Package 'lsasim'

January 22, 2025

Title Functions to Facilitate the Simulation of Large Scale Assessment Data

Version 2.1.6

BugReports https://github.com/tmatta/lsasim/issues

Description Provides functions to simulate data from large-scale educational assessments, including background questionnaire data and cognitive item responses that adhere to a multiple-matrix sampled design. The theoretical foundation can be found on Matta, T.H., Rutkowski, L., Rutkowski, D. et al. (2018) <doi:10.1186/s40536-018-0068-8>.

Imports mytnorm, cli, methods, polycor

Depends R (>= 3.6.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests testthat, knitr, formatR, rmarkdown, NAEPirtparams

VignetteBuilder knitr

Date 2025-01-22

Language en-US

NeedsCompilation no

Author Tyler Matta [aut],

Leslie Rutkowski [aut], David Rutkowski [aut], Yuan-Ling Linda Liaw [aut], Kondwani Kajera Mughogho [ctb], Waldir Leoncio [aut, cre], Sinan Yavuz [ctb], Paul Bailey [ctb]

Maintainer Waldir Leoncio <w.l.netto@medisin.uio.no>

Repository CRAN

Date/Publication 2025-01-22 09:50:03 UTC

Contents

.onAttach	3
anova.lsasimcluster	4
attribute_cluster_labels	5
beta_gen	5
block_design	7
booklet_design	8
booklet_sample	9
brr	10
calc_n_tilde	11
calc_replicate_weights	12
calc_se_rho	13
calc_var_between	13
calc_var_tot	14
calc_var_within	15
check_condition	15
check_ignored_parameters	16
check_n_N_class	16
check_valid_structure	17
 cluster_gen	17
cluster_gen_separate	20
cluster_gen_together	22
cluster_message	24
convert_vector_to_list	24
cor_gen	25
cov_gen	26
cov_yfz_gen	26
cov_yxw_gen	27
cov_yxz_gen	27
customize_summary	28
draw_cluster_structure	29
gen_cat_prop	29
gen_variable_n	30
gen_X_W_cluster	30
intraclass_cor	31
irt_gen	31
item_gen	32
jackknife	33
label_respondents	34
lambda_gen	34
lsasim	35
pisa2012_math_block	36
pisa2012_math_booklet	37
pisa2012_math_item	37
pisa2012_q_cormat	38
pisa2012_q_marginal	39
pluralize	40

.onAttach

print_anova	41
proportion_gen	42
pt_bis_conversion	42
questionnaire_gen	43
questionnaire_gen_family	
questionnaire_gen_polychoric	
ranges	
recalc_final_weights	
replicate_var	
response_gen	50
rzeropois	
sample_from	
sample_within_range	53
select	53
split_cat_prop	54
summary.lsasimcluster	54
summary_2	55
trim_sample	56
validate_questionnaire_gen	56
weight_responses	57
whitelist_message	58
	50
	59

Index

.onAttach

Prints welcome message on package load

Description

Prints welcome message with package version on load

Usage

.onAttach(libname, pkgname)

Arguments

libname	no idea, but will break devtools::document() if removed
pkgname	name of the package

Note

This function was adapted from the lavaan package, so credit for it goes to lavaan's creator, Yves Rosseel

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

3

anova.lsasimcluster Generate an ANOVA table for LSASIM clusters

Description

Prints Analysis of Variance table for cluster_gen output.

Usage

```
## S3 method for class 'lsasimcluster'
anova(object, print = TRUE, calc.se = TRUE, ...)
```

Arguments

object	list output of cluster_gen
print	if TRUE, output will be a list containing estimators; if FALSE (default), output are formatted tables of this information
calc.se	if TRUE, will try to calculate the standard error of the intraclass correlation
	additional objects of the same type (see help("anova") for details)

Value

Printed ANOVA table or list of parameters

Note

If the rhos for different levels are varied in scale, the generated rho will be less accurate.

References

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis. Sage Publications.

See Also

summary.lsasimcluster()

attribute_cluster_labels

Attribute Labels in Hierarchical Structure

Description

Attributes cluster and respondent labels in the context of cluster_gen.

Usage

```
attribute_cluster_labels(n)
```

Arguments

n numeric vector or list

Value

list containing appropriate labels for the clusters and their respondents

See Also

cluster_gen()

beta_gen

Generate regression coefficients

Description

Uses the output from questionnaire_gen to generate linear regression coefficients.

Usage

```
beta_gen(
   data,
   MC = FALSE,
   MC_replications = 100,
   CI = c(0.005, 0.995),
   output_cov = FALSE,
   rename_to_q = FALSE,
   verbose = TRUE
)
```

Arguments

data	<pre>output from the questionnaire_gen function with full_output = TRUE and theta = TRUE</pre>
MC	if TRUE, performs Monte Carlo simulation to estimate regression coefficients
MC_replications	
	for MC = TRUE, this represents the number of Monte Carlo subsamples calculated
CI	confidence interval for Monte Carlo simulations
output_cov	if TRUE, will also output the covariance matrix of YXW
rename_to_q	if TRUE, renames the variables from "x" and "w" to "q"
verbose	if FALSE, output messages will be suppressed (useful for simulations). Defaults to TRUE

Details

This function was primarily conceived as a sub-function of questionnaire_gen, when family = "gaussian", theta = TRUE, and full_output = TRUE. However, it can also be directly called by the user so they can perform further analysis.

This function primarily calculates the true regression coefficients (β) for the linear influence of the background questionnaire variables in θ . From a statistical perspective, this relationship can be modeled as follows, where $E(\theta | \mathbf{X}, \mathbf{W})$ is the expectation of θ given $\mathbf{X} = \{X_1, \dots, X_P\}$ and $\mathbf{W} = \{W_1, \dots, W_Q\}$:

$$E(\theta|\boldsymbol{X}, \boldsymbol{W}) = \beta_0 + \sum_{p=1}^{P} \beta_p X_p + \sum_{q=1}^{Q} \beta_{P+q} W_q$$

The regression coefficients are calculated using the true covariance matrix either provided by the user upon calling of questionnaire_gen or randomly generated by that function if none was provided. In any case, that matrix is not sample-dependent, though it should be similar to the one observed in the generated data (especially for larger samples). One convenient way to check for this similarity is by running the function with MC = TRUE, which will generate a numeric estimate; the MC_replications argument can be then increased to improve the estimates at a often-noticeable cost in processing time. If MC = FALSE, the MC_replications will have no effect on the results. In any case, each subsample will always have the same size as the original sample.

If the background questionnaire contains categorical variables (W), the original covariance matrix cannot be used because it contains the covariances involving Z N(0, 1), which is the random variable that gets categorized into W. The case where W is always binomial is trivial, but if at least one W has more than two categories, the structure of the covariance matrix changes drastically. In this case, this function recalculates all covariances between θ , X and each category of W using some auxiliary internal functions which rely on the appropriate distribution (either multivariate normal or truncated normal). To avoid multicollinearity, the first categories of each W are dropped before the regression coefficients are calculated.

Value

By default, this function will output a vector of the regression coefficients, including intercept. If MC == TRUE, the output will instead be a matrix comparing the true regression coefficients obtained

block_design

from the covariance matrix with expected values obtained from a Monte Carlo simulation, complete with 99\

If output_cov = TRUE, the output will be a list with two elements: the first one, betas, will contain the same output described in the previous paragraph. The second one, called $vcov_YXW$, contains the covariance matrix of the regression coefficients.

Note

The equation in this page is best formatted in PDF. We recommend issuing help("beta_gen", help_type = "PDF") in your terminal and opening the beta_gen.pdf file generated in your working directly. You may also set help_type = "HTML", but the equations will have degraded formatting.

See Also

questionnaire_gen()

Examples

block_design Assignment of test items to blocks

Description

block_design creates a length-2 list containing:

- · a matrix that identifies which items correspond to which blocks and
- a table of block descriptive statistics.

Usage

```
block_design(n_blocks = NULL, item_parameters, item_block_matrix = NULL)
```

Arguments

n_blocks an integer indicating how many blocks to create.

item_parameters

a data frame of item parameters.

item_block_matrix

a matrix of indicators to assign items to blocks.

Warning

The default item_block_matrix spirals the items across the n_blocks and requires n_blocks >= 3. If n_blocks < 3, item_block_matrix must be specified.

The columns of item_block_matrix represent each block while the rows represent the total number of items. item_block_matrix[1, 1] = 1 indicates that block 1 contains item 1 while item_block_matrix[1, 2] = 0 indicates that block 2 does not contain item 1.

Examples

booklet_design Assign	ment of item blocks to test booklets
-----------------------	--------------------------------------

Description

block_design creates a data frame that identifies which items corresponds to which booklets.

Usage

```
booklet_design(item_block_assignment, book_design = NULL)
```

Arguments

item_block_assignment		
	a matrix that identifies which items correspond to which block.	
book_design	a matrix of indicators to assign blocks to booklets.	

Details

If using booklet_design in tandem with block_design, item_block_assignment is the the first element of the returned list of block_design.

The columns of item_block_assignment represent each block while the rows represent the number of items in each block. Because the number of items per block can vary, the number of rows represents the block with the most items. The contents of item_block_assignment is the actual item numbers. The remainder of shorter blocks are filled with zeros.

The columns of book_design represent each book while the rows represent each block.

booklet_sample

The default book_design assigns two blocks to every booklet in a spiral design. The number of default booklets is equal to the number of blocks and must be >= 3. If ncol(item_block_assignment) < 3, book_design must be specified.

Examples

booklet_sample Assignment of test booklets to test takers

Description

booklet_sample randomly assigns test booklets to test takers.

Usage

```
booklet_sample(
  n_subj,
  book_item_design,
  book_prob = NULL,
  resample = FALSE,
  e = 0.1,
  iter = 20
)
```

Arguments

n_subj	an integer, the number of subjects (test takers).	
book_item_design		
	a data frame containing the items that belong to each booklet with booklets as columns and booklet item numbers as rows. See 'Details'.	
book_prob	a vector of probability weights for obtaining the booklets being sampled. The default equally weights all books.	
resample	logical indicating if booklets should be re-sampled to minimize differences. Can only be used when book_prob = NULL.	
е	a number between 0 and 1 exclusive, re-sampling stopping criteria, the differ- ence between the most sampled and least sampled booklets.	
iter	an integer defining the number of iterations to reach e.	

Details

If using booklet_sample in tandem with booklet_design, book_item_design is the first element of the returned list of block_design.

Examples

brr

Generate replicates of a dataset using Balanced Repeated Replication

Description

Generate replicates of a dataset using Balanced Repeated Replication

Usage

```
brr(
   data,
   k = 0,
   pseudo_strata = ceiling(nrow(data)/2),
   reps = NULL,
   max_reps = 80,
   weight_cols = "none",
   id_col = 1,
   drop = TRUE
)
```

Arguments

data	dataset
k	deflating weight factor. $0 \le k \le 1$.
pseudo_strata	number of pseudo-strata
reps	number of replicates
max_reps	maximum number of replicates (only functional if reps = NULL)
weight_cols	vector of weight columns
id_col	number of column in dataset containing subject IDs. Set 0 to use the row names as ID
drop	if TRUE, the observation that will not be part of the subsample is dropped from the dataset. Otherwise, it stays in the dataset but a new weight column is created to differentiate the selected observations

calc_n_tilde

Value

a list containing all the BRR replicates of data

Note

PISA uses the BRR Fay method with k = 0.5.

References

OECD (2015). Pisa Data Analysis Manual. Adams, R., & Wu, M. (2002). PISA 2000 Technical Report. Paris: Organization for Economic Co-operation and Development (OECD). Rust, K. F., & Rao, J. N. K. (1996). Variance estimation for complex surveys using replication techniques. Statistical methods in medical research, 5(3), 283-310.

See Also

jackknife()

calc_n_tilde Calculate ñ

Description

Calculates n tilde

Usage

calc_n_tilde(M, N, n_j)

Arguments

М	total number of population (i.e., sum of n_j over all j)
Ν	number of each class j
n_j	vector with size of each class j

References

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis. Sage Publications.

See Also

summary.lsasimcluster()

```
calc_replicate_weights
```

Calculate replicate weights and summary statistics

Description

Takes the output of cluster_gen to calculate the replicate weights as well as some summary statistics

Usage

```
calc_replicate_weights(data, method, k = 0)
```

Arguments

data	list of background questionnaire data (typically generated by cluster_gen)
method	replication method. Can be "Jackknife", "BRR" or "BRR Fay"
k	deflating weight factor (used only when 'method = "BRR Fay")

Details

Replicate weights can be calculated using the Jackknife for unstratified two-stage sample designs or Balanced Repeated Replication (BRR) with or without Fay's modification. According to OECD (2015), PISA uses the Fay method with a factor of 0.5. This is why k = .5 by default.

Value

list with data and, if requested, some statistics

Note

This function is essentially a big wrapper for replicate_var, applying that function on each element of an output of cluster_gen.

References

OECD (2015). Pisa Data Analysis Manual. Rust, K. F., & Rao, J. N. K. (1996). Variance estimation for complex surveys using replication techniques. Statistical methods in medical research, 5(3), 283-310.

See Also

cluster_gen() jackknife()

calc_se_rho

Examples

```
data <- cluster_gen(c(3, 50))
calc_replicate_weights(data, "Jackknife")
calc_replicate_weights(data, "BRR")
calc_replicate_weights(data, "BRR Fay")</pre>
```

calc_se_rho

Calculate Standard Error of Intraclass Correlation

Description

Calculate Standard Error of Intraclass Correlation

Usage

calc_se_rho(rho, n_j, N)

Arguments

rho	intraclass correlation
n_j	number of elements in class j
Ν	number of classes j

References

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis. Sage Publications.

See Also

```
anova.lsasimcluster()
```

calc_var_between Calculate variance between classes

Description

Calculate variance between classes

Usage

```
calc_var_between(n_j, y_bar_j, y_bar, n_tilde, N)
```

Arguments

n_j	number of elements in class j
y_bar_j	mean of variable of interest per class j
y_bar	mean of variable of interest across classes
n_tilde	function of the variance of n_N , M and N. See documentation and code of lsasim:::summary.lsasimcluster for details
Ν	number of classes j

References

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis. Sage Publications.

See Also

anova.lsasimcluster()

calc_var_tot Calculate the total variance

Description

Calculate the total variance

Usage

calc_var_tot(M, N, n_tilde, s2_within, s2_between)

Arguments

М	total sample size
Ν	number of classes j
n_tilde	function of the variance of n_N , M and N. See documentation and code of lsasim:::summary.lsasimcluster for details
s2_within	Within-class variance
s2_between	Between-class variance

References

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis. Sage Publications.

See Also

anova.lsasimcluster()

calc_var_within Calculate variance within classes

Description

Calculate variance within classes

Usage

calc_var_within(n_j, s2_j, M, N)

Arguments

n_j	number of elements in class j
s2_j	variance of all elements in class j
М	total sample size
Ν	number of classes j

References

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis. Sage Publications.

See Also

anova.lsasimcluster()

check_condition Check if an error condition is satisfied

Description

Check if an error condition is satisfied

Usage

```
check_condition(condition, message, fatal = TRUE)
```

Arguments

condition	logical test which if TRUE will cause the function to return an error message
message	error message to be displayed if condition is met.
fatal	if TRUE, error message is fatal, i.e., it will abort the parent function which called check_condition.

```
check_ignored_parameters
```

Checks if provided parameters are ignored

Description

Internal function to match non-null parameters with a vector of ignored parameters

Usage

```
check_ignored_parameters(provided_parameters, ignored_parameters)
```

Arguments

provided_parameters vector of provided parameters ignored_parameters vector of ignored parameters

Value

Warning message listing ignored parameters

check_n_N_class Check class of n or N

Description

Check the class of an object (usually n and N from cluster_gen)

Usage

```
check_n_N_class(x)
```

Arguments ×

either n or N from cluster_gen

Note

This function is primarily used as a way to simplify the classification of n and N in the cluster_gen function.

See Also

cluster_gen()

check_valid_structure Check if List is Valid

Description

Checks if a list has a proper structure to be transformed into a hierarchical structure

Usage

```
check_valid_structure(n)
```

Arguments n

list

Value

Error if the structure is improper. Otherwise, there's no output.

See Also

check_condition()

cluster_gen Generate cluster sample

Description

Generate cluster sample

Usage

```
cluster_gen(
    n,
    N = 1,
    cluster_labels = NULL,
    resp_labels = NULL,
    cat_prop = NULL,
    n_X = NULL,
    n_W = NULL,
    c_mean = NULL,
    sigma = NULL,
    sogmate_questionnaires = TRUE,
    collapse = "none",
    sum_pop = sapply(N, sum),
```

```
calc_weights = TRUE,
sampling_method = "mixed",
rho = NULL,
theta = FALSE,
verbose = TRUE,
print_pop_structure = verbose,
...
```

Arguments

n	numeric vector or list with the number of sampled observations (clusters or sub- jects) on each level	
Ν	population size of each <i>sampled</i> cluster element on each level. Either a numeric vector or a list of numeric vectors. If N is a list, it must have the same length as n and each element of N must have the same length as the corresponding element of n	
cluster_labels	character vector with the names of each cluster level	
resp_labels	character vector with the names of the questionnaire respondents on each level	
cat_prop	list of cumulative proportions for each item. If theta = TRUE, the first element of cat_prop must be a scalar 1, which corresponds to the theta.	
n_X	list of n_X per cluster level	
n_W	list of n_W per cluster level	
c_mean	vector of means for the continuous variables or list of vectors for the continuous variables for each level. Defaults to 0, but may change if rho is set.	
sigma	vector of standard deviations for the continuous variables or list of vectors for the continuous variables for each level. Defaults to 1, but may change if rho is set.	
cor_matrix	Correlation matrix between all variables (except weights). By default, correlations are randomly generated.	
separate_questionnaires		
	if TRUE, each level will have its own questionnaire	
collapse	if TRUE, function output contains only one data frame with all answers. It can also be "none", "partial" and "full" for finer control on 3+ levels	
sum_pop	total population at each level (sampled or not)	
calc_weights	if TRUE, sampling weights are calculated	
sampling_method		
	can be "SRS" for Simple Random Sampling, "PPS" for Probabilities Propor- tional to Size, "mixed" to use PPS for schools and SRS otherwise, or a vector with the sampling method for each level	
rho	intraclass correlation (scalar, vector or list, as appropriate)	
theta	if TRUE, the first continuous variable will be labeled 'theta'. Otherwise, it will be labeled 'q1'.	
verbose	if TRUE, prints output messages	

18

cluster_gen

print_pop_structure	
	if TRUE, prints the population hierarchical structure (as long as it differs from the sample structure)
	Additional parameters to be passed to questionnaire_gen()

Details

This function relies heavily in two sub-functions—cluster_gen_separate and cluster_gen_together which can be called independently. This does not make cluster_gen a simple wrapper function, as it performs several operations prior to calling its sub-functions, such as randomly generating n_X and n_W if they are not determined by user. n can have unitary length, in which case all clusters will have the same size. N is *not* the population size across all elements of a level, but the population size for each element of one level. Regarding the additional parameters to be passed to questionnaire_gen(), they can be passed either in the same format as questionnaire_gen() or as more complex objects that contain information for each cluster level.

Value

list with background questionnaire data, grouped by level or not

Note

For the purpose of this function, levels are counted starting from the top nesting/clustering level. This means that, for example, schools are the first cluster level, classes are the second, and students are the third and final level. This behavior can be customized by naming the n argument or providing custom labels in cluster_labels and resp_labels.

Manually setting both c_mean and rho, while possible, may yield unexpected results due to how those parameters work together. A high intraclass correlation (rho) theoretically means that each group will end up with different means so they can be better separated. If c_mean is left untouched (i.e., at the default value of zero), then c_mean will freely change between clusters in order to result in the expected intraclass correlation. For large samples, c_mean will in practice correspond to the grand mean across that level, as the means of each element will be different no matter the sample size.

Moreover, if c_mean, sigma and rho are passed to the function, the means will be recalculated as a function of the other two parameters. The three are interdependent and cannot be passed simultaneously.

If in addition to rho the user also determine different means for each level, the only way the math can check out is if the variance in each group becomes very high. For examples of this scenario and the one described in the previous paragraph, check out the final section of this page.

The ranges() function should always be put inside a list(), as putting it inside a vector (c()) will cancel its effect. For more details, please read the documentation of the ranges() function.

The only arguments that can be used to label each level are n, N, cluster_labels and resp_labels. Labeling other arguments such as c_mean and cat_prop has no effect on the final results, but it is a recommended way for users to keep track of which value corresponds to which element in a complex hierarchical structure.

One of the extra arguments that can be passed by this function is family. If family == "gaussian", the questionnaire will be generated assuming that all the variables are jointly-distributed as a multivariate normal. The default behavior is family == NULL, where the data is generated using the polychoric correlation matrix, with no distributional assumptions.

See Also

cluster_gen_separate() cluster_gen_together() questionnaire_gen()

Examples

```
# Simple structure of 3 schools with 5 students each
cluster_gen(c(3, 5))
# Complex structure of 2 schools with different number of students,
# sampling weights and custom number of questions
n <- list(3, c(20, 15, 25))</pre>
N <- list(5, c(200, 500, 400, 100, 100))
cluster_gen(n, N, n_X = 5, n_W = 2)
# Condensing the output
set.seed(0); cluster_gen(c(2, 4))
set.seed(0); cluster_gen(c(2, 4), collapse=TRUE) # same, but in one dataset
# Condensing the output: 3 levels
str(cluster_gen(c(2, 2, 1), collapse="none"))
str(cluster_gen(c(2, 2, 1), collapse="partial"))
str(cluster_gen(c(2, 2, 1), collapse="full"))
# Controlling the intra-class correlation and the grand mean
x <- cluster_gen(c(5, 1000), rho = .9, n_X = 2, n_W = 0, c_mean = 10)
sapply(1:5, function(s) mean(x$school[[s]]$q1)) # means per school != 10
mean(sapply(1:5, function(s) mean(x$school[[s]]$q1))) # closer to c_mean
# Making the intraclass variance explode by forcing "incompatible" rho and c_mean
x <- cluster_gen(c(5, 1000), rho = .5, n_X = 2, n_W = 0, c_mean = 1:5)
anova(x)
```

cluster_gen_separate Generate cluster samples with individual questionnaires

Description

This is a sub-function of cluster_gen that performs cluster sampling, with the twist that each cluster level has its own questionnaire.

cluster_gen_separate

Usage

```
cluster_gen_separate(
 n_levels,
 n,
 Ν,
  sum_pop,
 calc_weights,
  sampling_method,
 cluster_labels,
  resp_labels,
 collapse,
 n_X,
 n_₩,
 cat_prop,
 c_mean,
  sigma,
  cor_matrix,
  rho,
  theta,
 whitelist,
```

verbose, ...

)

Arguments

n_levels	number of cluster levels
n	numeric vector or list with the number of sampled observations (clusters or sub- jects) on each level
Ν	population size of each <i>sampled</i> cluster element on each level. Either a numeric vector or a list of numeric vectors. If N is a list, it must have the same length as n and each element of N must have the same length as the corresponding element of n
sum_pop	total population at each level (sampled or not)
calc_weights	if TRUE, sampling weights are calculated
sampling_metho	d
	can be "SRS" for Simple Random Sampling, "PPS" for Probabilities Propor- tional to Size, "mixed" to use PPS for schools and SRS otherwise, or a vector with the sampling method for each level
cluster_labels	character vector with the names of each cluster level
resp_labels	character vector with the names of the questionnaire respondents on each level
collapse	if TRUE, function output contains only one data frame with all answers. It can also be "none", "partial" and "full" for finer control on 3+ levels
n_X	list of n_X per cluster level
n_W	list of n_W per cluster level

cat_prop	list of cumulative proportions for each item. If theta = TRUE, the first element of cat_prop must be a scalar 1, which corresponds to the theta.
c_mean	vector of means for the continuous variables or list of vectors for the continuous variables for each level
sigma	vector of standard deviations for the continuous variables or list of vectors for the continuous variables for each level
cor_matrix	Correlation matrix between all variables (except weights)
rho	intraclass correlation (scalar, vector or list, as appropriate)
theta	if TRUE, the first continuous variable will be labeled 'theta'. Otherwise, it will be labeled ' $q1$ '.
whitelist	used when n = select(), determines which PSUs get to generate question-naires
verbose	if TRUE, prints output messages
	Additional parameters to be passed to questionnaire_gen()

See Also

cluster_gen() cluster_gen_together()

cluster_gen_together Generate cluster samples with lowest-level questionnaires

Description

This is a sub-function of cluster_gen that performs cluster sampling where only the lowest-level individuals (e.g. students) fill out questionnaires.

Usage

```
cluster_gen_together(
  n_levels,
  n,
 Ν,
  sum_pop,
  calc_weights,
  sampling_method,
  cluster_labels,
  resp_labels,
  collapse,
  n_X,
  n_₩,
  cat_prop,
  c_mean,
  sigma,
  cor_matrix,
```

rho,
verbose,
...
)

Arguments

n_levels	number of cluster levels
n	numeric vector or list with the number of sampled observations (clusters or subjects) on each level
Ν	population size of each <i>sampled</i> cluster element on each level. Either a numeric vector or a list of numeric vectors. If N is a list, it must have the same length as n and each element of N must have the same length as the corresponding element of n
sum_pop	total population at each level (sampled or not)
calc_weights	if TRUE, sampling weights are calculated
sampling_method	
	can be "SRS" for Simple Random Sampling, "PPS" for Probabilities Propor- tional to Size, "mixed" to use PPS for schools and SRS otherwise, or a vector with the sampling method for each level
cluster_labels	character vector with the names of each cluster level
resp_labels	character vector with the names of the questionnaire respondents on each level
collapse	if TRUE, function output contains only one data frame with all answers. It can also be "none", "partial" and "full" for finer control on 3+ levels
n_X	list of n_X per cluster level
n_W	list of n_W per cluster level
cat_prop	list of cumulative proportions for each item. If theta = TRUE, the first element of cat_prop must be a scalar 1, which corresponds to the theta.
c_mean	vector of means for the continuous variables or list of vectors for the continuous variables for each level
sigma	vector of standard deviations for the continuous variables or list of vectors for the continuous variables for each level
cor_matrix	correlation matrix or list of correlation matrices per PSU
rho	intraclass correlation (scalar, vector or list, as appropriate)
verbose	if TRUE, prints output messages
	Additional parameters to be passed to questionnaire_gen()

See Also

cluster_gen() cluster_gen_separate()

cluster_message Print messages about clusters

Description

Prints messages about the cluster scheme before generating questionnaire responses.

Usage

```
cluster_message(
  n_obs,
  resp_labels,
  cluster_labels,
  n_levels,
  separate_questionnaires,
  type,
  detail = FALSE
)
```

Arguments

n_obs	list with the number of elements per level	
resp_labels	character vector with the names of the questionnaire respondents on each level	
cluster_labels	character vector with the names of each cluster level	
n_levels	number of cluster levels	
separate_questionnaires		
	if TRUE, each level will have its own questionnaire	
type	Type of top-level message	
detail	if TRUE, prints further details about each level composition	

Value

Messages.

convert_vector_to_list

Convert Vector to Expanded List

Description

Converts a vector to list where each element is replicated a certain number of times depending on the previous vector. Also work for ranged lists

cor_gen

Usage

convert_vector_to_list(x, x_max = x, verbose = TRUE)

Arguments

х	vector or ranged list to be converted
x_max	reference vector or ranged list with max values for x
verbose	if TRUE, sends messages to user about what's being done

Value

expanded/replicated version of x

cor_gen

Generation of random correlation matrix

Description

Creates a random correlation matrix.

Usage

```
cor_gen(n_var, cov_bounds = c(-1, 1))
```

Arguments

n_var	integer number of variables.
cov_bounds	a vector containing the bounds of the covariance matrix.

Details

The result from cor_gen can be used directly with the cor_matrix argument of questionnaire_gen.

Examples

cor_gen(n_var = 10)

cov_gen

Description

Construct covariance matrices for the generation of simulated test data.

Usage

cov_gen(pr_grp_1, n_fac, n_ind, Lambda = 0:1)

Arguments

pr_grp_1	proportion of observations in group 1. Can be a scalar or a vector
n_fac	number of factors
n_ind	number of indicators per factor
Lambda	either a matrix containing the factor loadings or a vector containing the lower and upper limits for a randomly-generated Lambda matrix

Value

A list containing three covariance matrices: vcov_yxw, vcov_yxz and vcov_yfz

Examples

```
vcov <- cov_gen(pr_grp_1 = .5, n_fac = 3, n_ind = 2)
str(vcov)</pre>
```

cov_yfz_gen	
-------------	--

```
Generate latent regression covariance matrix
```

Description

Generates covariance matrix between Y, F and Z

Usage

```
cov_yfz_gen(n_ind, n_fac, Phi, n_z, sd_z, w_names, pr_grp_1)
```

cov_yxw_gen

Arguments

n_ind	number of indicator variables
n_fac	number of factors
Phi	latent regression correlation matrix
n_z	number of background variables
sd_z	standard deviation of background variables
w_names	names of W variables
pr_grp_1	scalar or list of proportions of the first group

cov_yxw_gen Setup full YXW covariance matrix

Description

Setup full YXW covariance matrix

Usage

cov_yxw_gen(n_ind, n_z, Phi, n_fac, Lambda)

Arguments

n_ind	number of indicator variables
n_z	number of background variables
Phi	latent regression correlation matrix
n_fac	number of factor variables
Lambda	matrix containing the factor loadings

cov_yxz_gen	Generate analytical covariance matrix
-------------	---------------------------------------

Description

Generate analytical covariance matrix

Usage

cov_yxz_gen(vcov_yxw, w_names, Phi, pr_grp_1, n_ind, n_fac, Lambda, var_z)

Arguments

vcov_ухw	covariance matrix between Y, X and W
w_names	name of the W variables
Phi	latent regression correlation matrix
pr_grp_1	scalar or list of proportions of the first group
n_ind	number of indicator variables
n_fac	number of factors
Lambda	matrix containing the factor loadings
var_z	vector of variances of the background variables

customize_summary Customize Summary

Description

Adds standard deviations and removes quantiles from a summary() output

Usage

```
customize_summary(df_summary, df, numeric_cols, factor_cols, digits = 3)
```

Arguments

df_summary	dataframe containing summary statistics
df	original data frame
numeric_cols	indices of the numeric columns
factor_cols	indices of the factor columns
digits	controls the number of digits in the output

See Also

summary() summary.lsasimcluster()

28

draw_cluster_structure

Draw Cluster Structure

Description

This function creates a visual representation of the hierarchical structure

Usage

```
draw_cluster_structure(n, labels = NULL, resp = NULL, output = "tree")
```

Arguments

n	same from cluster_gen
labels	corresponds to cluster_labels from cluster_gen
resp	corresponds to resp_labels from cluster_gen
output	"tree" draws a tree-like structure on the console, "text" prints the structure as a character vector

Value

Prints structure to console.

Note

This function is useful for checking how a list() object looks as a hierarchical structure, usually to be used as the n and/or N arguments of the cluster_gen function.

Examples

```
n <- c(2, 4, 3)
draw_cluster_structure(n)
draw_cluster_structure(n, output="text")</pre>
```

gen_cat_prop Generates cat_prop for questionnaire_gen

Description

Generates cat_prop for questionnaire_gen

Usage

gen_cat_prop(n_X, n_W, n_cat_W)

Arguments

n_X	number of continuous variables
n_W	number of categorical variables
n_cat_W	number of categories per categorical variable

gen_variable_n

Randomly generate the quantity of background variables

Description

Randomly generate the quantity of background variables

Usage

gen_variable_n(n_vars, n_X, n_W, theta = FALSE)

Arguments

n_vars	number of variables in total $(n_X + n_W + theta)$
n_X	number of continuous variables
n_W	number of categorical variables
theta	number of latent variables

Value

vector with n_vars, n_X and n_W

gen_X_W_cluster Generate n_X and n_W for clusters

Description

Generates n_X and n_W for cluster_gen based on a correlation matrix

Usage

```
gen_X_W_cluster(n_levels, separate, class_cor)
```

Arguments

n_levels	number of levels
separate	to the separate_questionnaires argument of cluster_gen
class_cor	corresponds to the class_cor argument of cluster_gen

intraclass_cor Intraclass correlation

Description

Calculates the intraclass correlation of clustered data

Usage

```
intraclass_cor(tau2_hat, sigma2_hat)
```

Arguments

tau2_hat	estimate of the true between-class correlation
sigma2_hat	estimate of the true within-class correlation

References

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis. Sage Publications.

See Also

cluster_gen() summary.lsasimcluster()

÷ +	
irt	gen
- T C -	_501

Simulate item responses from an item response model

Description

Creates a data frame of item parameters.

Usage

```
irt_gen(theta, a_par = 1, b_par, c_par = 0, D = 1)
```

Arguments

theta	numeric ability estimate.
a_par	numeric discrimination parameter.
b_par	numeric or vector of numerics difficulty parameter(s).
c_par	numeric guessing parameter.
D	numeric parameter to specify logistic (1) or normal (1.7).

Examples

```
irt_gen(theta = 0.2, b_par = 0.6)
irt_gen(theta = 0.2, a_par = 1.15, b_par = 0.6)
irt_gen(theta = 0.2, a_par = 1.15, b_par = 0.6, c_par = 0.2)
```

```
item_gen
```

Generation of item parameters from uniform distributions

Description

Creates a data frame of item parameters.

Usage

```
item_gen(
    b_bounds,
    a_bounds = NULL,
    c_bounds = NULL,
    thresholds = 1,
    n_1pl = NULL,
    n_2pl = NULL,
    n_3pl = NULL
)
```

Arguments

b_bounds	a vector containing the bounds of the the uniform distribution for sampling the difficulty parameters.
a_bounds	a vector containing the bounds of the the uniform distribution for sampling the discrimination parameters.
c_bounds	a vector containing the bounds of the the uniform distribution for sampling the guessing parameters.
thresholds	if numeric, number of thresholds for 1- and/or 2- parameter dichotomous items, if vector, each element is the number of thresholds corresponding to the vector of n_1pl and/or n_2pl.
n_1pl	if integer, number of 1-parameter dichotomous items, if vector, each element is the number of partial credit items corresponding to thresholds number.
n_2pl	if integer, number of 2-parameter dichotomous items, if vector, each element is the number of generalized partial credit items corresponding to thresholds number.
n_3pl	integer, number of 3-parameter items.

Details

The data frame includes two variables p and k which indicate the number of parameters and the number of thresholds, respectively

32

jackknife

Examples

```
item_gen(b_bounds = c(-2, 2), a_bounds = c(.75, 1.25),
    thresholds = c(1, 2, 3), n_1pl = c(5, 5, 5), n_2pl = c(0, 0, 5))
item_gen(b_bounds = c(-2, 2), a_bounds = c(.75, 1.25), c_bounds = c(0, .25),
    n_2pl = 5, n_3pl = 5)
```

jackknife

Generate replicates of a dataset using Jackknife

Description

Generate replicates of a dataset using Jackknife

Usage

```
jackknife(data, weight_cols = "none", drop = TRUE)
```

Arguments

data	dataset
weight_cols	vector of weight columns
drop	if TRUE, the observation that will not be part of the subsample is dropped from the dataset. Otherwise, it stays in the dataset but a new weight column is created to differentiate the selected observations

Value

a list containing all the Jackknife replicates of data

See Also

brr()

Examples

```
x <- data.frame(
    number = 1:5,
    letter = LETTERS[1:5],
    stringsAsFactors = FALSE
)
jackknife(x)
jackknife(x, drop = FALSE)
```

label_respondents Label respondents

Description

Generate level label combinations for each respondent

Usage

```
label_respondents(
  n_obs,
  cluster_labels = names(n_obs),
  add_last_level = FALSE,
  apply_labels = TRUE
)
```

Arguments

n_obs	list with the number of elements per level
cluster_labels	character vector with the names of each cluster level
add_last_level	if TRUE (not default), adds the last level to the output table
apply_labels	if TRUE, applies labels (column names) to data cells

Value

Data frame with the combinations of IDs from all levels

lambda_gen	Randomly generate a matrix of factor loadings
------------	---

Description

Randomly generate a matrix of factor loadings

Usage

```
lambda_gen(n_ind, n_fac, limits, row_names, col_names)
```

Arguments

n_ind	number of indicators per factor
n_fac	number of factors
limits	vector with lower and upper limits for the uniformly-generated Lambdas
row_names	vector with row names
col_names	vector with col names

lsasim

Description

lsasim simulates data that mimics large-scale assessments (LSAs), including background questionnaire data and cognitive item responses that adhere to a multiple-matrix sampled design Functions to Facilitate the Simulation of Large Scale Assessment Data

Core functions

- block_design Assignment of test items to blocks.
- booklet_design Assignment of item blocks to test booklets.
- booklet_sample Assignment of test booklets to test takers.
- item_gen Generation of random correlation matrix.
- proportion_gen Generation of random cumulative proportions.
- questionnaire_gen Generation of ordinal and continuous variables.
- · response_gen Generation of item response data using a rotated block design.
- cluster_gen Generation of background questionnaires from a cluster sampling scheme.

Useful ancillary functions

- irt_gen Generate item responses from an IRT model. Used by response_gen.
- beta_gen Calculates analytical and numeric regression coefficients for the background questionnaire responses as functions of the latent variable. Used by questionnaire_gen

Note

This package contains vignettes. If you are installing lsasim from GitHub, remember to use build_vignettes=TRUE in your remotes::install_github() call. Afterwards, you can browse the vignettes by issuing browseVignettes("lsasim") in your R terminal.

Author(s)

Maintainer: Waldir Leoncio <w.l.netto@medisin.uio.no>

Authors:

- Tyler Matta <tyler.matta@gmail.com>
- Leslie Rutkowski <leslie.rutkowski@cemo.uio.no>
- David Rutkowski <david.rutkowski@cemo.uio.no>
- Yuan-Ling Linda Liaw <y.l.liaw@cemo.uio.no>

Other contributors:

- Kondwani Kajera Mughogho <k.k.mughogho@cemo.uio.no> [contributor]
- Sinan Yavuz [contributor]
- Paul Bailey [contributor]

See Also

Useful links:

• Report bugs at https://github.com/tmatta/lsasim/issues

pisa2012_math_block PISA 2012 mathematics item - item block indicator matrix

Description

A dataset containing indicators associating those PISA 2012 mathematics items to the PISA 2012 mathematics item blocks.

Usage

pisa2012_math_block

Format

A data frame with 109 rows and 12 variables:

item name Item name.

item_no Item numbers.

block1 Indicator specifying those items in block 1.

block2 Indicator specifying those items in block 2.

block3 Indicator specifying those items in block 3.

block4 Indicator specifying those items in block 4.

block5 Indicator specifying those items in block 5.

block6 Indicator specifying those items in block 6.

block7 Indicator specifying those items in block 7.

block8 Indicator specifying those items in block 8.

block9 Indicator specifying those items in block 9.

block10 Indicator specifying those items in block 10.

Source

PISA 2012 Technical Report, ANNEX A. Table A.1: PISA 2012 Main Survey mathematics item classification. Pages 406 - 409. https://www.oecd.org/en/about/programmes/pisa.html
pisa2012_math_booklet PISA 2012 mathematics item block - test booklet indicator matrix

Description

A dataset containing indicators associating those PISA 2012 mathematics item blocks to the PISA 2012 mathematics standard test booklet set.

Usage

pisa2012_math_booklet

Format

A data frame with 13 rows and 10 variables:

booklet Booklet name.

- **b1** Indicator specifying those test booklets that use item block 1.
- **b2** Indicator specifying those test booklets that use item block 2.
- **b3** Indicator specifying those test booklets that use item block 3.
- **b4** Indicator specifying those test booklets that use item block 4.
- **b5** Indicator specifying those test booklets that use item block 5.
- **b6** Indicator specifying those test booklets that use item block 6.
- **b7** Indicator specifying those test booklets that use item block 7.
- **b8** Indicator specifying those test booklets that use item block 8.
- **b9** Indicator specifying those test booklets that use item block 9.

Source

PISA 2012 Technical Report, Chapter 2: Test Design and Test Development. Figure 2.1: Cluster rotation design used to form standard test booklets for PISA 2012. Page 31. https://www.oecd.org/en/about/programmes/pisa.html

pisa2012_math_item Item parameter estimates for 2012 PISA mathematics assessment

Description

A dataset containing the estimated item parameters for the PISA 2012 mathematics assessment.

Usage

pisa2012_math_item

Format

A data frame with 109 rows and 5 variables:

item_name Item name.

item Item number.

b b parameter estimate.

d1 d1 parameter estimate (for partial credit items).

d2 d2 parameter estimate (for partial credit items).

Source

PISA 2012 Technical Report, ANNEX A. Table A.1: PISA 2012 Main Survey mathematics item classification. Pages 406 - 409. https://www.oecd.org/en/about/programmes/pisa.html

pisa2012_q_cormat Correlation matrix from the PISA 2012 background questionnaire

Description

A correlation matrix for the selected background questionnaires and mathematics plausible value.

Usage

pisa2012_q_cormat

Format

An 19 by 19 matrix.

Details

A heterogeneous correlation matrix, consisting of polyserial correlations between numeric and ordinal variables, and polychoric correlations between ordinal variables.

Row/Col	Name	Label	Туре
1	ST93Q01	Perseverance	Ordinal
2	ST93Q03	Perseverance	Ordinal
3	ST93Q04	Perseverance	Ordinal
4	ST93Q06	Perseverance	Ordinal
5	ST93Q07	Perseverance	Ordinal
6	ST94Q05	Openness for Problem Solving	Ordinal
7	ST94Q06	Openness for Problem Solving	Ordinal
8	ST94Q09	Openness for Problem Solving	Ordinal
9	ST94Q10	Openness for Problem Solving	Ordinal
10	ST94Q14	Openness for Problem Solving	Ordinal
11	ST88Q01	Attitude toward School	Ordinal

38

12	ST88Q02	Attitude toward School	Ordinal
13	ST88Q03	Attitude toward School	Ordinal
14	ST88Q04	Attitude toward School	Ordinal
15	ST89Q02	Attitude toward School	Ordinal
16	ST89Q03	Attitude toward School	Ordinal
17	ST89Q04	Attitude toward School	Ordinal
18	ST89Q05	Attitude toward School	Ordinal
19	1PV1MATH	Mathematics Plausible Value 1	Continuous

Warning

These data are for illustration purposes only. Handling of missing data may not be suitable for valid inferences.

Source

Raw data can be found at https://www.oecd.org/en/data/datasets/pisa-2012-database. html Codebook can be found at https://www.oecd.org/en/about/programmes/pisa.html

pisa2012_q_marginal Marginal proportions from the PISA 2012 background questionnaire

Description

Marginal proportions from the PISA 2012 background questionnaire

Usage

pisa2012_q_marginal

Format

A list of 19 named numeric vectors.

Details

A list containing the marginal cumulative proportions for each response category from the PISA 2012 background questionnaire. Elements 1 - 18 are the marginal proportions for the selected items from the background questionnaire. Element 19 is the marginal proportion for the selected mathematics plausible value.

Row/Col	Name	Label	Length
1	ST93Q01	Perseverance	5
2	ST93Q03	Perseverance	5
3	ST93Q04	Perseverance	5
4	ST93Q06	Perseverance	5

5	ST93Q07	Perseverance	5
6	ST94Q05	Openness for Problem Solving	5
7	ST94Q06	Openness for Problem Solving	5
8	ST94Q09	Openness for Problem Solving	5
9	ST94Q10	Openness for Problem Solving	5
10	ST94Q14	Openness for Problem Solving	5
11	ST88Q01	Attitude toward School	4
12	ST88Q02	Attitude toward School	4
13	ST88Q03	Attitude toward School	4
14	ST88Q04	Attitude toward School	4
15	ST89Q02	Attitude toward School	4
16	ST89Q03	Attitude toward School	4
17	ST89Q04	Attitude toward School	4
18	ST89Q05	Attitude toward School	4
19	1PV1MATH	Mathematics Plausible Value 1	1

Warning

These data are for illustration purposes only. Handling of missing data may not be suitable for valid inferences.

Source

Raw data can be found at https://www.oecd.org/en/data/datasets/pisa-2012-database. html Codebook can be found at https://www.oecd.org/en/about/programmes/pisa.html

pluralize Pluralize words

Description

Pluralize a word

Usage

```
pluralize(word, n = rep(2, length(word)))
```

Arguments

word	vector of characters to be pluralized
n	vector of number of times each word appears (to determine if the plural or single
	form will be returned)

Value

word, either pluralized or not (depending on n)

print_anova

Description

Print the ANOVA table

Usage

```
print_anova(
    s2_within,
    s2_between,
    s2_total,
    sigma2_hat,
    tau2_hat,
    rho_hat,
    se_rho,
    n_tilde,
    M,
    N
)
```

Arguments

s2_within	Within-class variance
s2_between	Between-class variance
s2_total	Total variance
sigma2_hat	estimate of the true within-class correlation
tau2_hat	estimate of the true between-class correlation
rho_hat	estimated intraclass correlation
se_rho	standard errors of rho_hat
n_tilde	function of the variance of n_N, M and N. See documentation and code of lsasim:::summary.lsasimcluster for details
М	total sample size
Ν	number of classes j

References

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis. Sage Publications.

See Also

stats::anova()

proportion_gen

Description

Creates a list of vectors, each containing the randomly generated cumulative proportions of a discrete variable.

Usage

```
proportion_gen(cat_options, n_cat_options)
```

Arguments

cat_options vector of response types. n_cat_options vector of number of items of the corresponding response type.

Details

cat_options and n_cat_options must be the same length. cat_options = 1 is a continuous variable.

The result from proportion_gen can be used directly with the cat_prop argument of questionnaire_gen.

Examples

```
proportion_gen(cat_options = c(1, 2, 3), n_cat_options = c(2, 2, 2))
proportion_gen(cat_options = c(1, 3), n_cat_options = c(4, 5))
```

pt_bis_conversion Analytical point-biserial conversion

Description

Analytical point-biserial conversion

Usage

pt_bis_conversion(bis_cor, pr_group1)

bis_cor	biserial correlations
pr_group1	probability of group 1

questionnaire_gen Generation of ordinal and continuous variables

Description

Creates a data frame of discrete and continuous variables based on several arguments.

Usage

```
questionnaire_gen(
  n_obs,
  cat_prop = NULL,
  n_vars = NULL,
  n_X = NULL,
  n_W = NULL,
  cor_matrix = NULL,
  cov_matrix = NULL,
  c_sd = NULL,
  theta = FALSE,
  family = NULL,
  full_output = FALSE,
  verbose = TRUE
)
```

n_obs	number of observations to generate.
cat_prop	list of cumulative proportions for each item. If theta = TRUE, the first element of cat_prop must be a scalar 1, which corresponds to the theta.
n_vars	total number of variables in the questionnaire, including the continuous and the discrete covariates (X and W, respectively), as well as the latent trait (Y, which is equivalent to θ).
n_X	number of continuous background variables. If not provided, a random number of continuous variables will be generated.
n_W	either a scalar corresponding to the number of categorical background variables or a list of scalars representing the number of categories for each categorical variable. If not provided, a random number of categorical variables will be generated.
cor_matrix	latent correlation matrix. The first row/column corresponds to the latent trait (Y) . The other rows/columns correspond to the continuous $(X \text{ or } Z)$ or the discrete (W) background variables, in the same order as cat_prop.
cov_matrix	latent covariance matrix, formatted as cor_matrix.
c_mean	is a vector of population means for each continuous variable $(Y \text{ and } X)$. Defaults to 0.

c_sd	is a vector of population standard deviations for each continuous variable (Y and X). Defaults to 1.
theta	if TRUE, the first continuous variable will be labeled 'theta'. Otherwise, it will be labeled 'q1'.
family	distribution of the background variables. Can be NULL (default) or 'gaussian'.
full_output	if TRUE, output will be a list containing the questionnaire data as well as several objects that might be of interest for further analysis of the data.
verbose	if FALSE, output messages will be suppressed (useful for simulations). Defaults to \ensuremath{TRUE}

Details

In essence, this function begins by checking the validity of the arguments provided and randomly generating those that are not. Then, it will call one of two internal functions, questionnaire_gen_polychoric or questionnaire_gen_family. The former corresponds to the exact functionality of question-naire_gen on lsasim 1.0.1, where the polychoric correlations are used to generate the background questionnaire data. If family != NULL, however, questionnaire_gen_family is called to generate data based on a joint probability distribution. Additionally, if full_output == TRUE, the external function beta_gen is called to generate the correlation coefficients based on the true covariance matrix. The latter argument also changes the class of the output of this function.

What follows are some notes on the input parameters.

cat_prop is a list where length(cat_prop) is the number of items to be generated. Each element of the list is a vector containing the marginal cumulative proportions for each category, summing to 1. For continuous items, the associated element in the list should be 1.

cor_matrix and cov_matrix are the correlation and covariance matrices that are the same size as length(cat_prop). The correlations related to the correlation between variables on the latent scale.

c_mean and c_sd are each vectors whose length is equal to the number of continuous variables as specified by cat_prop. The default is to keep the continuous variables with mean zero and standard deviation of one.

theta is a logical indicator that determines if the first continuous item should be labeled *theta*. If theta == TRUE but there are no continuous variables generated, a random number of background variables will be generated.

If cat_prop is a named list, those names will be used as variable names for the returned data.frame. Generic names will be provided to the variables if cat_prop is not named.

As an alternative to providing cat_prop, the user can call this function by specifying the total number of variables using n_vars or the specific number of continuous and categorical variables through n_X and n_W. All three arguments should be provided as scalars; n_W may also be provided as a list, where each element contains the number of categories for one background variable. Alternatively, n_W may be provided as a one-element list, in which case it will be interpreted as all the categorical variables having the same number of categories.

If family == "gaussian", the questionnaire will be generated assuming that all the variables are jointly-distributed as a multivariate normal. The default behavior is family == NULL, where the data is generated using the polychoric correlation matrix, with no distributional assumptions.

When data is generated using the Gaussian distribution, the matrices provided correspond to the relations between the latent variable θ , the continuous covariates X and the continuous covariates—Z N(0, 1)—that will later be discretized into categorical covariates W. That is why there will be a difference between labels and lengths between cov_matrix and vcov_YXW. For more information, check the references cited later in this document.

Value

By default, the function returns a data. frame object where the first column ("subject") is a $1, \ldots, n$ ordered list of the *n* observations and the other columns correspond to the questionnaire answers. If theta = TRUE, the first column after "subject" will be the latent variable θ ; in any case, the continuous variables always come before the categorical ones.

If full_output = TRUE, the output will be a list containing the following objects:

bg	a data frame containing the background questionnaire answers (i.e., the same object as described above).
c_mean	identical to the input argument of the same name. Read the Details section for more information.
c_sd	identical to the input argument of the same name. Read the Details section for more information.
cat_prop	identical to the input argument of the same name. Read the Details section for more information.
cat_prop_W_p	a list containing the probabilities for each category of the categorical variables (cat_prop_W contains the cumulative probabilities).
cor_matrix	identical to the input argument of the same name. Read the Details section for more information.
cov_matrix	identical to the input argument of the same name. Read the Details section for more information.
family	identical to the input argument of the same name.
n_obs	identical to the input argument of the same name.
n_tot	named vector containing the number of total variables, the number of continuous background variables (i.e., the total number of background variables except θ) and the number of categorical variables.
n_W	vector containing the number of categorical variables.
n_X	vector containing the number of continuous variables (except θ).
sd_YXW	vector with the standard deviations of all the variables
sd_YXZ	vector containing the standard deviations of θ , the background continuous variables (X) and the Normally-distributed variables Z which will generate the background categorical variables (W).
theta	identical to the input argument of the same name.
var_W	list containing the variances of the categorical variables.
var_YX	list containing the variances of the continuous variables (including θ)

linear_regression

This list is printed only if theta = TRUE, family = "gaussian" and full_output = TRUE. It contains one vector named betas and one tabled named cov_YXW . The former displays the true linear regression coefficients of *theta* on the back-ground questionnaire answers; the latter contains the covariance matrix between all these variables.

Note

If family == NULL, the number of levels for each categorical variables will be determined by the number of categories observed in the generated data. This means it might be smaller than the number of categories determined by cat_prop, which is more likely to happen with small values of n_obs. If family == "gaussian", however, the number of levels for the categorical variables will always be equivalent to the number of possible categories, even if they are not observed in the data.

It is important to note that all arguments directly related to variable parameters (e.g. cat_prop, cov_matrix, cor_matrix, c_mean, c_sd) have the following order: Y, X, W (missing variables are skipped). This must be kept in mind when using real-life data as input to questionnaire_gen, as the input might need to be reordered to fit the expectations of the function.

By definition, the expected order of the variables is theta, followed by X and then W. The reference category of the categorical variables W is always the first one.

For very small means/sigmas (e.g. 0.005) and multiple levels, estimates may have differing levels of accuracy (e.g. school level estimates will not be as accurate as the student levels ones). In general, one should expect naturally worse estimation on higher hierarchical setups.

References

Matta, T. H., Rutkowski, L., Rutkowski, D., & Liaw, Y. L. (2018). Isasim: an R package for simulating large-scale assessment data. Large-scale Assessments in Education, 6(1), 15.

See Also

beta_gen()

Examples

```
# Not providing covariance matrix
questionnaire_gen(n_obs = 10,
```

```
cat_prop = list(c(.25, 1), c(.6, 1), c(.2, 1)),
family = "gaussian")
```

questionnaire_gen_family

Generation of ordinal and continuous variables

Description

Creates a data frame of discrete and continuous variables based on a latent correlation matrix and marginal proportions.

Usage

```
questionnaire_gen_family(
  n_obs,
  cat_prop,
  cov_matrix,
  family = "gaussian",
  theta = FALSE,
  mean_yx = NULL,
  n_cats
)
```

n_obs	number of observations to generate.
cat_prop	list of cumulative proportions for each item.
cov_matrix	covariance matrix. between the latent trait (\mathbf{Y}) and the background variables $(\mathbf{X} \text{ and } \mathbf{Z})$.
family	distribution of the background variables. Can be NULL or 'gaussian'.
theta	if TRUE will label the first continuous variable 'theta'.
mean_yx	vector with the means of the latent trait (Y) and the continuous background variables with flexible variance (X) .
n_cats	vector with number of categories for each W.

```
questionnaire_gen_polychoric
```

Generation of ordinal and continuous variables

Description

Creates a data frame of discrete and continuous variables based on a latent correlation matrix and marginal proportions.

Usage

```
questionnaire_gen_polychoric(n_obs, cat_prop, cor_matrix, c_mean, c_sd, theta)
```

Arguments

n_obs	number of observations to generate.
cat_prop	list of cumulative proportions for each item.
cor_matrix	latent correlation matrix.
c_mean	is a vector of population means for each continuous variable.
c_sd	is a vector of population standard deviations for each continuous variable.
theta	if TRUE will label the first continuous variable 'theta'.

ranges

Defines vector as range

Description

Redefines the class of a vector as "range"

Usage

ranges(x, y)

Arguments

х	first element
у	second element

Value

c(x, y), but with the "range" class

Note

This function was created to be used as an element in the N argument of cluster_gen. The name was chosen to avoid conflict with base::range().

ranges() should always be used within a list(). Inserting a "range" vector inside a common vector (c()) will result in a common vector. For example, c(3, ranges(8, 10)) is the same as c(3, 8, 10), because when faced with conflicting classes in the same element, R will resolve to the simpler case ("numeric", in this case). An easier way to understand this concept is by checking class(c(3, "a")) is "character", meaning the number 3 was devolved into a character "3".

recalc_final_weights Recalculate final weights

Description

Recalculate final weights given the replicate weights

Usage

```
recalc_final_weights(data, w_cols, replicate_weight = 1, reorder = TRUE)
```

Arguments

data	dataset	
w_cols	columns containing the weights	
replicate_weight		
	scalar with the replicate weights	
reorder	if TRUE, reorders the dataset so that the replicate weights appear before the final weights	

Value

input data with recalculated final weights, incorporating the replicate weights

replicate_var

Sampling variance of the mean for replications

Description

Estimates the mean variance for Jackknife, BRR and BRR Fay replication methods

Usage

```
replicate_var(
   data_whole,
   data_rep,
   method,
   k = 0,
   weight_var = NULL,
   stat = weighted.mean,
   vars = NULL,
   full_output = FALSE
)
```

Arguments

data_whole	full, original dataset (the one that generated the replications)
data_rep	list with replications of data_whole
method	replication method. Can be "Jackknife", "BRR" or "BRR Fay"
k	deflating weight factor (used only when 'method = "BRR Fay")
weight_var	variables containing the weights
stat	statistic of interest to calculate (must be a base R function)
vars	vector containing the variables of interest
full_output	if TRUE, returns all intermediate objects created

Details

data_rep can be obtained from

See Also

jackknife() brr()

response_gen

Generation of item response data using a rotated block design

Description

Creates a data frame of discrete item responses based on.

50

response_gen

Usage

```
response_gen(
   subject,
   item,
   theta,
   a_par = NULL,
   b_par,
   c_par = NULL,
   d_par = NULL,
   item_no = NULL,
   ogive = "Logistic"
)
```

Arguments

subject	integer vector of test taker IDs.
item	integer vector of item IDs.
theta	numeric vector of latent test taker abilities.
a_par	numeric vector of item a parameters for each item.
b_par	numeric vector of item b parameters for each item.
c_par	numeric vector of item c parameters for each item.
d_par	list of numeric vectors of item threshold parameters for each item.
item_no	vector of item numbers the correspond the item parameters
ogive	can be "Normal" or "Logistic".

Details

subject and item must be equal lengths.

Generalized partial credit models (!is.null(d_par)) uses threshold parameterization.

Examples

rzeropois

Generate data from a Zero-truncated Poisson

Description

Random generation of one observation of a random variable distributed as a Zero-truncated Poisson

Usage

rzeropois(lambda)

Arguments

lambda

corresponds to the lambda parameter of a Poisson

Details

The zero-truncated Poisson (a.k.a. conditional Poisson or positive Poisson) distribution is a discrete probability distribution whose support is the set of positive integers.

sample_from

Sample from population structure

Description

Generates a sample from a population structure

Usage

```
sample_from(N, n, labels = names(N), verbose = TRUE)
```

Arguments

Ν	list containing the population sampling structure
n	numeric vector with the number of sampled observations (clusters or subjects) on each level
labels	character vector with the names of the questionnaire respondents on each level
verbose	if TRUE, prints output messages

52

sample_within_range Sample from range

Description

Creates a uniformly-distributed sample from a 2-length vector

Usage

```
sample_within_range(rg, sample_size = NULL, seed = NULL)
```

Arguments

rg	a "range"-class vector
<pre>sample_size</pre>	the size of the sample to be generated
seed	pseudo-random number generator seed

Value

A vector containing the generated sample

Note

This function was created primarily to be used to expand an object with the "range" class.

select	Transform regular vector into selection vector
Select	Transjorm regular vector into selection vector

Description

Attaches a "select" class to a vector

Usage

select(...)

Arguments

... parameters to be passed to c()

Value

same as x, but with a class attribute that classifies x as "select"

Note

This function was created to be used instead of c() in the n argument of cluster_gen.

split_cat_prop

Description

Split variables in cat_prop

Usage

split_cat_prop(cat_prop, keepYX = FALSE)

Arguments

cat_prop	list corresponding to cat_prop from questionnaire_gen
keepYX	if TRUE, output will be a list separating cat_prop_YX and cat_prop_W. IF FALSE,
	it will be a list with these objects combined (just like cat_prop)

summary.lsasimcluster Summarizes clusters

Description

Takes the output of cluster_gen and creates summary statistics of the questionnaire variables

Usage

```
## S3 method for class 'lsasimcluster'
summary(
   object,
   digits = 4,
   print = "partial",
   print_hetcor = TRUE,
   force_matrix = FALSE,
   ...
)
```

object	output of cluster_gen
digits	loosely controls the number of digits (significant or not) in the output (for print = TRUE)
print	"all" will pretty-print a summary of statistics, "partial" will only print cluster- level summaries; "none" outputs statistics as a list
print_hetcor	if TRUE (default), prints the heterogeneous correlation matrix
force_matrix	if TRUE, prints the heterogeneous correlation matrix even if warnings are gener- ated
	additional arguments (unused; added for compatibility with generic)

summary_2

Value

list of summaries

Note

Setting print="none" allows for saving the results as an R object (list). Otherwise, the results will be simply printed and not savable.

Changing digits may yield unexpected results for the estimates of continuous variables, given how most of them are printed using the number of significant digits (for more information, see help("summary")).

Please note that datasets containing large values for the coefficient of variation (sigma / mu) should yield imprecise results.

See Also

anova.lsasimcluster()

Examples

```
n <- c(3, 30)
cls <- cluster_gen(n, n_X = 3, n_W = 5)
summary(cls)
summary(cls, print="none") # allows saving results
```

summary_2 Dataset summary statistics

Description

Creates summary statistics of a dataset

Usage

summary_2(data, digits = 3)

Arguments

data	Data frame
digits	number of digits for the output

Note

This function is inspired by base::summary(), but outputs content more relevant to the context of cluster_gen() and summary()

See Also

base::summary()

trim_sample

Trim sample

Description

Makes sure n <= N

Usage

trim_sample(n, N)

Arguments

n	vector or non-ranged list corresponding to sample structure
Ν	vector or non-ranged list corresponding to population structure

See Also

cluster_gen()

Description

functions to save space in their parent functions by moving the validation checks here

Usage

```
validate_questionnaire_gen(
  n_cats,
  n_vars,
  n_X,
  n_W,
  theta,
  cat_prop,
  cor_matrix,
  cov_matrix,
  c_mean,
  c_sd
)
```

Arguments

n_cats	vector with number of categories for each categorical variable (W)
n_vars	number of variables (Y, X and W)
n_X	number of continuous background variables (X)
n_W	number of categorical variables (W)
theta	is there a latent variable (Y)?
cat_prop	list of vectors with the cumulative proportions of the background variables
cor_matrix	correlation matrix of YXW
cov_matrix	covariance matrix of YXW
c_mean	vector of means of all variables (YXW)
c_sd	vector of standard deviations of all variables (YXW)

weight_responses Weight responses

Description

calculates sampling weights for the questionnaire responses

Usage

```
weight_responses(
   cluster_bg,
   n_obs,
   N,
   lvl,
   sublvl,
   previous_sublvl,
   sampling_method,
   cluster_labels,
   resp_labels,
   sum_pop,
   verbose
)
```

cluster_bg	dataset with background questionnaire
n_obs	list with the number of elements per level
Ν	list of numeric vector with the population size of each <i>sampled</i> cluster element on each level
lvl	number of the current level
sublvl	number of the current sub-level (element within level)

previous_sublvl		
	number of the sub-level of the parent level	
sampling_method		
	can be "SRS" for Simple Random Sampling or "PPS" for Probabilities Proportional to Size	
cluster_labels	character vector with the names of each cluster level	
resp_labels	character vector with the names of the questionnaire respondents on each level	
sum_pop	total population at each level (sampled or not)	
verbose	if TRUE, prints output messages	

Value

Input data frame (cluster_bg) with three new columns for the sampling weights.

whitelist_message Whitelist message

Description

Prints out the sampled elements when cluster_gen is called with select. This function is analogous to cluster_message, but is more proper for random sampling.

Usage

```
whitelist_message(w)
```

Arguments

w whitelist

Index

* datasets pisa2012_math_block, 36 pisa2012_math_booklet, 37 pisa2012_math_item, 37 pisa2012_q_cormat, 38 pisa2012_q_marginal, 39 .onAttach, 3 anova.lsasimcluster,4 anova.lsasimcluster(), 13-15, 55 attribute_cluster_labels, 5 base::summary(), 55 beta_gen, 5 beta_gen(), 46 block_design, 7 booklet_design, 8 booklet_sample, 9 brr, 10 brr(), 33, 50 calc_n_tilde, 11 calc_replicate_weights, 12 calc_se_rho, 13 calc_var_between, 13 calc_var_tot, 14 calc_var_within, 15 check_condition, 15 check_condition(), 17 check_ignored_parameters, 16 check_n_N_class, 16 check_valid_structure, 17 cluster_gen, 17 cluster_gen(), 5, 12, 16, 22, 23, 31, 56 cluster_gen_separate, 20 cluster_gen_separate(), 20, 23 cluster_gen_together, 22 cluster_gen_together(), 20, 22 cluster_message, 24 convert_vector_to_list, 24

cor_gen, 25 cov_gen, 26 cov_yfz_gen, 26 cov_yxw_gen, 27 cov_yxz_gen, 27 customize_summary, 28 draw_cluster_structure, 29 gen_cat_prop, 29 gen_variable_n, 30 gen_X_W_cluster, 30 intraclass_cor, 31 irt_gen, 31 item_gen, 32 jackknife, 33 jackknife(), 11, 12, 50 label_respondents, 34 lambda_gen, 34 lsasim, 35 lsasim-package (lsasim), 35 pisa2012_math_block, 36 pisa2012_math_booklet, 37 pisa2012_math_item, 37 pisa2012_q_cormat, 38 pisa2012_q_marginal, 39 pluralize, 40 print_anova, 41 proportion_gen, 42 $pt_bis_conversion, 42$ questionnaire_gen, 43 questionnaire_gen(), 7, 20 questionnaire_gen_family, 47 questionnaire_gen_polychoric, 48

ranges, 48

INDEX

```
recalc_final_weights, 49
replicate_var, 49
response_gen, 50
rzeropois, 52
```

```
sample_from, 52
sample_within_range, 53
select, 53
split_cat_prop, 54
stats::anova(), 41
summary(), 28
summary.lsasimcluster, 54
summary.lsasimcluster(), 4, 11, 28, 31
summary_2, 55
```

trim_sample, 56

validate_questionnaire_gen, 56

weight_responses, 57
whitelist_message, 58

60