## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(miceafter) library(mice) library(magrittr) library(dplyr) ## ----------------------------------------------------------------------------- library(mice) library(miceafter) imp <- mice(lbp_orig, m=5, maxit=5, printFlag = FALSE) dat_imp <- mids2milist(imp) ra <- with(dat_imp, expr = glm(Chronic ~ factor(Carrying) + Gender + Smoking + Function + JobControl + JobDemands + SocialSupport, family = binomial)) poolm <- pool_glm(ra, method="D1") poolm$pmodel poolm$pmultiparm ## ----------------------------------------------------------------------------- library(mice) library(miceafter) imp <- mice(lbp_orig, m=5, maxit=5, printFlag = FALSE) dat_imp <- mids2milist(imp) ra <- with(dat_imp, expr = glm(Pain ~ factor(Carrying) + Gender + Smoking + Function + JobControl + JobDemands + SocialSupport)) poolm <- pool_glm(ra, method="D1") poolm$pmodel poolm$pmultiparm ## ----------------------------------------------------------------------------- library(mice) library(miceafter) imp <- mice(lbp_orig, m=5, maxit=5, printFlag = FALSE) dat_imp <- mids2milist(imp) ra <- with(dat_imp, expr = glm(Chronic ~ factor(Carrying) + Gender + Smoking + Function + JobControl + JobDemands + SocialSupport, family = binomial)) poolm <- pool_glm(ra, method="D1", p.crit = 0.15, direction = "BW") poolm$pmodel poolm$pmultiparm ## ----------------------------------------------------------------------------- library(mice) library(miceafter) imp <- mice(lbp_orig, m=5, maxit=5, printFlag = FALSE) dat_imp <- mids2milist(imp) ra <- with(dat_imp, expr = glm(Pain ~ factor(Carrying) + Gender + Smoking + Function + JobControl + JobDemands + SocialSupport)) poolm <- pool_glm(ra, method="D1", p.crit = 0.15, direction = "BW") poolm$pmodel poolm$pmultiparm