## ----setup-------------------------------------------------------------------- library(iCARH) library(abind) Tp=4L # timepoints N=10L # number of samples J=14L # number of metabolites K=2L # number of bacteria species P=8L # number of pathways set.seed(12473) ## ----real data, eval=F-------------------------------------------------------- # keggid = list("Unk1", "C03299","Unk2","Unk3", # c("C08363", "C00712") # allowing multiple ids per metabolite # ) # pathways = iCARH.getPathwaysMat(keggid, "rno") ## ----pathways----------------------------------------------------------------- # Example of manually picked pathways # path.names = c("path:map00564","path:map00590","path:map00061","path:map00591", # "path:map00592","path:map00600","path:map01040","path:map00563") # Specify expected proportion of metabolites per pathway path.probs = 0.8 data.sim = iCARH.simulate(Tp, N, J, P, K, path.probs = 0.8, Zgroupeff=c(0,4), beta.val=c(1,-1,0.5, -0.5)) XX = data.sim$XX Y = data.sim$Y Z = data.sim$Z pathways = data.sim$pathways XX[2,2,2] = NA #missing value example ## ----------------------------------------------------------------------------- pathways.bin = lapply(pathways, function(x) { y=1/(x+1); diag(y)=0; y}) adjmat = rowSums(abind::abind(pathways.bin, along = 3), dims=2) cor.thresh = 0.7 # check number of metabolites in same pathway but not correlated for(i in 1:Tp) print(sum(abs(cor(XX[i,,])[which(adjmat>0)])