--- title: "Example Analysis using jointCompRisk" author: "Wenqing Zhang" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Example Analysis} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ### Part I: CIF Inference ```{r setup, include=FALSE} library(jointCompRisk) library(readr) library(dplyr) library(survival) ``` ```{r} raw <- read.csv("main_df.csv") long <- read.csv("long_df.csv") ``` ```{r} # 1) Standard CIF: mydata_std <- prep_data_cif( data = raw, ID = "ID", TimeToRecovery = "TimeToRecovery", TimeToDeath = "TimeToDeath", Recov_Censoring = "RecoveryCensoringIndicator", Death_Censoring = "DeathCensoringIndicator", Treatment = "Treatment" ) res_std <- do_cif_analysis(mydata_std, tau=15) res_std$RMLT1$groups res_std$RMLT1$contrast res_std$RMLT2$groups res_std$RMLT2$contrast ``` ```{r} # Prepare weighted CIF data with updated variable names prepped_w <- prep_data_weighted_cif( data_main = raw, data_long = long, wID_main = "ID", wTimeToRecovery_main = "TimeToRecovery", wTimeToDeath_main = "TimeToDeath", wRecov_Censoring_main = "RecoveryCensoringIndicator", wDeath_Censoring_main = "DeathCensoringIndicator", wTreatment_main = "Treatment", wBaselineScore_main = "BaselineScore", wID_long = "PersonID", wADY_long = "RelativeDay", wScore_long = "OrdinalScore", wStates_death = c(4,5,6,7), wWeights_death = c(2,1.5,1,0.5), wStates_discharge = c(4,5,6,7), wWeights_discharge = c(0.5,1,1.5,2) ) # Run Weighted CIF analysis at tau=15 res_w15 <- do_weighted_cif_analysis(prepped_w, tau=15) res_w15$WRMLT1$groups res_w15$WRMLT1$contrast res_w15$WRMLT2$groups res_w15$WRMLT2$contrast # Run Weighted CIF analysis at tau=29 res_w29 <- do_weighted_cif_analysis(prepped_w, tau=29) res_w29$WRMLT1$groups res_w29$WRMLT1$contrast res_w29$WRMLT2$groups res_w29$WRMLT2$contrast ```