
Package ‘mlexperiments’
March 3, 2025

Title Machine Learning Experiments

Version 0.0.5

Description Provides 'R6' objects to perform parallelized hyperparameter
optimization and cross-validation. Hyperparameter optimization can be
performed with Bayesian optimization (via 'ParBayesianOptimization'
<https://cran.r-project.org/package=ParBayesianOptimization>) and grid
search. The optimized hyperparameters can be validated using k-fold
cross-validation. Alternatively, hyperparameter optimization and
validation can be performed with nested cross-validation. While
'mlexperiments' focuses on core wrappers for machine learning
experiments, additional learner algorithms can be supplemented by
inheriting from the provided learner base class.

License GPL (>= 3)

URL https://github.com/kapsner/mlexperiments

BugReports https://github.com/kapsner/mlexperiments/issues

Depends R (>= 4.1.0)

Imports data.table, kdry, parallel, progress, R6, splitTools, stats

Suggests class, datasets, lintr, mlbench, mlr3measures,
ParBayesianOptimization, quarto, rpart, testthat (>= 3.0.1)

VignetteBuilder quarto

Config/testthat/edition 3

Config/testthat/parallel false

Date/Publication 2025-03-03 22:20:02 UTC

Encoding UTF-8

SystemRequirements Quarto command line tools
(https://github.com/quarto-dev/quarto-cli).

RoxygenNote 7.3.2

NeedsCompilation no

Author Lorenz A. Kapsner [cre, aut, cph]
(<https://orcid.org/0000-0003-1866-860X>)

1

https://cran.r-project.org/package=ParBayesianOptimization
https://github.com/kapsner/mlexperiments
https://github.com/kapsner/mlexperiments/issues
https://orcid.org/0000-0003-1866-860X


2 handle_cat_vars

Maintainer Lorenz A. Kapsner <lorenz.kapsner@gmail.com>

Repository CRAN

Contents

handle_cat_vars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
LearnerGlm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
LearnerKnn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LearnerLm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
LearnerRpart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
metric_types_helper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
MLBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
MLCrossValidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
MLExperimentsBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
MLLearnerBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
MLNestedCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
MLTuneParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
validate_fold_equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Index 41

handle_cat_vars handle_cat_vars

Description

Helper function to handle categorical variables

Usage

handle_cat_vars(kwargs)

Arguments

kwargs A list containing keyword arguments.

Details

This function is a utility function to separate the list element with the names of the categorical
variables from the key word arguments list to be passed further on to kdry::dtr_matrix2df().



LearnerGlm 3

Value

Returns a list with two elements:

• params The keyword arguments without cat_vars.

• cat_vars The vector cat_vars.

See Also

kdry::dtr_matrix2df()

Examples

handle_cat_vars(list(cat_vars = c("a", "b", "c"), arg1 = 1, arg2 = 2))

LearnerGlm LearnerGlm R6 class

Description

This learner is a wrapper around stats::glm() in order to perform a generalized linear regression.
There is no implementation for tuning parameters.

Details

Can be used with

• MLCrossValidation

Implemented methods:

• $fit To fit the model.
• $predict To predict new data with the model.

Super class

mlexperiments::MLLearnerBase -> LearnerGlm

Methods

Public methods:
• LearnerGlm$new()

• LearnerGlm$clone()

Method new(): Create a new LearnerGlm object.

Usage:
LearnerGlm$new()



4 LearnerKnn

Details: This learner is a wrapper around stats::glm() in order to perform a generalized
linear regression. There is no implementation for tuning parameters, thus the only experiment
to use LearnerGlm for is MLCrossValidation.

Returns: A new LearnerGlm R6 object.

Examples:
LearnerGlm$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerGlm$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

stats::glm()

stats::glm()

Examples

LearnerGlm$new()

## ------------------------------------------------
## Method `LearnerGlm$new`
## ------------------------------------------------

LearnerGlm$new()

LearnerKnn LearnerKnn R6 class

Description

This learner is a wrapper around class::knn() in order to perform a k-nearest neighbor classifica-
tion.

Details

Optimization metric: classification error rate Can be used with

• MLTuneParameters

• MLCrossValidation

• MLNestedCV



LearnerKnn 5

Implemented methods:

• $fit To fit the model.
• $predict To predict new data with the model.
• $cross_validation To perform a grid search (hyperparameter optimization).
• $bayesian_scoring_function To perform a Bayesian hyperparameter optimization.

For the two hyperparameter optimization strategies ("grid" and "bayesian"), the parameter metric_optimization_higher_better
of the learner is set to FALSE by default as the classification error rate (mlr3measures::ce()) is
used as the optimization metric.

Super class

mlexperiments::MLLearnerBase -> LearnerKnn

Methods

Public methods:
• LearnerKnn$new()

• LearnerKnn$clone()

Method new(): Create a new LearnerKnn object.

Usage:
LearnerKnn$new()

Details: This learner is a wrapper around class::knn() in order to perform a k-nearest neigh-
bor classification. The following experiments are implemented:

• MLTuneParameters
• MLCrossValidation
• MLNestedCV For the two hyperparameter optimization strategies ("grid" and "bayesian"),

the parameter metric_optimization_higher_better of the learner is set to FALSE by
default as the classification error rate (mlr3measures::ce()) is used as the optimization
metric.

Examples:

LearnerKnn$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerKnn$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

class::knn(), mlr3measures::ce()

class::knn(), mlr3measures::ce()



6 LearnerLm

Examples

LearnerKnn$new()

## ------------------------------------------------
## Method `LearnerKnn$new`
## ------------------------------------------------

LearnerKnn$new()

LearnerLm LearnerLm R6 class

Description

This learner is a wrapper around stats::lm() in order to perform a linear regression. There is no
implementation for tuning parameters.

Details

Can be used with

• mlexperiments::MLCrossValidation

Implemented methods:

• $fit To fit the model.
• $predict To predict new data with the model.

Super class

mlexperiments::MLLearnerBase -> LearnerLm

Methods

Public methods:
• LearnerLm$new()

• LearnerLm$clone()

Method new(): Create a new LearnerLm object.

Usage:
LearnerLm$new()

Details: This learner is a wrapper around stats::lm() in order to perform a linear regression.
There is no implementation for tuning parameters, thus the only experiment to use LearnerLm
for is MLCrossValidation

Returns: A new LearnerLm R6 object.



LearnerRpart 7

Examples:
LearnerLm$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerLm$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

stats::lm()

stats::lm()

Examples

LearnerLm$new()

## ------------------------------------------------
## Method `LearnerLm$new`
## ------------------------------------------------

LearnerLm$new()

LearnerRpart LearnerRpart R6 class

Description

This learner is a wrapper around rpart::rpart() in order to fit recursive partitioning and regres-
sion trees.

Details

Optimization metric:

• classification (method = "class"): classification error rate

• regression (method = "anova"): mean squared error

Can be used with

• MLTuneParameters

• MLCrossValidation

• MLNestedCV



8 LearnerRpart

Implemented methods:

• $fit To fit the model.
• $predict To predict new data with the model.
• $cross_validation To perform a grid search (hyperparameter optimization).
• $bayesian_scoring_function To perform a Bayesian hyperparameter optimization.

Parameters that are specified with parameter_grid and / or learner_args are forwarded to rpart’s
argument control (see rpart::rpart.control() for further details).

For the two hyperparameter optimization strategies ("grid" and "bayesian"), the parameter metric_optimization_higher_better
of the learner is set to FALSE by default as the classification error rate (mlr3measures::ce()) is
used as the optimization metric for classification tasks and the mean squared error (mlr3measures::mse())
is used for regression tasks.

Super class

mlexperiments::MLLearnerBase -> LearnerRpart

Methods

Public methods:

• LearnerRpart$new()

• LearnerRpart$clone()

Method new(): Create a new LearnerRpart object.

Usage:
LearnerRpart$new()

Details: This learner is a wrapper around rpart::rpart() in order to fit recursive partitioning
and regression trees. The following experiments are implemented:

• MLTuneParameters
• MLCrossValidation
• MLNestedCV

For the two hyperparameter optimization strategies ("grid" and "bayesian"), the parameter metric_optimization_higher_better
of the learner is set to FALSE by default as the classification error rate (mlr3measures::ce()) is
used as the optimization metric for classification tasks and the mean squared error (mlr3measures::mse())
is used for regression tasks.

Examples:

LearnerRpart$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerRpart$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.



metric 9

See Also

rpart::rpart(), mlr3measures::ce(), mlr3measures::mse(), rpart::rpart.control()

rpart::rpart(), mlr3measures::ce(), mlr3measures::mse()

Examples

LearnerRpart$new()

## ------------------------------------------------
## Method `LearnerRpart$new`
## ------------------------------------------------

LearnerRpart$new()

metric metric

Description

Returns a metric function which can be used for the experiments (especially the cross-validation
experiments) to compute the performance.

Usage

metric(name)

Arguments

name A metric name. Accepted names are the names of the metric function exported
from the mlr3measures R package.

Details

This function is a utility function to select performance metrics from the mlr3measures R pack-
age and to reformat them into a form that is required by the mlexperiments R package. For
mlexperiments it is required that a metric function takes the two arguments ground_truth, and
predictions, as well as additional names arguments that are necessary to compute the perfor-
mance, which are provided via the ellipsis argument (...). When using the performance metric with
an experiment of class "MLCrossValidation", such arguments can be defined as a list provided to
the field performance_metric_args of the R6 class. The main purpose of mlexperiments::metric()
is convenience and to re-use already existing implementations of the metrics. However, custom
functions can be provided easily to compute the performance of the experiments, simply by pro-
viding a function that takes the above mentioned arguments and returns one performance metric
value.



10 metric_types_helper

Value

Returns a function that can be used as function to calculate the performance metric throughout the
experiments.

Examples

metric("auc")

metric_types_helper metric_types_helper

Description

Prepares the data to be conform with the requirements of the metrics from mlr3measures.

Usage

metric_types_helper(FUN, y, perf_args)

Arguments

FUN A metric function, created with metric().

y The outcome vector.

perf_args A list. The arguments to call the metric function with.

Details

The mlr3measures R package makes some restrictions on the data type of the ground truth and the
predictions, depending on the metric, i.e. the type of the task (regression or classification). Thus, it
is necessary to convert the inputs to the metric function accordingly, which is done with this helper
function.

Value

Returns the calculated performance measure.

Examples

set.seed(123)
ground_truth <- sample(0:1, 100, replace = TRUE)
predictions <- sample(0:1, 100, replace = TRUE)
FUN <- metric("acc")

perf_args <- list(
ground_truth = ground_truth,
predictions = predictions

)



MLBase 11

metric_types_helper(
FUN = FUN,
y = ground_truth,
perf_args = perf_args

)

MLBase Basic R6 Class for the mlexperiments package

Description

Basic R6 Class for the mlexperiments package

Basic R6 Class for the mlexperiments package

Public fields

results A list. This field is used to store the final results of the respective methods.

Methods

Public methods:

• MLBase$new()

• MLBase$clone()

Method new(): Create a new MLBase object.

Usage:
MLBase$new(seed, ncores = -1L)

Arguments:

seed An integer. Needs to be set for reproducibility purposes.
ncores An integer to specify the number of cores used for parallelization (default: -1L).

Returns: A new MLBase R6 object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MLBase$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.



12 MLCrossValidation

MLCrossValidation R6 Class to perform cross-validation experiments

Description

The MLCrossValidation class is used to construct a cross validation object and to perform a k-
fold cross validation for a specified machine learning algorithm using one distinct hyperparameter
setting.

Details

The MLCrossValidation class requires to provide a named list of predefined row indices for the
cross validation folds, e.g., created with the function splitTools::create_folds(). This list
also defines the k of the k-fold cross-validation. When wanting to perform a repeated k-fold cross
validations, just provide a list with all repeated fold definitions, e.g., when specifying the argument
m_rep of splitTools::create_folds().

Super classes

mlexperiments::MLBase -> mlexperiments::MLExperimentsBase -> MLCrossValidation

Public fields

fold_list A named list of predefined row indices for the cross validation folds, e.g., created with
the function splitTools::create_folds().

return_models A logical. If the fitted models should be returned with the results (default: FALSE).

performance_metric Either a named list with metric functions, a single metric function, or a
character vector with metric names from the mlr3measures package. The provided functions
must take two named arguments: ground_truth and predictions. For metrics from the
mlr3measures package, the wrapper function metric() exists in order to prepare them for
use with the mlexperiments package.

performance_metric_args A list. Further arguments required to compute the performance met-
ric.

predict_args A list. Further arguments required to compute the predictions.

Methods

Public methods:

• MLCrossValidation$new()

• MLCrossValidation$execute()

• MLCrossValidation$clone()

Method new(): Create a new MLCrossValidation object.

Usage:



MLCrossValidation 13

MLCrossValidation$new(
learner,
fold_list,
seed,
ncores = -1L,
return_models = FALSE

)

Arguments:
learner An initialized learner object that inherits from class "MLLearnerBase".
fold_list A named list of predefined row indices for the cross validation folds, e.g., created

with the function splitTools::create_folds().
seed An integer. Needs to be set for reproducibility purposes.
ncores An integer to specify the number of cores used for parallelization (default: -1L).
return_models A logical. If the fitted models should be returned with the results (default:

FALSE).

Details: The MLCrossValidation class requires to provide a named list of predefined row in-
dices for the cross validation folds, e.g., created with the function splitTools::create_folds().
This list also defines the k of the k-fold cross-validation. When wanting to perform a repeated
k-fold cross validations, just provide a list with all repeated fold definitions, e.g., when specifing
the argument m_rep of splitTools::create_folds().

Examples:
dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE

),
list(target = sample(0:1, 500, TRUE))

))
fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)
cv <- MLCrossValidation$new(
learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123,
ncores = 2

)

Method execute(): Execute the cross validation.

Usage:



14 MLCrossValidation

MLCrossValidation$execute()

Details: All results of the cross validation are saved in the field $results of the MLCrossValidation
class. After successful execution of the cross validation, $results contains a list with the items:

• "fold" A list of folds containing the following items for each cross validation fold:
– "fold_ids" A vector with the utilized in-sample row indices.
– "ground_truth" A vector with the ground truth.
– "predictions" A vector with the predictions.
– "learner.args" A list with the arguments provided to the learner.
– "model" If return_models = TRUE, the fitted model.

• "summary" A data.table with the summarized results (same as the returned value of the
execute method).

• "performance" A list with the value of the performance metric calculated for each of the
cross validation folds.

Returns: The function returns a data.table with the results of the cross validation. More results
are accessible from the field $results of the MLCrossValidation class.

Examples:

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE

),
list(target = sample(0:1, 500, TRUE))

))
fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)
cv <- MLCrossValidation$new(
learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123,
ncores = 2

)
cv$learner_args <- list(
k = 20,
l = 0,
test = parse(text = "fold_test$x")

)
cv$predict_args <- list(type = "response")
cv$performance_metric <- metric("bacc")



MLCrossValidation 15

# set data
cv$set_data(
x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv$execute()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MLCrossValidation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

splitTools::create_folds()

splitTools::create_folds(), mlr3measures::measures, metric()

Examples

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)

cv <- MLCrossValidation$new(
learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123,
ncores = 2

)

# learner parameters
cv$learner_args <- list(

k = 20,
l = 0,



16 MLCrossValidation

test = parse(text = "fold_test$x")
)

# performance parameters
cv$predict_args <- list(type = "response")
cv$performance_metric <- metric("bacc")

# set data
cv$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv$execute()

## ------------------------------------------------
## Method `MLCrossValidation$new`
## ------------------------------------------------

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))
fold_list <- splitTools::create_folds(

y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)
cv <- MLCrossValidation$new(

learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123,
ncores = 2

)

## ------------------------------------------------
## Method `MLCrossValidation$execute`
## ------------------------------------------------

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},



MLExperimentsBase 17

USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))
fold_list <- splitTools::create_folds(

y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)
cv <- MLCrossValidation$new(

learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123,
ncores = 2

)
cv$learner_args <- list(

k = 20,
l = 0,
test = parse(text = "fold_test$x")

)
cv$predict_args <- list(type = "response")
cv$performance_metric <- metric("bacc")

# set data
cv$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv$execute()

MLExperimentsBase R6 Class on which the experiment classes are built on

Description

R6 Class on which the experiment classes are built on

R6 Class on which the experiment classes are built on

Super class

mlexperiments::MLBase -> MLExperimentsBase

Public fields

learner_args A list containing the parameter settings of the learner algorithm.

learner An initialized learner object that inherits from class "MLLearnerBase".



18 MLLearnerBase

Methods

Public methods:

• MLExperimentsBase$new()

• MLExperimentsBase$set_data()

• MLExperimentsBase$clone()

Method new(): Create a new MLExperimentsBase object.

Usage:
MLExperimentsBase$new(learner, seed, ncores = -1L)

Arguments:

learner An initialized learner object that inherits from class "MLLearnerBase".
seed An integer. Needs to be set for reproducibility purposes.
ncores An integer to specify the number of cores used for parallelization (default: -1L).

Returns: A new MLExperimentsBase R6 object.

Method set_data(): Set the data for the experiment.

Usage:
MLExperimentsBase$set_data(x, y, cat_vars = NULL)

Arguments:

x A matrix with the training data.
y A vector with the target.
cat_vars A character vector with the column names of variables that should be treated as

categorical features (if applicable / supported by the respective algorithm).

Returns: The function has no return value. It internally performs quality checks on the provided
data and, if passed, defines private fields of the R6 class.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MLExperimentsBase$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

MLLearnerBase R6 Class to construct learners

Description

The MLLearnerBase class is used to construct a learner object that can be used with the experiment
classes from the mlexperiments package. It is thought to serve as a class to inherit from when
creating new learners.



MLLearnerBase 19

Details

The learner class exposes 4 methods that can be defined:

• $fit A wrapper around the private function fun_fit, which needs to be defined for every
learner. The return value of this function is the fitted model.

• $predict A wrapper around the private function fun_predict, which needs to be defined for
every learner. The function must accept the three arguments model, newdata, and ncores and
is a wrapper around the respective learner’s predict-function. In order to allow the passing of
further arguments, the ellipsis (...) can be used. The function should return the prediction
results.

• $cross_validation A wrapper around the private function fun_optim_cv, which needs to
be defined when hyperparameters should be optimized with a grid search (required for use
with MLTuneParameters, and MLNestedCV).

• $bayesian_scoring_function A wrapper around the private function fun_bayesian_scoring_function,
which needs to be defined when hyperparameters should be optimized with a Bayesian process
(required for use with MLTuneParameters, and MLNestedCV).

For further details please refer to the package’s vignette.

Public fields

cluster_export A character vector defining the (internal) functions that need to be exported to
the parallelization cluster. This is only required when performing a Bayesian hyperparameter
optimization. See also parallel::clusterExport().

metric_optimization_higher_better A logical. Defines the direction of the optimization met-
ric used throughout the hyperparameter optimization. This field is set automatically during
the initialization of the MLLearnerBase object. Its purpose is to make it accessible by the
evaluation functions from MLTuneParameters.

environment The environment in which to search for the functions of the learner (default: -1L).

seed Seed for reproducible results.

Methods

Public methods:

• MLLearnerBase$new()

• MLLearnerBase$cross_validation()

• MLLearnerBase$fit()

• MLLearnerBase$predict()

• MLLearnerBase$bayesian_scoring_function()

• MLLearnerBase$clone()

Method new(): Create a new MLLearnerBase object.

Usage:
MLLearnerBase$new(metric_optimization_higher_better)

Arguments:



20 MLLearnerBase

metric_optimization_higher_better A logical. Defines the direction of the optimization
metric used throughout the hyperparameter optimization.

Returns: A new MLLearnerBase R6 object.

Examples:
MLLearnerBase$new(metric_optimization_higher_better = FALSE)

Method cross_validation(): Perform a cross-validation with an MLLearnerBase.

Usage:
MLLearnerBase$cross_validation(...)

Arguments:
... Arguments to be passed to the learner’s cross-validation function.

Details: A wrapper around the private function fun_optim_cv, which needs to be defined when
hyperparameters should be optimized with a grid search (required for use with MLTuneParam-
eters, and MLNestedCV. However, the function should be never executed directly but by the re-
spective experiment wrappers MLTuneParameters, and MLNestedCV. For further details please
refer to the package’s vignette.

Returns: The fitted model.

Examples:
learner <- MLLearnerBase$new(metric_optimization_higher_better = FALSE)
\dontrun{
# This example cannot be run without further adaptions.
# The method `$cross_validation()` needs to be overwritten when
# inheriting from this class.
learner$cross_validation()
}

Method fit(): Fit a MLLearnerBase object.

Usage:
MLLearnerBase$fit(...)

Arguments:
... Arguments to be passed to the learner’s fitting function.

Details: A wrapper around the private function fun_fit, which needs to be defined for every
learner. The return value of this function is the fitted model. However, the function should
be never executed directly but by the respective experiment wrappers MLTuneParameters, ML-
CrossValidation, and MLNestedCV. For further details please refer to the package’s vignette.

Returns: The fitted model.

Examples:
learner <- MLLearnerBase$new(metric_optimization_higher_better = FALSE)
\dontrun{
# This example cannot be run without further adaptions.
# The method `$fit()` needs to be overwritten when



MLLearnerBase 21

# inheriting from this class.
learner$fit()
}

Method predict(): Make predictions from a fitted MLLearnerBase object.

Usage:
MLLearnerBase$predict(model, newdata, ncores = -1L, ...)

Arguments:

model A fitted model of the learner (as returned by MLLearnerBase$fit()).
newdata The new data for which predictions should be made using the model.
ncores An integer to specify the number of cores used for parallelization (default: -1L).
... Further arguments to be passed to the learner’s predict function.

Details: A wrapper around the private function fun_predict, which needs to be defined for
every learner. The function must accept the three arguments model, newdata, and ncores and
is a wrapper around the respective learner’s predict-function. In order to allow the passing of
further arguments, the ellipsis (...) can be used. The function should return the prediction
results. However, the function should be never executed directly but by the respective experi-
ment wrappers MLTuneParameters, MLCrossValidation, and MLNestedCV. For further details
please refer to the package’s vignette.

Returns: The predictions for newdata.

Examples:

learner <- MLLearnerBase$new(metric_optimization_higher_better = FALSE)
\dontrun{
# This example cannot be run without further adaptions.
# The method `$predict()` needs to be overwritten when
# inheriting from this class.
learner$fit()
learner$predict()
}

Method bayesian_scoring_function(): Perform a Bayesian hyperparameter optimization
with an MLLearnerBase.

Usage:
MLLearnerBase$bayesian_scoring_function(...)

Arguments:

... Arguments to be passed to the learner’s Bayesian scoring function.

Details: A wrapper around the private function fun_bayesian_scoring_function, which
needs to be defined when hyperparameters should be optimized with a Bayesian process (re-
quired for use with MLTuneParameters, and MLNestedCV. However, the function should be
never executed directly but by the respective experiment wrappers MLTuneParameters, and
MLNestedCV. For further details please refer to the package’s vignette.

Returns: The results of the Bayesian scoring.



22 MLLearnerBase

Examples:

learner <- MLLearnerBase$new(metric_optimization_higher_better = FALSE)
\dontrun{
# This example cannot be run without further adaptions.
# The method `$bayesian_scoring_function()` needs to be overwritten when
# inheriting from this class.
learner$bayesian_scoring_function()
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
MLLearnerBase$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

MLTuneParameters, MLCrossValidation, and MLNestedCV

MLTuneParameters, MLCrossValidation, and MLNestedCV

MLTuneParameters, MLCrossValidation, and MLNestedCV

ParBayesianOptimization::bayesOpt(), MLTuneParameters, and MLNestedCV

Examples

MLLearnerBase$new(metric_optimization_higher_better = FALSE)

## ------------------------------------------------
## Method `MLLearnerBase$new`
## ------------------------------------------------

MLLearnerBase$new(metric_optimization_higher_better = FALSE)

## ------------------------------------------------
## Method `MLLearnerBase$cross_validation`
## ------------------------------------------------

learner <- MLLearnerBase$new(metric_optimization_higher_better = FALSE)
## Not run:
# This example cannot be run without further adaptions.
# The method `$cross_validation()` needs to be overwritten when
# inheriting from this class.
learner$cross_validation()

## End(Not run)



MLNestedCV 23

## ------------------------------------------------
## Method `MLLearnerBase$fit`
## ------------------------------------------------

learner <- MLLearnerBase$new(metric_optimization_higher_better = FALSE)
## Not run:
# This example cannot be run without further adaptions.
# The method `$fit()` needs to be overwritten when
# inheriting from this class.
learner$fit()

## End(Not run)

## ------------------------------------------------
## Method `MLLearnerBase$predict`
## ------------------------------------------------

learner <- MLLearnerBase$new(metric_optimization_higher_better = FALSE)
## Not run:
# This example cannot be run without further adaptions.
# The method `$predict()` needs to be overwritten when
# inheriting from this class.
learner$fit()
learner$predict()

## End(Not run)

## ------------------------------------------------
## Method `MLLearnerBase$bayesian_scoring_function`
## ------------------------------------------------

learner <- MLLearnerBase$new(metric_optimization_higher_better = FALSE)
## Not run:
# This example cannot be run without further adaptions.
# The method `$bayesian_scoring_function()` needs to be overwritten when
# inheriting from this class.
learner$bayesian_scoring_function()

## End(Not run)

MLNestedCV R6 Class to perform nested cross-validation experiments

Description

The MLNestedCV class is used to construct a nested cross validation object and to perform a nested
cross validation for a specified machine learning algorithm by performing a hyperparameter opti-



24 MLNestedCV

mization with the in-sample observations of each of the k outer folds and validate them directly on
the out-of-sample observations of the respective fold.

Details

The MLNestedCV class requires to provide a named list of predefined row indices for the outer
cross validation folds, e.g., created with the function splitTools::create_folds(). This list
also defines the k of the k-fold cross-validation. Furthermore, a strategy needs to be chosen ("grid"
or "bayesian") for the hyperparameter optimization as well as the parameter k_tuning to define the
number of inner cross validation folds.

Super classes

mlexperiments::MLBase -> mlexperiments::MLExperimentsBase -> mlexperiments::MLCrossValidation
-> MLNestedCV

Public fields

strategy A character. The strategy to optimize the hyperparameters (either "grid" or "bayesian").

parameter_bounds A named list of tuples to define the parameter bounds of the Bayesian hyperpa-
rameter optimization. For further details please see the documentation of the ParBayesianOptimization
package.

parameter_grid A matrix with named columns in which each column represents a parameter that
should be optimized and each row represents a specific hyperparameter setting that should be
tested throughout the procedure. For strategy = "grid", each row of the parameter_grid is
considered as a setting that is evaluated. For strategy = "bayesian", the parameter_grid is
passed further on to the initGrid argument of the function ParBayesianOptimization::bayesOpt()
in order to initialize the Bayesian process. The maximum rows considered for initializing the
Bayesian process can be specified with the R option option("mlexperiments.bayesian.max_init"),
which is set to 50L by default.

optim_args A named list of tuples to define the parameter bounds of the Bayesian hyperparameter
optimization. For further details please see the documentation of the ParBayesianOptimization
package.

split_type A character. The splitting strategy to construct the k cross-validation folds. This
parameter is passed further on to the function splitTools::create_folds() and defaults to
"stratified".

split_vector A vector If another criteria than the provided y should be considered for generating
the cross-validation folds, it can be defined here. It is important, that a vector of the same
length as x is provided here.

k_tuning An integer to define the number of cross-validation folds used to tune the hyperparame-
ters.

Methods

Public methods:
• MLNestedCV$new()

• MLNestedCV$execute()



MLNestedCV 25

• MLNestedCV$clone()

Method new(): Create a new MLNestedCV object.

Usage:
MLNestedCV$new(
learner,
strategy = c("grid", "bayesian"),
k_tuning,
fold_list,
seed,
ncores = -1L,
return_models = FALSE

)

Arguments:
learner An initialized learner object that inherits from class "MLLearnerBase".
strategy A character. The strategy to optimize the hyperparameters (either "grid" or "bayesian").
k_tuning An integer to define the number of cross-validation folds used to tune the hyperpa-

rameters.
fold_list A named list of predefined row indices for the cross validation folds, e.g., created

with the function splitTools::create_folds().
seed An integer. Needs to be set for reproducibility purposes.
ncores An integer to specify the number of cores used for parallelization (default: -1L).
return_models A logical. If the fitted models should be returned with the results (default:

FALSE).

Details: The MLNestedCV class requires to provide a named list of predefined row indices for
the outer cross validation folds, e.g., created with the function splitTools::create_folds().
This list also defines the k of the k-fold cross-validation. Furthermore, a strategy needs to
be chosen ("grid" or "bayesian") for the hyperparameter optimization as well as the parameter
k_tuning to define the number of inner cross validation folds.

Examples:
dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE

),
list(target = sample(0:1, 500, TRUE))

))

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123



26 MLNestedCV

)

cv <- MLNestedCV$new(
learner = LearnerKnn$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
seed = 123,
ncores = 2

)

Method execute(): Execute the nested cross validation.

Usage:
MLNestedCV$execute()

Details: All results of the cross validation are saved in the field $results of the MLNestedCV
class. After successful execution of the nested cross validation, $results contains a list with
the items:

• "results.optimization" A list with the results of the hyperparameter optimization.
• "fold" A list of folds containing the following items for each cross validation fold:

– "fold_ids" A vector with the utilized in-sample row indices.
– "ground_truth" A vector with the ground truth.
– "predictions" A vector with the predictions.
– "learner.args" A list with the arguments provided to the learner.
– "model" If return_models = TRUE, the fitted model.

• "summary" A data.table with the summarized results (same as the returned value of the
execute method).

• "performance" A list with the value of the performance metric calculated for each of the
cross validation folds.

Returns: The function returns a data.table with the results of the nested cross validation. More
results are accessible from the field $results of the MLNestedCV class.

Examples:
dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE

),
list(target = sample(0:1, 500, TRUE))

))

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,



MLNestedCV 27

type = "stratified",
seed = 123

)

cv <- MLNestedCV$new(
learner = LearnerKnn$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
seed = 123,
ncores = 2

)

# learner args (not optimized)
cv$learner_args <- list(
l = 0,
test = parse(text = "fold_test$x")

)

# parameters for hyperparameter tuning
cv$parameter_grid <- expand.grid(
k = seq(4, 68, 8)

)
cv$split_type <- "stratified"

# performance parameters
cv$predict_args <- list(type = "response")
cv$performance_metric <- metric("bacc")

# set data
cv$set_data(
x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv$execute()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MLNestedCV$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

splitTools::create_folds()

splitTools::create_folds()



28 MLNestedCV

Examples

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)

cv <- MLNestedCV$new(
learner = LearnerKnn$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
seed = 123,
ncores = 2

)

# learner args (not optimized)
cv$learner_args <- list(

l = 0,
test = parse(text = "fold_test$x")

)

# parameters for hyperparameter tuning
cv$parameter_grid <- expand.grid(

k = seq(4, 16, 8)
)
cv$split_type <- "stratified"

# performance parameters
cv$predict_args <- list(type = "response")
cv$performance_metric <- metric("bacc")

# set data
cv$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv$execute()



MLNestedCV 29

## ------------------------------------------------
## Method `MLNestedCV$new`
## ------------------------------------------------

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {

rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)

cv <- MLNestedCV$new(
learner = LearnerKnn$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
seed = 123,
ncores = 2

)

## ------------------------------------------------
## Method `MLNestedCV$execute`
## ------------------------------------------------

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123



30 MLTuneParameters

)

cv <- MLNestedCV$new(
learner = LearnerKnn$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
seed = 123,
ncores = 2

)

# learner args (not optimized)
cv$learner_args <- list(

l = 0,
test = parse(text = "fold_test$x")

)

# parameters for hyperparameter tuning
cv$parameter_grid <- expand.grid(

k = seq(4, 68, 8)
)
cv$split_type <- "stratified"

# performance parameters
cv$predict_args <- list(type = "response")
cv$performance_metric <- metric("bacc")

# set data
cv$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv$execute()

MLTuneParameters R6 Class to perform hyperparameter tuning experiments

Description

The MLTuneParameters class is used to construct a parameter tuner object and to perform the tuning
of a set of hyperparameters for a specified machine learning algorithm using either a grid search or
a Bayesian optimization.

Details

The hyperparameter tuning can be performed with a grid search or a Bayesian optimization. In both
cases, each hyperparameter setting is evaluated in a k-fold cross-validation on the dataset specified.



MLTuneParameters 31

Super classes

mlexperiments::MLBase -> mlexperiments::MLExperimentsBase -> MLTuneParameters

Public fields

parameter_bounds A named list of tuples to define the parameter bounds of the Bayesian hyperpa-
rameter optimization. For further details please see the documentation of the ParBayesianOptimization
package.

parameter_grid A matrix with named columns in which each column represents a parameter that
should be optimized and each row represents a specific hyperparameter setting that should be
tested throughout the procedure. For strategy = "grid", each row of the parameter_grid is
considered as a setting that is evaluated. For strategy = "bayesian", the parameter_grid is
passed further on to the initGrid argument of the function ParBayesianOptimization::bayesOpt()
in order to initialize the Bayesian process. The maximum rows considered for initializing the
Bayesian process can be specified with the R option option("mlexperiments.bayesian.max_init"),
which is set to 50L by default.

optim_args A named list of tuples to define the parameter bounds of the Bayesian hyperparameter
optimization. For further details please see the documentation of the ParBayesianOptimization
package.

split_type A character. The splitting strategy to construct the k cross-validation folds. This
parameter is passed further on to the function splitTools::create_folds() and defaults to
"stratified".

split_vector A vector If another criteria than the provided y should be considered for generating
the cross-validation folds, it can be defined here. It is important, that a vector of the same
length as x is provided here.

Methods

Public methods:
• MLTuneParameters$new()

• MLTuneParameters$execute()

• MLTuneParameters$clone()

Method new(): Create a new MLTuneParameters object.

Usage:
MLTuneParameters$new(
learner,
seed,
strategy = c("grid", "bayesian"),
ncores = -1L

)

Arguments:

learner An initialized learner object that inherits from class "MLLearnerBase".
seed An integer. Needs to be set for reproducibility purposes.
strategy A character. The strategy to optimize the hyperparameters (either "grid" or "bayesian").



32 MLTuneParameters

ncores An integer to specify the number of cores used for parallelization (default: -1L).

Details: For strategy = "bayesian", the number of starting iterations can be set using the R
option "mlexperiments.bayesian.max_init", which defaults to 50L. This option reduces the
provided initialization grid to contain at most the specified number of rows. This initialization
grid is then further passed on to the initGrid argument of ParBayesianOptimization::bayesOpt.

Returns: A new MLTuneParameters R6 object.

Examples:

MLTuneParameters$new(
learner = LearnerKnn$new(),
seed = 123,
strategy = "grid",
ncores = 2

)

Method execute(): Execute the hyperparameter tuning.

Usage:
MLTuneParameters$execute(k)

Arguments:

k An integer to define the number of cross-validation folds used to tune the hyperparameters.

Details: All results of the hyperparameter tuning are saved in the field $results of the
MLTuneParameters class. After successful execution of the parameter tuning, $results con-
tains a list with the items
"summary" A data.table with the summarized results (same as the returned value of the execute

method).
"best.setting" The best setting (according to the learner’s parameter metric_optimization_higher_better)

identified during the hyperparameter tuning.
"bayesOpt" The returned value of ParBayesianOptimization::bayesOpt() (only for strategy

= "bayesian").

Returns: A data.table with the results of the hyperparameter optimization. The optimized
metric, i.e. the cross-validated evaluation metric is given in the column metric_optim_mean.
More results are accessible from the field $results of the MLTuneParameters class.

Examples:

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE

),
list(target = sample(0:1, 500, TRUE))

))
tuner <- MLTuneParameters$new(



MLTuneParameters 33

learner = LearnerKnn$new(),
seed = 123,
strategy = "grid",
ncores = 2

)
tuner$parameter_bounds <- list(k = c(2L, 80L))
tuner$parameter_grid <- expand.grid(
k = seq(4, 68, 8),
l = 0,
test = parse(text = "fold_test$x")

)
tuner$split_type <- "stratified"
tuner$optim_args <- list(
iters.n = 4,
kappa = 3.5,
acq = "ucb"

)

# set data
tuner$set_data(
x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

tuner$execute(k = 3)

Method clone(): The objects of this class are cloneable with this method.

Usage:
MLTuneParameters$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ParBayesianOptimization::bayesOpt(), splitTools::create_folds()

Examples

knn_tuner <- MLTuneParameters$new(
learner = LearnerKnn$new(),
seed = 123,
strategy = "grid",
ncores = 2

)

## ------------------------------------------------
## Method `MLTuneParameters$new`



34 MLTuneParameters

## ------------------------------------------------

MLTuneParameters$new(
learner = LearnerKnn$new(),
seed = 123,
strategy = "grid",
ncores = 2

)

## ------------------------------------------------
## Method `MLTuneParameters$execute`
## ------------------------------------------------

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))
tuner <- MLTuneParameters$new(

learner = LearnerKnn$new(),
seed = 123,
strategy = "grid",
ncores = 2

)
tuner$parameter_bounds <- list(k = c(2L, 80L))
tuner$parameter_grid <- expand.grid(

k = seq(4, 68, 8),
l = 0,
test = parse(text = "fold_test$x")

)
tuner$split_type <- "stratified"
tuner$optim_args <- list(

iters.n = 4,
kappa = 3.5,
acq = "ucb"

)

# set data
tuner$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

tuner$execute(k = 3)



performance 35

performance performance

Description

Calculate performance measures from the predictions results.

Usage

performance(object, prediction_results, y_ground_truth, type = NULL, ...)

Arguments

object An R6 object of class "MLCrossValidation" for which the performance should
be computed.

prediction_results

An object of class "mlexPredictions" (the output of the function predictions()).

y_ground_truth A vector with the ground truth of the predicted data.

type A character to select a pre-defined set of metrics for "binary" and "regression"
tasks. If not specified (default: NULL), the metrics that were specified during
fitting the object are used.

... A list. Further arguments required to compute the performance metrics.

Details

The performance metric has to be specified in the object that is used to carry out the experiment,
i.e., MLCrossValidation or MLNestedCV. Please note that the option return_models = TRUE must
be set in the experiment class in order to be able to compute the predictions, which are required to
conduct the calculation of the performance.

Value

The function returns a data.table with the computed performance metric of each fold.

Examples

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))



36 performance

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)

glm_optimization <- mlexperiments::MLCrossValidation$new(
learner = LearnerGlm$new(),
fold_list = fold_list,
seed = 123

)

glm_optimization$learner_args <- list(family = binomial(link = "logit"))
glm_optimization$predict_args <- list(type = "response")
glm_optimization$performance_metric_args <- list(positive = "1")
glm_optimization$performance_metric <- list(

auc = metric("auc"), sensitivity = metric("sensitivity"),
specificity = metric("specificity")

)
glm_optimization$return_models <- TRUE

# set data
glm_optimization$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv_results <- glm_optimization$execute()

# predictions
preds <- mlexperiments::predictions(

object = glm_optimization,
newdata = data.matrix(dataset[, -7]),
na.rm = FALSE,
ncores = 2L,
type = "response"

)

# performance
mlexperiments::performance(

object = glm_optimization,
prediction_results = preds,
y_ground_truth = dataset[, 7],
positive = "1"

)

# performance - binary
mlexperiments::performance(

object = glm_optimization,
prediction_results = preds,
y_ground_truth = dataset[, 7],
type = "binary",



predictions 37

positive = "1"
)

predictions predictions

Description

Apply an R6 object of class "MLCrossValidation" to new data to compute predictions.

Usage

predictions(object, newdata, na.rm = FALSE, ncores = -1L, ...)

Arguments

object An R6 object of class "MLCrossValidation" for which the predictions should
be computed.

newdata The new data for which predictions should be made using the model.

na.rm A logical. If missings should be removed before computing the mean and stan-
dard deviation of the performance across different folds for each observation in
newdata.

ncores An integer to specify the number of cores used for parallelization (default: -1L).

... A list. Further arguments required to compute the predictions.

Value

The function returns a data.table of class "mlexPredictions"with one row for each observation
in newdata and the columns containing the predictions for each fold, along with the mean and
standard deviation across all folds.

Examples

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,



38 validate_fold_equality

type = "stratified",
seed = 123

)

glm_optimization <- mlexperiments::MLCrossValidation$new(
learner = LearnerGlm$new(),
fold_list = fold_list,
seed = 123

)

glm_optimization$learner_args <- list(family = binomial(link = "logit"))
glm_optimization$predict_args <- list(type = "response")
glm_optimization$performance_metric_args <- list(positive = "1")
glm_optimization$performance_metric <- metric("auc")
glm_optimization$return_models <- TRUE

# set data
glm_optimization$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv_results <- glm_optimization$execute()

# predictions
preds <- mlexperiments::predictions(

object = glm_optimization,
newdata = data.matrix(dataset[, -7]),
na.rm = FALSE,
ncores = 2L,
type = "response"

)
head(preds)

validate_fold_equality

validate_fold_equality

Description

Validate that the same folds were used in two or more independent experiments.

Usage

validate_fold_equality(experiments)

Arguments

experiments A list of experiments.



validate_fold_equality 39

Details

This function can be applied to all implemented experiments, i.e., MLTuneParameters, MLCross-
Validation, and MLNestedCV. However, it is required that the list experiments contains only ex-
periments of the same class.

Value

Writes messages to the console on the result of the comparison.

Examples

dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))

))

fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123

)

# GLM
glm_optimization <- mlexperiments::MLCrossValidation$new(

learner = LearnerGlm$new(),
fold_list = fold_list,
seed = 123

)

glm_optimization$learner_args <- list(family = binomial(link = "logit"))
glm_optimization$predict_args <- list(type = "response")
glm_optimization$performance_metric_args <- list(positive = "1")
glm_optimization$performance_metric <- metric("auc")
glm_optimization$return_models <- TRUE

# set data
glm_optimization$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

glm_cv_results <- glm_optimization$execute()

# KNN
knn_optimization <- mlexperiments::MLCrossValidation$new(



40 validate_fold_equality

learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123

)
knn_optimization$learner_args <- list(

k = 3,
l = 0,
test = parse(text = "fold_test$x")

)
knn_optimization$predict_args <- list(type = "prob")
knn_optimization$performance_metric_args <- list(positive = "1")
knn_optimization$performance_metric <- metric("auc")

# set data
knn_optimization$set_data(

x = data.matrix(dataset[, -7]),
y = dataset[, 7]

)

cv_results_knn <- knn_optimization$execute()

# validate folds
validate_fold_equality(

list(glm_optimization, knn_optimization)
)



Index

class::knn(), 4, 5

handle_cat_vars, 2

kdry::dtr_matrix2df(), 2, 3

LearnerGlm, 3
LearnerKnn, 4
LearnerLm, 6
LearnerRpart, 7

metric, 9
metric(), 10, 12, 15
metric_types_helper, 10
MLBase, 11
MLCrossValidation, 3–8, 12, 20–22, 35, 39
mlexperiments::MLBase, 12, 17, 24, 31
mlexperiments::MLCrossValidation, 24
mlexperiments::MLExperimentsBase, 12,

24, 31
mlexperiments::MLLearnerBase, 3, 5, 6, 8
MLExperimentsBase, 17
MLLearnerBase, 18
MLNestedCV, 4, 5, 7, 8, 19–22, 23, 35, 39
mlr3measures::ce(), 5, 8, 9
mlr3measures::measures, 15
mlr3measures::mse(), 8, 9
MLTuneParameters, 4, 5, 7, 8, 19–22, 30, 39

parallel::clusterExport(), 19
ParBayesianOptimization::bayesOpt, 32
ParBayesianOptimization::bayesOpt(),

22, 24, 31–33
performance, 35
predictions, 37
predictions(), 35

rpart::rpart(), 7–9
rpart::rpart.control(), 8, 9

splitTools::create_folds(), 12, 13, 15,
24, 25, 27, 31, 33

stats::glm(), 3, 4
stats::lm(), 6, 7

validate_fold_equality, 38

41


	handle_cat_vars
	LearnerGlm
	LearnerKnn
	LearnerLm
	LearnerRpart
	metric
	metric_types_helper
	MLBase
	MLCrossValidation
	MLExperimentsBase
	MLLearnerBase
	MLNestedCV
	MLTuneParameters
	performance
	predictions
	validate_fold_equality
	Index

