Package ‘lambda.r’

October 13, 2022
Type Package

Title Modeling Data with Functional Programming
Version 1.2.4

Date 2019-09-15

Depends R (>=3.0.0)

Imports formatR

Suggests testit

Author Brian Lee Yung Rowe

Maintainer Brian Lee Yung Rowe <r@zatonovo.com>

Description A language extension to efficiently write functional programs in R. Syntax extensions in-
clude multi-part function definitions, pattern matching, guard statements, built-in (op-
tional) type safety.

License LGPL-3

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2019-09-18 14:30:02 UTC

R topics documented:

lambda.r-package e 2
duck-typing 8
INrospection e e 9
UseFunction 11
DoaSTo . . . o o e e e e e e e e e 12
Index 15

2 lambda.r-package

lambda. r-package Modeling Data with Functional Programming

Description

Lambda.r is a language extension that supports a functional programming style in R. As an alter-
native to the object-oriented systems, lambda.r offers a functional syntax for defining types and
functions. Functions can be defined with multiple distinct function clauses similar to how multipart
mathematical functions are defined. There is also support for pattern matching and guard expres-
sions to finely control function dispatching, all the while still supporting standard features of R.
Lambda.r also introduces its own type system with intuitive type constructors are and type con-
straints that can optionally be added to function definitions. Attributes are also given the attention
they deserve with a clean and convenient syntax that reduces type clutter.

Details

Package: lambda.r

Type: Package
Version: 1.2.4
Date: 2019-09-15

License: LGPL-3
LazylLoad: yes

Data analysis relies so much on mathematical operations, transformations, and computations that a
functional approach is better suited for these types of applications. The reason is that object models
rarely make sense in data analysis since so many transformations are applied to data sets. Trying
to define classes and attach methods to them results in a futile enterprise rife with arbitrary choices
and hierarchies. Functional programming avoids this unnecessary quandry by making objects and
functions first class and preserving them as two distinct entities.

R provides many functional programming concepts mostly inherited from Scheme. Concepts like
first class functions and lazy evaluation are key components to a functional language, yet R lacks
some of the more advanced features of modern functional programming languages. Lambda.r intro-
duces a syntax for writing applications using a declarative notation that facilitates reasoning about
your program in addition to making programs modular and easier to maintain.

Function Definition: Functions are defined using the %as% (or %:=%) symbol in place of <-.
Simple functions can be defined as simply

f(x) %as% x

and can be called like any other function.

(1)

Functions that have a more complicated body require braces.

f(x) %as% { 2 * x }

lambda.r-package 3

g(x, y) %:=% {
z<-XxX+y
sqrt(z)

}

Infix notation: Functions can be defined using infix notation as well. For the function g above,
it can be defined as an infix operator using
X %g% y %:=% z <- X +y sqrt(z)

Multipart functions and guards: Many functions are defined in multiple parts. For example
absolute value is typically defined in two parts: one covering negative numbers and one covering
everything else. Using guard expressions and the %when% keyword, these parts can be easily
captured.
abs(x) %when% { x < @ } %as% -x
abs(x) %as% x
Any number of guard expressions can be in a guard block, such that all guard expressions must
evaluate to true.
abs(x) %when% {

is.numeric(x)

length(x) ==

x <0
} %as% -x

abs(x) %when% {
is.numeric(x)
length(x) ==
} %askh x
If a guard is not satisfied, then the next clause is tried. If no function clauses are satisfied, then
an error is thrown.

Pattern matching: Simple scalar values can be specified in a function definition in place of a
variable name. These scalar values become patterns that must be matched exactly in order for
the function clause to execute. This syntactic technique is known as pattern matching.
Recursive functions can be defined simply using pattern matching. For example the famed
Fibonacci sequence can be defined recursively.

fib(Q) %as% 1

fib(1) %as% 1

fib(n) %as% { fib(n-1) + fib(n-2) }

This is also useful for conditionally executing a function. The reason you would do this is that
it becomes easy to symbolically transform the code, making it easier to reason about.

pad(x, length, TRUE) %as% c(rep(NA,length), x)

pad(x, length, FALSE) %as% x

It is also possible to match on NULL and NA.

sizeof (NULL) %as% ©

sizeof (x) %as% length(x)

Types: A type is a custom data structure with meaning. Formally a type is defined by its type
constructor, which codifies how to create objects of the given type. The lambda.r type system is
fully compatible with the built-in S3 system. Types in lambda.r must start with a capital letter.

lambda.r-package

Type constructors: A type constructor is responsible for creating objects of a given type. This
is simply a function that has the name of the type. So to create a type Point create its type
constructor.

Point(x,y) %as% list(x=x,y=y)

Note that any built-in data structure can be used as a base type. Lambda.r simply extends the
base type with additional type information.

Types are then created by calling their type constructor.

p <- Point(3,4)

To check whether an object is of a given type, use the %isa% operator.

p %isa% Point

Type constraints: Once a type is defined, it can be used to limit execution of a function. R
is a dynamically typed language, but with type constraints it is possible to add static typing to
certain functions. S4 does the same thing, albeit in a more complicated manner.

Suppose we want to define a distance function for Point. Since it is only meaningful for Points
we do not want to execute it for other types. This is achieved by using a type constraint, which
declares the function argument types as well as the type of the return value. Type constraints are
defined by declaring the function signature followed by type arguments.

distance(a,b) %::% Point : Point : numeric

distance(a,b) %as% { sqrt((b$x - a$x)*2 + (b$y - as$y)*2) }

With this type constraint distance will only be called if both arguments are of type Point.
After the function is applied, a further requirement is that the return value must be of type
numeric. Otherwise lambda.r will throw an error. Note that it is perfectly legal to mix and
match lambda.r types with S3 types in type constraints.

Type variables: Declaring types explicitly gives a lot of control, but it also limits the natural
polymorphic properties of R functions. Sometimes all that is needed is to define the relationship
between arguments. These relationships can be captured by a type variable, which is simply any
single lower case letter in a type constraint.

In the distance example, suppose we do not want to restrict the function to just Points, but
whatever type is used must be consistent for both arguments. In this case a type variable is
sufficient.

distance(a,b) %::% z : z : numeric

distance(a,b) %as% { sqrt((b$x - a$x)*2 + (b$y - as$y)*2) }

The letter z was used to avoid confusion with the names of the arguments, although it would
have been just as valid to use a.

Type constraints and type variables can be applied to any lambda.r function, including type
constructors.

The ellipsis type: The ellipsis can be inserted in a type constraint. This has interesting properties
as the ellipsis represents a set of arguments. To specify that input values should be captured by
the ellipsis, use ... within the type constraint. For example, suppose you want a function
that multiplies the sum of a set of numbers. The ellipsis type tells lambda.r to bind the types
associated with the ellipsis type.

sumprod(x, ..., na.rm=TRUE) %::% numeric : ... : logical : numeric
sumprod(x, ..., na.rm=TRUE) %as% { x * sum(..., na.rm=na.rm) }

> sumprod(4, 1,2,3,4)
[1] 40

lambda.r-package 5

Alternatively, suppose you want all the values bound to the ellipsis to be of a certain type. Then

you can append “*...““* to a concrete type.
sumprod(x, ..., na.rm=TRUE) %::% numeric : numeric... : logical : numeric
sumprod(x, ..., na.rm=TRUE) %as% { x * sum(..., na.rm=na.rm) }

> sumprod(4, 1,2,3,4)

[1] 40
> sumprod(4, 1,2,3,4,'a')
Error in UseFunction(sumprod, "sumprod”, ...)

No valid function for 'sumprod(4,1,2,3,4,a)"'
If you want to preserve polymorphism but still constrain values bound to the ellipsis to a single
type, you can use a type variable. Note that the same rules for type variables apply. Hence a
type variable represents a type that is not specified elsewhere.
sumprod(x, ..., na.rm=TRUE) %::% a : a... : logical : a
sumprod(x, ..., na.rm=TRUE) %as% { x * sum(..., na.rm=na.rm) }

> sumprod(4, 1,2,3,4)

[1] 40
> sumprod(4, 1,2,3,4,'a')
Error in UseFunction(sumprod, "sumprod”, ...)

No valid function for 'sumprod(4,1,2,3,4,a)'

The don’t-care type: Sometimes it is useful to ignore a specific type in a constraint. Since we
are not inferring all types in a program, this is an acceptable action. Using the “*.“‘ within a
type constraint tells lambda.r to not check the type for the given argument.

For example in f(x, y) %::% . : numeric : numeric, the type of x will not be checked.

Attributes: The attribute system in R is a vital, yet often overlooked feature. This orthogonal
data structure is essentially a list attached to any object. The benefit of using attributes is that it
reduces the need for types since it is often simpler to reuse existing data structures rather than
create new types.

Suppose there are two kinds of Points: those defined as Cartesian coordinates and those as Polar
coordinates. Rather than create a type hierarchy, you can attach an attribute to the object. This
keeps the data clean and separate from meta-data that only exists to describe the data.

Point(r,theta, 'polar') %as% {
o0 <- list(r=r,theta=theta)
o@system <- 'polar'

o

Point(x,y, 'cartesian') %as% {
o <- list(x=x,y=y)
o@system <- 'cartesian'
o

}
Then the distance function can be defined according to the coordinate system.

distance(a,b) %::% z : z : numeric

6 lambda.r-package

distance(a,b) %when% {
a@system == 'cartesian'
b@system == 'cartesian'
Y} %askh {
sqrt((b$x - a$x)*2 + (b$y - a$y)*2)

3

distance(a,b) %when% {
a@system == 'polar'
b@system == 'polar’

} %askh {
sgrt(as$r*2 + b$r*2 - 2 * a$r * b$r x cos(a$theta - b$theta))
3

Note that the type constraint applies to both function clauses.

Debugging: As much as we would like, our code is not perfect. To help troubleshoot any
problems that exist, lambda.r provides hooks into the standard debugging system. Use debug.1r
as a drop-in replacement for debug and undebug. 1r for undebug. In addition to being aware of
multipart functions, lambda.r’s debugging system keeps track of what is being debugged, so you
can quickly determine which functions are being debugged. To see which functions are currently
marked for debugging, call which.debug. Note that if you use debug. 1r for all debugging then
lambda.r will keep track of all debugging in your R session. Here is a short example demonstrating
this.

f(x) %as% x
debug.1r(f)
debug.1lr(mean)

which.debug()
-I] Ilf” Hmeann

m VvV V V V V

Note

Stable releases are uploaded to CRAN about once a year. The most recent package is always
available on github [2] and can be installed via ‘rpackage‘ in ‘crant‘ [3].

rpackage https://github.com/zatonovo/lambda.r/archive/master.zip

Author(s)

Brian Lee Yung Rowe

Maintainer: Brian Lee Yung Rowe <r@zatonovo.com>

References

[1] Blog posts on lambda.r: http://cartesianfaith.com/category/r/lambda-r/
[2] Lambda.r source code, https://github.com/muxspace/lambda.r
[3] Crant, https://github.com/muxspace/crant

lambda.r-package

See Also

%as%, describe, debug.lr, %isa%

Examples

is.wholenumber <-
function(x, tol = .Machine$double.eps”@.5) abs(x - round(x)) < tol

Use built in types for type checking
fib(n) %::% numeric : numeric
fib(0Q) %as% 1
fib(1) %as% 1
fib(n) %when% {
is.wholenumber(n)
} %ask% {
fib(n-1) + fib(n-2)
3

fib(5)

Using custom types
Integer(x) %when% { is.wholenumber(x) } %as% x

fib.a(n) %::% Integer : Integer

fib.a(@) %as% Integer(1)

fib.a(1) %as% Integer(1)

fib.a(n) %as% { Integer(fib.a(n-1) + fib.a(n-2)) }

fib.a(Integer(5))
Newton-Raphson optimization

converged <- function(x1, x@, tolerance=1e-6) abs(x1 - x@) < tolerance
minimize <- function(x@, algo, max.steps=100)

{
step <- 0@
old.x <- x0
while (step < max.steps)
{
new.x <- iterate(old.x, algo)
if (converged(new.x, old.x)) break
old.x <- new.x
3
new. x
3

iterate(x, algo) %::% numeric : NewtonRaphson : numeric
iterate(x, algo) %as% { x - algo$f1(x) / algo$f2(x) }

iterate(x, algo) %::% numeric : GradientDescent : numeric
iterate(x, algo) %as% { x - algo$step * algo$f1(x) }

8 duck-typing

NewtonRaphson(f1, f2) %as% list(f1=f1, f2=f2)
GradientDescent(f1, step=0.01) %as% list(f1=f1, step=step)

fx <= function(x) x*2 - 4
f1 <= function(x) 2*x
f2 <- function(x) 2

algo <- NewtonRaphson(f1,f2)
minimize(3, algo)

algo <- GradientDescent(f1, step=0.1)
minimize(3, algo)

duck-typing Functions for duck typing

Description
Duck typing is a way to emulate type checking by virtue of an object’s characteristics as opposed
to strong typing.

Usage

argument %isa% type
argument %hasa% property
argument %hasall% property

Arguments
argument An object to inspect
type A type name
property A property of an object
Details

These operators provide a convenient method for testing for specific properties of an object.
%1sa% checks if an object is of the given type.

%hasa% checks if an object has a given property. This can be any named element of a list or
data.frame.

Value

Boolean value indicating whether the specific test is true or not.

introspection 9

Author(s)

Brian Lee Yung Rowe

See Also

%ash

Examples

5 %isa% numeric

Point(r,theta, 'polar') %as% {
o <- list(r=r,theta=theta)
o@system <- 'polar'

o
3
p <- Point(5, pi/2, 'polar')
p
introspection Introspection for lambda.r
Description

These tools are used for debugging and provide a means of examining the evaluation order of the
function definitions as well as provide a lambda.r compatible debugger.

Usage
debug.1lr(x)
undebug.1r(x)
is.debug(fn.name)
which.debug()
undebug.all()
describe(...)
S3 method for class 'lambdar.fun'
print(x, ...)

S3 method for class 'lambdar.type'
print(x, ...)

10 introspection

Arguments
X The function
fn.name The name of the function
Additional arguments
Details

For a basic description of the function it is easiest to just type the function name in the shell.
This will call the print methods and print a clean output of the function definition. The definition
is organized based on each function clause. If a type constraint exists, this precedes the clause
signature including guards. To reduce clutter, the actual body of the function clause is not printed.
To view a clause body, each clause is prefixed with an index number, which can be used in the
describe function to get a full listing of the function.

describe(fn, idx)

The ’debug.Ir’ and "undebug.Ir’ functions are replacements for the built-in debug and undebug func-
tions. They provide a mechanism to debug a complete function, which is compatible with the dis-
patching in lambda.r. The semantics are identical to the built-ins. Note that these functions will
properly handle non-lambda.r functions so only one set of commands need to be issued.

Lambda.r keeps track of all functions that are being debugged. To see if a function is currently
set for debugging, use the is.debug function. To see all functions that are being debugged, use
which.debug. It is possible to undebug all debugged functions by calling undebug.all.

Value

The defined functions are invisibly returned.

Author(s)

Brian Lee Yung Rowe

Examples

Not run:
f(x)
debug.1lr(f)
which.debug()
undebug.1r(f)

End(Not run)

UseFunction 11

UseFunction Primary dispatcher for functional programming

Description

UseFunction manages the dispatching for multipart functions in lambda.r. This is used internally

by lambda.r.
Usage
UseFunction(fn, fn.name, ...)
NewObject(type.fn, type.name, ...)
Arguments
fn The function reference that is being applied
fn.name The name of a function that uses functional dispatching. This is just the name
of the function being defined
type.fn The function representing the type constructor
type.name The name of the type
The arguments that are passed to dispatched functions
Details

This function is used internally and generally does not need to be called by an end user.

Value

Returns the value of the dispatched function

Author(s)

Brian Lee Yung Rowe

See Also

%ash

Examples

Note that these are trivial examples for pedagogical purposes. Due to their
trivial nature, most of these examples can be implemented more concisely
using built-in R features.

reciprocal(x) %::% numeric : numeric
reciprocal(x) %when% {

12

x =0
Y %as% {

1/ x
3

reciprocal(x) %::% character :

reciprocal(x) %as% {
reciprocal(as.numeric(x))

}

seal(reciprocal)

print(reciprocal)
reciprocal (4)
reciprocal(”4")

numeric

%as %

%as% Define functions and type constructors in lambda.r

Description

The %as% function is used in place of the assignment operator for defining functions and type
constructors with lambda.r. The %as% operator is the gateway to a full suite of advanced functional

programming features.

Usage

signature %::% types
signature %as% body

seal(fn)
Arguments
signature The function signature for the function to be defined
types The type constraints for the function
body The body of the function
fn The function to seal
Details

The %as% and %::% operators are the primary touch points with lambda.r.

Functions are defined using %as% notation. Any block of code can be in the function definition.
For simple criteria, pattern matching of literals can be used directly in lambda.r. Executing different
function clauses within a multipart function sometimes requires more detail than simple pattern
matching. For these scenarios a guard statement is used to define the condition for execution.
Guards are simply an additional clause in the function definition defined by the %when% operator.

%as % 13

fib(n) %when% { n>=0 } %as% { fib(n-1) + fib(n-2) }

A function variant only executes if the guard statements all evaluate to true. As many guard state-
ments as desired can be added in the block. Just separate them with either a new line or a semi-colon.

Type constructors are no different from regular functions with one exception: the function name
must start with a capital letter. In lambda.r, types are defined in PascalCase and functions are lower
case. Violating this rule will result in undefined behavior. The return value of the type constructor
is the object that represents the type. It will have the type attached to the object.

Number(x, set="real') %as% { x@set <- set x }

Attributes can be accessed using lambda.r’s at-notation, which borrows from S4’s member notation.
These attributes are standard R attributes and should not be confused with object properties. Hence
with lambda.r it is possible to use both the $ to access named elements of lists and data.frames while
using the @ symbol to access the object’s attributes.

Type constraints specify the type of each input argument in addition to the return type. Using this
approach ensures that the arguments can only have compatible types when the function is called.
The final type in the constraint is the return type, which is checked after a function is called. If the
result does not have the correct return type, then the call will fail. Each type is separated by a colon
and their order is defined by the order of the function clause signature.

Each function clause can have its own type constraint. Once a constraint is defined, it will continue
to be valid until another type constraint is defined.

’seal’ finalizes a function definition. Any new statements found will reset the definition, effec-
tively deleting it. This is useful to prevent other people from accidentally modifying your function
definition.

Value

The defined functions are invisibly returned.

Author(s)

Brian Lee Yung Rowe

Examples

Type constraints are optional and include the return type as the
final type

reciprocal(x) %::% numeric : numeric

reciprocal(@) %as% stop(”"Division by @ not allowed”)

The type constraint is still valid for this function clause
reciprocal(x) %when% {
Guard statements can be added in succession
X 1= 0
Attributes can be accessed using '@' notation
is.null(x@dummy.attribute)
} %ask {
This is the body of the function clause
1/ x

14

This new type constraint applies from this point on
reciprocal(x) %::% character : numeric
reciprocal(x) %as% {

reciprocal(as.numeric(x))

}

Seal the function so no new definitions are allowed
seal(reciprocal)

print(reciprocal)
reciprocal (4)
reciprocal("4")

%as %

Index

+ methods
%ash, 12
duck-typing, 8
introspection, 9
UseFunction, 11
+ package
lambda. r-package, 2
* programming
%ash, 12
duck-typing, 8
introspection, 9
lambda. r-package, 2
UseFunction, 11
%::% (%ash), 12
%:=% (%haskh), 12
%hasa% (duck-typing), 8
%hasall% (duck-typing), 8
%isa% (duck-typing), 8
%ash, 7,9, 11,12
%isak, 7

debug.1lr, 7

debug.lr (introspection), 9

describe, 7

describe (introspection), 9

duck-typing, 8
EMPTY (%as%), 12

introspection, 9

is.debug (introspection), 9

lambda.r (lambda.r-package), 2

lambda.r-package, 2

NewObject (UseFunction), 11

print.lambdar.fun (introspection), 9
print.lambdar.type (introspection), 9

seal (%as%), 12

undebug.all (introspection), 9
undebug.1r (introspection), 9
UseFunction, 11

which.debug (introspection), 9

	lambda.r-package
	duck-typing
	introspection
	UseFunction
	%as%
	Index

