Package ‘leastcostpath’

June 10, 2025
Title Modelling Pathways and Movement Potential Within a Landscape
Version 2.0.13
Date 2025-06-09

Maintainer Joseph Lewis <josephlewis1992@gmail.com>

URL https://CRAN.R-project.org/package=leastcostpath

Description Calculates cost surfaces based on slope to be used when modelling pathways and move-
ment potential within a landscape (Lewis, 2021) <doi:10.1007/s10816-021-09522-w>.

Depends R (>=3.4.0)

Imports terra (>= 1.5-34), sf (>= 1.0-8), igraph (>= 1.3.0), foreach
(>=1.5.2), gstat (>= 2.0-9), methods, stats, Matrix (>=
1.4-1), parallel, doParallel

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Joseph Lewis [aut, cre]

Repository CRAN

Date/Publication 2025-06-09 22:30:02 UTC

Contents
add_dem_error e 2
add_global_stochasticity 3
buffer_validation e 5
calculate_distance e 6
check locations e 6
Create_acCCUML_COSE v v v e e e e e e e e e e e 7
create_cost_corridor e e e e e e e e e e e 8
CICALE_CS v . v v v o e v e e e e e e e e e e 9
create_diStanCe CS e e e e e e 10
create_FETE _lcps. 11

https://CRAN.R-project.org/package=leastcostpath
https://doi.org/10.1007/s10816-021-09522-w

2 add_dem_error
Create_ICp e e 12
create_lcp_density e e e e 13
create_Slope_CS e e e e 14
CIOP_CS + v v e e e e e e e e e e e e e e e e e 17
force_isotropyo 17
get_coordinateso e e e e 18
neighbourhood 19
PDI validation e e 19
plot.conductanceMatrix L. L. 21
TASEETISE .+ v v v v v e 21
replace_values 22
update_values 23

Index 25

add_dem_error Incorporate vertical error into a Digital Elevation Model

Description

Incorporate vertical error into a Digital Elevation Model
Usage
add_dem_error(x, rmse, type = "u", samples = NULL)
Arguments
X spatRaster
rmse numeric. Vertical Root Mean Square Error of the Digital Elevation Model
type character type ’u’ (unfiltered), 'n’ (neighbourhood autocorrelation), and ’d’
(mean spatial dependence) implemented. See details for more information
samples numeric number of random spatial data locations sampled when using type 'd’.
This can be used to overcome issues with computing time and memory limits
Details

Digital Elevation Models (DEMs) are representations of the earth’s surface and are subject to error
(Wechsler and Kroll, 2006)

The add_dem_error function incorporates vertical error into the supplied DEM. Three methods are
implemented:

Unfiltered: Random error based on DEM RMSE range. Autocorrelation between random error is
not accounted for. This can be interpreted as the worst case scenario

Neig
pass

hbourhood autocorrelation: Random error is spatially autocorrelated by passing a mean low
filter in a 3x3 neighbourhood over the surface

add_global_stochasticity 3

Mean Spatial Dependence: Random error is spatially autocorrelated by passing a DxD kernel over
each cell. The centre cell of each kernel is replaced by the mean of the surrounding DxD cells.
Distance of spatial dependence (D) is estimated by calcualting the semi-variogram nugget using the
gstat package

Examples of RMSE for various datasets:
Shuttle Radar Topography Mission (SRTM) has a RMSE of 9.73m

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Ele-
vation Model (GDEM) has a RMSE of 10.20m

Ordnance Survey OS Terrain 5 has a maximum RMSE of 2.5m
Ordnance Survey OS Terrain 50 has a maximum RMSE of 4m
TINITALY DEM has a RMSE of 4.3m

Author(s)

Joseph Lewis

References

Wechsler, S. P., & Kroll, C. N. (2006). Quantifying DEM Uncertainty and its Effect on Topographic
Parameters. Photogrammetric Engineering & Remote Sensing, 72(9), 1081-1090. https://doi.org/10.14358/PERS.72.9.1081

Fisher, P., & Tate, N. J. (2006). Causes and consequences of error in digital elevation models.
Progress in Physical Geography: Earth and Environment, 30(4), 467-489. https://doi.org/10.1191/0309133306pp492ra

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))

r2 <- add_dem_error(x = r, rmse = 4.3, type = "u")

add_global_stochasticity
Add global stochasticity to a conductanceMatrix

Description
Add stochasticity to a conductanceMatrix based on a global value. This method is based on *"Mul-
tiple shortest paths (MSPs)’ as proposed by Pinto and Keitt (2009)

Usage

add_global_stochasticity(x, percent_quantile = 1)

Arguments

X conductanceMatrix
percent_quantile

numeric value between 0 and 1. See details for more information

4 add_global_stochasticity

Details

The add_global_stochasticity to a conductanceMatrix is based on the method proposed by Pinto and
Keitt (2009). Rather than using a static neighbourhood (for example as supplied in the neighbours
function in the create_slope_cs), the neighbourhood is redefined such that the adjacency is non-
deterministic and is instead determined randomly based on the threshold value.

The algorithm proceeds as follows:

1. With a percent_quantile supplied, draw a random value between the minimum value in the
conductanceMatrix and the supplied percent quantile

2. Replace values in conductanceMatrix below this random value with 0. This ensures that the
conductance between the neighbours are 0, and thus deemed non-adjacent

Supplying a percent_quantile of 0 is equivalent to incorporating no stochasticity into the conduc-
tanceMatrix. That is, if the supplied percent_quantile is 0, then no values are below this value and
thus no values will be replaced with O (see step 2). This therefore does not change the neigbourhood
adjacency

The closer the percent_quantile is to 0, the less stochasticity is incorporated. For example, a per-
cent_quantile value of 0.2 will result in the threshold being a random value between the minimum
value in the conductanceMatrix and the 0.2 percent quantile of the values in the conductanceMa-
trix. All values in the conductanceMatrix below the random value will be replaced with O (i.e. the
neighbours are no longer adjacent). In contrast, a percent_quantile value of 0.8 will result in the
threshold being a random value between the minimum value in the conductanceMatrix and the 0.8
percent quantile of the values in the conductanceMatrix. In this case, there is greater probability
that the random value will result in an increased number of values in the conductanceMatrix being
replaced with 0.

Author(s)

Joseph Lewis

References

Pinto, N., & Keitt, T. H. (2009). Beyond the least-cost path: evaluating corridor redundancy using
a graph-theoretic approach. Landscape Ecology, 24(2), 253-266. https://doi.org/10.1007/s10980-
008-9303-y

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)

slope_cs2 <- add_global_stochasticity(slope_cs, percent_quantile = 0.2)

buffer_validation 5

buffer_validation Calculate the similarity of a least-cost path to a known route

Description

Calculates the similarity of a least-cost path to a known route using the buffer method proposed by
Goodchild and Hunter (1997)

Usage

buffer_validation(lcp, comparison, dist)

Arguments

lcp sf or spatVector
comparison sf or spatVector

dist numeric buffer distances to assess similarity

Value

data.frame

Author(s)

Joseph Lewis

Examples
r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)
locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(839769, 4199443)),
sf::st_point(c(1038608, 4100024)),

crs = terra::crs(r)))

lcpl <- create_lcp(x = slope_cs, origin = locs[1,], destination = locs[2,])

lcp2 <- create_lcp(x = slope_cs, origin = locs[2,], destination = locs[1,])

buffer_validation(lcp = lcpl, comparison = lcp2, dist = c(1000, 2500, 5000, 10000))

6 check_locations

calculate_distance calculate distance between adjacent cells

Description

calculate distance between adjacent cells

Usage

calculate_distance(x, adj)

Arguments

X spatRaster

adj matrix of adjacent cells
Details

calculate_distance function allows for both projected and geographic coordinate systems. If the
coordinate system is geographic (e.g. wgs84) the distance is calculated using the sf::st_distance
function else distance calculated using Pythagorean theorem

Value

matrix euclidean distances between adjacent cells

Author(s)

Joseph Lewis

check_locations check supplied locations

Description

checks that locations can be reached when calculating least-cost paths

Usage

check_locations(x, locations)

Arguments
X conductanceMatrix
locations st ’POINT’ or "MULTIPOINT’, SpatVector, data.frame or matrix contain-

ing the locations coordinates

create_accum_cost 7

Details

Using the supplied conductanceMatrix and locations, the function checks whether: (1) the supplied
locations are traversable from at least one adjacent cell (2) the supplied locations are within the
extent of the supplied conductanceMatrix

Value

message

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler")

locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(861534, 4173726)),
sf::st_point(c(897360, 4155813)),
sf::st_point(c(928364, 4138588)),

crs = terra::crs(r)))

check_locations(x = slope_cs, locations = locs)

create_accum_cost creates an accumulated cost surface

Description

Creates an accumulated cost surfaces from one or more origins

Usage

create_accum_cost(
X,
origins,
FUN = mean,
rescale = FALSE,
check_locations = FALSE

8 create_cost_corridor

Arguments

X SpatRaster

origins sf ’POINT’ or "MULTIPOINT’, SpatVector, data. frame or matrix contain-
ing the origins coordinates. If multiple origins are supplied then the multiple
accumulated cost surfaces will be summarised using the FUN argument

FUN function Apply a function to the cells of a SpatRaster. Default applied function
is 'mean’. See terra::app() for more information

rescale logical. if TRUE, values scaled to between O and 1. FALSE (default)

check_locations
logical if TRUE checks if origins are traversable. FALSE (default)

Value

SpatRaster

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)

locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(839769, 4199443)),
sf::st_point(c(1038608, 4100024)),
sf::st_point(c(907695, 4145478)),

crs = terra::crs(r)))

cc <- create_accum_cost(x = slope_cs, origins = locs, FUN = mean, rescale = FALSE)

create_cost_corridor creates a cost corridor

Description

Combines and averages the accumulated cost surfaces from origin-to-destination and destination-
to-origin to identify areas of preferential movement that takes into account both directions of move-
ment

Usage

create_cost_corridor(x, origin, destination, rescale = FALSE)

create_cs

Arguments

X

origin

destination

rescale

Value

SpatRaster

Author(s)

Joseph Lewis

Examples

SpatRaster

st ’POINT’ or "MULTIPOINT”’, SpatVector, data.frame or matrix contain-
ing the origin coordinates. Only the first row of the supplied object is used as
the origin.

st "POINT’ or "MULTIPOINT", SpatVector, data.frame or matrix contain-
ing the destination coordinates. Only the first row of the supplied object is used
as the destination.

logical. if TRUE, values scaled to between 0 and 1. FALSE (default)

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))

slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)

locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(839769, 4199443)),
sf::st_point(c(1038608, 4100024)),

crs = terra::crs(r)))

cc <- create_cost_corridor(x = slope_cs, origin = locs[1,], destination = locs[2,], rescale = TRUE)

create_cs

Creates a cost surface from a SpatRaster

Description

Creates a cost surface using the values in the supplied SpatRaster. This function also provides for
the inclusion of maximum slope traversable

The supplied ’spatRaster’ object must have a projected CRS

Usage

create_cs(
X,
neighbours =
dem = NULL,
max_slope =
exaggeration

16,

NULL,
= FALSE

10 create_distance_cs

Arguments
X SpatRaster
neighbours numeric value. Number of directions used in the conductance matrix calcula-
tion. Expected numeric values are 4, 8, 16, 32, 48, or matrix object. 16 (default)
dem SpatRaster Digital Elevation Model (DEM)
max_slope numeric value. Maximum percentage slope that is traversable. Slope values

that are greater than the specified max_slope are given a conductivity value of
0. If cost_function argument is ’campbell 2019 then max_slope is fixed at 30
degrees slope to reflect the maximum slope that the cost function is parametised
to. NULL (default)

exaggeration logical. if TRUE, positive slope values (up-hill movement) multiplied by 1.99
and negative slope values (down-hill movement) multiplied by 2.31

Value

conductanceMatrix that numerically expresses the difficulty of moving across a surface based on
the provided SpatRaster

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))

csl <- create_cs(x = r, neighbours = 16, dem = NULL, max_slope = NULL)
cs2 <- create_cs(x = r, neighbours = 16, dem = r, max_slope = 10)

create_distance_cs Creates a distance-based conductance matrix

Description

Creates a conductance matrix based on the distance between neighbouring cells. Distance corrected
for if neighbours value is greater than 4.

Usage

create_distance_cs(x, neighbours = 16, max_slope = NULL, exaggeration = FALSE)

create_FETE_Icps 11

Arguments
X SpatRaster. Digital Elevation Model (DEM)
neighbours numeric value. Number of directions used in the conductance matrix calcula-
tion. Expected numeric values are 4, 8, 16, 32, 48, or matrix object. 16 (default)
max_slope numeric value. Maximum percentage slope that is traversable. Slope values

that are greater than the specified max_slope are given a conductivity value of
0. If cost_function argument is ’campbell 2019’ then max_slope is fixed at 30
degrees slope to reflect the maximum slope that the cost function is parametised
to. NULL (default)

exaggeration logical. if TRUE, positive slope values (up-hill movement) multiplied by 1.99
and negative slope values (down-hill movement) multiplied by 2.31

Value

conductanceMatrix that numerically expresses the difficulty of moving across slope based on the
provided cost function

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))

distance_cs <- create_distance_cs(x = r, neighbours = 4)

create_FETE_lcps Calculate Least-cost Paths from each location to all other locations

Description
Calculates Least-cost paths from-everywhere-to-everywhere. This is based on the approach pro-
posed by White and Barber (2012).

Usage

create_FETE_lcps(x, locations, cost_distance = FALSE, ncores = 1)

Arguments
X conductanceMatrix
locations st ’POINT’ or "MULTIPOINT"’, SpatVector, data.frame or matrix contain-

ing the locations coordinates

cost_distance logical if TRUE computes total accumulated cost from origin to destination.
FALSE (default)

ncores numeric Number of cores used when calculating least-cost paths from-everywhere-
to-everywhere. 1 (default)

12 create_Icp

Value

sf or spatVector Least-cost paths from-everywhere-to-everywhere based on the supplied conductanceMatrix.
If supplied locations is a spatVector object then spatVector object returned else sf object

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)

locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(839769, 4199443)),
sf::st_point(c(1038608, 4100024)),
sf::st_point(c(907695, 4145478)),
sf::st_point(c(907695, 4145478)),

crs = terra::crs(r)))

lcps <- create_FETE_lcps(x = slope_cs, locations = locs)

create_lcp Calculate Least-cost Path from Origin to Destinations

Description

Calculates the Least-cost path from an origin location to one or more destination locations. Applies
Dijkstra’s algorithm as implemented in the igraph R package.

Usage

create_lcp(
X7
origin,
destination,
cost_distance = FALSE,
check_locations = FALSE

)
Arguments
X conductanceMatrix
origin st ’POINT’ or "MULTIPOINT’, SpatVector, data. frame or matrix contain-

ing the origin coordinates. Only the first row of the supplied object is used as
the origin.

create_Icp_density

destination sf ’POINT’ or "MULTIPOINT’, SpatVector, data. frame or matrix contain-
ing the destination coordinates. If the object contains multiple coordinates then

least-cost paths will be calculated from the origin to all destinations

cost_distance logical if TRUE computes total accumulated cost from origin to the destina-

tions. FALSE (default)
check_locations

logical if TRUE checks if origin and destination are traversable by the least-

cost path. FALSE (default)

Value

sf Least-cost path from origin and destinations based on the supplied conductanceMatrix

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)

locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(839769, 4199443)),
sf::st_point(c(1038608, 4100024)),
sf::st_point(c(1017819, 4206255)),
sf::st_point(c(1017819, 4206255)),

crs = terra::crs(r)))

lcps <- create_lcp(x = slope_cs, origin = locs[1,], destination = locs)

create_lcp_density creates a cumulative least-cost path raster

Description

Cumulatively combines least-cost paths to idenify routes of preferential movement

Usage

create_lcp_density(x, lcps, rescale = FALSE)

Arguments
X SpatRaster
lcps sf or spatVector

rescale logical. if TRUE, values scaled to between 0 and 1. FALSE (default)

14 create_slope_cs

Value

SpatRaster

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)

locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(839769, 4199443)),
sf::st_point(c(1038608, 4100024)),
sf::st_point(c(907695, 4145478)),

crs = terra::crs(r)))

lcps <- create_FETE_lcps(x = slope_cs, locations = locs)

lcps_dens <- create_lcp_density(x = r, lcps = lcps)

create_slope_cs Creates a slope-based cost surface

Description

Creates a cost surface based on the difficulty of moving up and down slope. This function imple-
ments multiple isotropic and anisotropic cost functions that estimate the ’cost’ of human movement
when traversing a landscape

The supplied ’spatRaster’ object can have a projected or geographic coordinate system

Usage

create_slope_cs(
X,
cost_function = "tobler”,
neighbours = 16,
crit_slope = 12,
max_slope = NULL,
exaggeration = FALSE

create_slope_cs 15

Arguments

X SpatRaster Digital Elevation Model (DEM)

cost_function character or function. Cost function applied to slope values. See details for
implemented cost functions. tobler (default)

neighbours numeric value. Number of directions used in the conductance matrix calcula-
tion. Expected numeric values are 4, 8, 16, 32, 48, or matrix object. 16 (default)

crit_slope numeric value. Critical Slope (in percentage) is ’the transition where switch-
backs become more effective than direct uphill or downhill paths’. Cost of
climbing the critical slope is twice as high as those for moving on flat terrain
and is used for estimating the cost of using wheeled vehicles. Default value is
12, which is the postulated maximum gradient traversable by ancient transport
(Verhagen and Jeneson, 2012). Critical slope only used in *wheeled transport’
cost function

max_slope numeric value. Maximum percentage slope that is traversable. Slope values
that are greater than the specified max_slope are given a conductivity value of
0. If cost_function argument is *’campbell 2019’ or *campbell’ then max_slope
is fixed at 30 degrees slope to reflect the maximum slope that the cost function
is parametised to. NULL (default)

exaggeration logical. if TRUE, positive slope values (up-hill movement) multiplied by 1.99
and negative slope values (down-hill movement) multiplied by 2.31

Details

The following cost functions have been implemented however users may also supply their own cost
function (see Examples):

"tobler", "tobler offpath", "davey", 'rees’, "irmischer-clarke male", "irmischer-clarke offpath male",

non

"irmischer-clarke female", "irmischer-clarke offpath female", "modified tobler", garmy’, ’kondo-
saino’, "wheeled transport”, "herzog", "llobera-sluckin", "naismith", "minetti", "campbell”,"campbell
2019 1","campbell 2019 5" ,"campbell 2019 10","campbell 2019 15","campbell 2019 20","camp-
bell 2019 25","campbell 2019 30","campbell 2019 35","campbell 2019 40","campbell 2019 45","camp-
bell 2019 50","campbell 2019 55","campbell 2019 60","campbell 2019 65","campbell 2019 70","camp-
bell 2019 75","campbell 2019 80","campbell 2019 85","campbell 2019 90","campbell 2019 95","camp-

bell 2019 99", "sullivan 167","sullivan 5", "sullivan 833"

Multiple travel rate percentiles implemented for campbell 2019 and sullivan, e.g. "campbell 2019
50" is the 50th percentile

Value
conductanceMatrix that numerically expresses the difficulty of moving across slope based on the
provided cost function

Author(s)

Joseph Lewis

16 create_slope_cs

References

Tobler, W. 1993. Three Presentations on Geographical Analysis and Modeling. Technical Report
93-1 (Santa Barbara, CA)

Davey, R.C., M. Hayes and J.M. Norman 1994. “Running Uphill: An Experimental Result and Its
Applications,” The Journal of the Operational Research Society 45, 25

Rees, W.G. 2004. “Least-cost paths in mountainous terrain,” Computers & Geosciences 30, 203-09

Irmischer, 1.J. and K.C. Clarke 2018. “Measuring and modeling the speed of human navigation,”
Cartography and Geographic Information Science 45, 177-86

Marquez-Pérez, J., 1. Vallejo-Villalta and J.I. Alvarez-Francoso 2017. “Estimated travel time for
walking trails in natural areas,” Geografisk Tidsskrift-Danish Journal of Geography 117, 53—62

Garmy, P. et al. 2005. “Logiques spatiales et ‘systemes de villes’ en Lodévois de I’ Antiquité a
la période moderne,” Temps et espaces de ’homme en société, analyses et modeles spatiaux en
archéologie 335-46

Kondo, Y. and Y. Seino 2010. “GPS-aided walking experiments and data-driven travel cost mod-
eling on the historical road of Nakasendo-Kisoji (Central Highland Japan),” Making History Inter-
active (Proceedings of the 37th International Conference, Williamsburg, Virginia, United States of
America) 158-65

Herzog, 1. 2013. “The potential and limits of Optimal Path Analysis,” in Bevan, A. and M. Lake
(edd.), Computational approaches to archaeological spaces (Publications of the Institute of Archae-
ology, University College London) 179-211

Llobera, M. and T.J. Sluckin 2007. ‘“Zigzagging: Theoretical insights on climbing strategies,’
Journal of Theoretical Biology 249, 206—17

Naismith, W. 1892. “Excursions: Cruach Ardran, Stobinian, and Ben More,” Scottish Mountaineer-
ing club journal 2, 136

Minetti, A.E. et al. 2002. “Energy cost of walking and running at extreme uphill and downbhill
slopes,” Journal of Applied Physiology 93, 103946

Campbell, M.J., PE. Dennison and B.W. Butler 2017. “A LiDAR-based analysis of the effects
of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter
escape route mapping,” Int. J. Wildland Fire 26, 884

Campbell, M.J. et al. 2019. “Using crowdsourced fitness tracker data to model the relationship
between slope and travel rates,” Applied Geography 106, 93—-107

Sullivan, P.R. et al. 2020. “Modeling Wildland Firefighter Travel Rates by Terrain Slope: Results
from GPS-Tracking of Type 1 Crew Movement,” Fire 3, 52

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))

slope_cs <- create_slope_cs(x = r, cost_function = "tobler”, neighbours = 4)

slope_cs <- create_slope_cs(x = r, cost_function = "campbell 2019 50", neighbours = 4)
slope_cs2 <- create_slope_cs(x = r,

cost_function = function(x) {(6 * exp(-3.5 * abs(x + 0.05))) / 3.6}, neighbours = 4)

crop_cs 17

crop_cs Crop conductanceMatrix to extent

Description

Crop conductanceMatrix to extent

Usage

crop_cs(x, extent)

Arguments

X spatRaster

extent sf object or terra SpatRaster. Extent obtained from object using terra::ext
Details

conductanceMatrix cropped to extent of supplied Sf object or terra SpatRaster. conductance-
Matrix spatRaster dimensions and Matrix dimensions update to reflect cropped extent

Author(s)
Joseph Lewis
Examples
r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)
ext <- sf::st_as_sfc(sf::st_bbox(rasterise(slope_cs)))
ext <- sf::st_buffer(ext, dist = -75000)

ext <- sf::st_as_sf(ext)

slope_cs_cropped <- crop_cs(slope_cs, extent = ext)

force_isotropy Coerce an anisotropic cost surface to an isotropic cost surface

Description

Averages conductance values from-to adjacent cells

Usage

force_isotropy(x)

18 get_coordinates

Arguments

X conductanceMatrix
Value

conductanceMatrix

r <- terra::rast(system.file("extdata/SICILY _1000m.tif", package="leastcostpath"))
slope_cs_aniso <- create_slope_cs(x =1, cost_function = "tobler", neighbours = 4)

slope_cs_iso <- force_isotropy(x = slope_cs_aniso)

get_coordinates get coordinates from a variety of different object classes

Description

get coordinates from a variety of different object classes

Usage

get_coordinates(x)

Arguments
X coordinates. sf 'POINT’ or 'MULTIPOINT’, SpatVector, data.frame or
matrix containing the locations coordinates
Value

matrix matrix of coordinates

Author(s)

Joseph Lewis

neighbourhood 19

neighbourhood neighbourhood matrix to represent adjacent cells

Description

neighbourhood matrix to represent adjacent cells

Usage

neighbourhood(neighbours)

Arguments
neighbours numeric or matrix Expected numeric values are 4, 8, 16, 32, or 48. A user-
supplied matrix of 0 and 1s can be supplied. Here, 0 denotes non-adjaency and
1 denotes adjacency
Value

matrix neighbourhood matrix

Author(s)

Joseph Lewis

PDI_validation Calculate the similarity of a least-cost path to a known route

Description

Calculates the similarity of a least-cost path to a known route using the path deviation index method
proposed by Jan et al. (1999)

Usage

PDI_validation(lcp, comparison)

Arguments

lcp sf

comparison sf

20 PDI_validation

Details

The Path Deviation Index (pdi) measures the spatial separation between a pair of paths and aims
to overcome the shortcomings of measuring the percentage of coverage of a least cost path from a
comparison path (e.g. as implemented in the buffer_validation function).

The pdi index is defined as the area between paths divided by the Euclidean distance of the shortest
path between the origin and destination of the paths. The index can be interpreted as the average
distance between the paths.

pdi = area / length

The value of the pdi depends on the length of the path and makes comparison of pdis difficult
for paths with different origins and destinations. This is overcome by normalising the pdi by the
Euclidean distance of the shortest path between the origin and destination of the paths
Normalised pdi = pdi / length x 100

The normalised pdi is the percent of spatial separation between the two paths over the shortest path.
For example, if a normalised pdi is 30 percent, it means that the average distance between two paths
is 30 percent of the length of the shortest path. With normalised pdi, the spatial separations of all
paths can be compared regardless of the length of the shortest path.

Note: If the lcp path has a different origin and destination than the comparison path, the origin and
destination of the Icp path are replaced with the origin and destination of the comparison path. This
to ensure that a polygon can be created between the two paths which is required for calculating the
area of spatial separation.

Value
sf POLYGON of the area between the lcp and comparison with data.frame of area, pdi, max dis-
tance, and normalised pdi

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler”, neighbours = 4)

locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(839769, 4199443)),
sf::st_point(c(1038608, 4100024)),

crs = terra::crs(r)))

lcpl <- create_lcp(x = slope_cs, origin = locs[1,], destination = locs[2,],
cost_distance = TRUE)

lcp2 <- create_lcp(x = slope_cs, origin = locs[2,], destination = locs[1,],
cost_distance = TRUE)

pdi_val <- PDI_validation(lcp = lcpl, comparison = lcp2)

plot.conductanceMatrix 21

plot.conductanceMatrix
plot conductanceMatrix

Description

plot conductanceMatrix for visualisation. Conductivity values are the mean conductivity for each

cell
Usage

S3 method for class 'conductanceMatrix'

plot(x, ...)
Arguments

X conductanceMatrix

arguments passed to terra: :plot
rasterise converts conductanceMatrix to SpatRaster

Description

converts conductanceMatrix to SpatRaster

Usage

rasterise(x)

Arguments

X conductanceMatrix

Value

spatRaster

Author(s)

Joseph Lewis

22 replace_values
Examples
r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler"”, neighbours = 4)

cs_rast <- rasterise(slope_cs)

replace_values replace values with values from another object

Description
Replace values of conductanceMatrix x with the values of conductanceMatrix y that coincide
with the supplied sf object

Usage

replace_values(x, y, sf)

Arguments
X conductanceMatrix
y conductanceMatrix
sf sf

Details

The values of conductanceMatrix x are replaced with the values from conductanceMatrix y that
coincide with the supplied sf object

Value

conductanceMatrix

Author(s)

Joseph Lewis

Examples

r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
X <- create_slope_cs(x = r, cost_function = "tobler”, neighbours = 4)

locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(960745, 4166836)),

crs = terra::crs(r)))

locs <- sf::st_buffer(x = locs, dist = 25000)

update_values 23

y <- update_values(x = x, sf = locs, FUN = function(j) { j + 10})
output <- replace_values(x = x, y =y, sf = locs)

identical(y$conductanceMatrix, output$conductanceMatrix)

update_values update values in a conductanceMatrix

Description

Apply a function to values in the conductanceMatrix that coincide with the supplied sf object

Usage

update_values(x, sf, FUN)

Arguments
X conductanceMatrix
sf sf
FUN function

Details

An updated conductanceMatrix is produced by assessing which areas of the conductanceMatrix
coincide with the supplied sf object. The values within the areas that coincide with the sf object are
modified based on the supplied function

Value

conductanceMatrix

Author(s)
Joseph Lewis
Examples
r <- terra::rast(system.file("extdata/SICILY_1000m.tif", package="leastcostpath”))
slope_cs <- create_slope_cs(x = r, cost_function = "tobler”, neighbours = 4)
locs <- sf::st_sf(geometry = sf::st_sfc(
sf::st_point(c(960745, 4166836)),

crs = terra::crs(r)))

locs <- sf::st_buffer(x = locs, dist = 25000)

update_values

slope_cs2 <- update_values(x = slope_cs, sf = locs,
FUN = function(j) { j * 0.6})

slope_cs3 <- update_values(x = slope_cs, sf = locs,
FUN = function(j) { j + 103})

slope_cs4 <- update_values(x = slope_cs, sf = locs,
FUN = function(j) { replace(x = j, values = 0)})

Index

add_dem_error, 2
add_global_stochasticity, 3

buffer_validation, 5

calculate_distance, 6
check_locations, 6
create_accum_cost, 7
create_cost_corridor, 8
create_cs, 9
create_distance_cs, 10
create_FETE_lcps, 11
create_lcp, 12
create_lcp_density, 13
create_slope_cs, 14
crop_cs, 17

force_isotropy, 17
get_coordinates, 18
neighbourhood, 19

PDI_validation, 19
plot.conductanceMatrix, 21

rasterise, 21
replace_values, 22

update_values, 23

25

	add_dem_error
	add_global_stochasticity
	buffer_validation
	calculate_distance
	check_locations
	create_accum_cost
	create_cost_corridor
	create_cs
	create_distance_cs
	create_FETE_lcps
	create_lcp
	create_lcp_density
	create_slope_cs
	crop_cs
	force_isotropy
	get_coordinates
	neighbourhood
	PDI_validation
	plot.conductanceMatrix
	rasterise
	replace_values
	update_values
	Index

