RLearner
	selectFeatures
	setAggregation
	setHyperPars
	setHyperPars2
	setId
	setLearnerId
	setMeasurePars
	setPredictThreshold
	setPredictType
	setThreshold
	simplifyMeasureNames
	smote
	sonar.task
	spam.task
	spatial.task
	subsetTask
	summarizeColumns
	summarizeLevels
	Task
	TaskDesc
	train
	trainLearner
	TuneControl
	TuneMultiCritControl
	TuneMultiCritResult
	tuneParams
	tuneParamsMultiCrit
	TuneResult
	tuneThreshold
	wpbc.task
	yeast.task
	Index

