| Type: | Package | 
| Title: | Multi-Collinearity Visualization | 
| Version: | 1.0.8 | 
| Description: | Visualize the relationship between linear regression variables and causes of multi-collinearity. Implements the method in Lin et. al. (2020) <doi:10.1080/10618600.2020.1779729>. | 
| Encoding: | UTF-8 | 
| Imports: | assertthat, igraph, ggplot2, purrr, magrittr, reshape2, shiny, dplyr, psych, rlang | 
| RoxygenNote: | 7.1.1.9001 | 
| License: | GPL-3 | 
| Suggests: | testthat (≥ 2.1.0), covr, knitr, rmarkdown | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2021-07-30 02:56:36 UTC; kevinwang | 
| Author: | Kevin Wang [aut, cre], Chen Lin [aut], Samuel Mueller [aut] | 
| Maintainer: | Kevin Wang <kevin.wang09@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2021-07-30 08:20:05 UTC | 
Multi-collinearity Visualization plots
Description
Multi-collinearity Visualization plots
Multi-collinearity Visualization plots
Multi-collinearity Visualization plots
Usage
alt_mcvis(mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC))
ggplot_mcvis(
  mcvis_result,
  eig_max = 1L,
  var_max = ncol(mcvis_result$MC),
  label_dodge = FALSE
)
igraph_mcvis(mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC))
## S3 method for class 'mcvis'
plot(
  x,
  type = c("ggplot", "igraph", "alt"),
  eig_max = 1L,
  var_max = ncol(x$MC),
  label_dodge = FALSE,
  ...
)
Arguments
mcvis_result | 
 Output of the mcvis function  | 
eig_max | 
 The maximum number of eigenvalues to be displayed on the plot.  | 
var_max | 
 The maximum number of variables to be displayed on the plot.  | 
label_dodge | 
 If variable names are too long, it might be helpful to dodge the labelling. Default to FALSE.  | 
x | 
 Output of the mcvis function  | 
type | 
 Plotting mcvis result using "igraph" or "ggplot". Default to "ggplot".  | 
... | 
 additional arguments (currently unused)  | 
Value
A mcvis visualization plot
Author(s)
Chen Lin, Kevin Wang, Samuel Mueller
Examples
set.seed(1)
p = 10
n = 100
X = matrix(rnorm(n*p), ncol = p)
X[,1] = X[,2] + rnorm(n, 0, 0.1)
mcvis_result = mcvis(X)
plot(mcvis_result)
plot(mcvis_result, type = "igraph")
plot(mcvis_result, type = "alt")
Multi-collinearity Visualization
Description
Multi-collinearity Visualization
Usage
mcvis(
  X,
  sampling_method = "bootstrap",
  standardise_method = "studentise",
  times = 1000L,
  k = 10L
)
Arguments
X | 
 A matrix of regressors (without intercept terms).  | 
sampling_method | 
 The resampling method for the data. Currently supports 'bootstrap' or 'cv' (cross-validation).  | 
standardise_method | 
 The standardisation method for the data. Currently supports 'euclidean' (default, centered by mean and divide by Euclidiean length) and 'studentise' (centred by mean and divide by standard deviation)  | 
times | 
 Number of resampling runs we perform. Default is set to 1000.  | 
k | 
 Number of partitions in averaging the MC-index. Default is set to 10.  | 
Value
A list of outputs:
t_square:The t^2 statistics for the regression between the VIFs and the tau's.
MC:The MC-indices
col_names:Column names (export for plotting purposes)
Author(s)
Chen Lin, Kevin Wang, Samuel Mueller
Examples
set.seed(1)
p = 10
n = 100
X = matrix(rnorm(n*p), ncol = p)
X[,1] = X[,2] + rnorm(n, 0, 0.1)
mcvis_result = mcvis(X = X)
mcvis_result
Shiny app for mcvis exploration
Description
Shiny app for mcvis exploration
Usage
shiny_mcvis(mcvis_result, X)
Arguments
mcvis_result | 
 Output of the mcvis function  | 
X | 
 The original X matrix  | 
Value
A shiny app allowing for interactive exploration of mcvis results
Author(s)
Chen Lin, Kevin Wang, Samuel Mueller
Examples
if(interactive()){
set.seed(1)
p = 10
n = 100
X = matrix(rnorm(n*p), ncol = p)
mcvis_result = mcvis(X)
shiny_mcvis(mcvis_result = mcvis_result, X = X)
}