Title: | Compute Global Sensitivity Analysis Indices Using Optimal Transport |
Version: | 1.1.0 |
Description: | Computing Global Sensitivity Indices from given data using Optimal Transport, as defined in Borgonovo et al (2024) <doi:10.1287/mnsc.2023.01796>. You provide an input sample, an output sample, decide the algorithm, and compute the indices. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
Imports: | boot, ggplot2, patchwork (≥ 1.2.0), Rcpp, RcppEigen (≥ 0.3.4.0.0), Rdpack (≥ 2.4), stats, transport (≥ 0.15.0) |
URL: | https://github.com/pietrocipolla/gsaot, https://pietrocipolla.github.io/gsaot/ |
BugReports: | https://github.com/pietrocipolla/gsaot/issues |
LinkingTo: | Rcpp, RcppEigen |
VignetteBuilder: | knitr |
RdMacros: | Rdpack |
NeedsCompilation: | yes |
Packaged: | 2025-07-18 09:21:57 UTC; dagileonardo |
Author: | Leonardo Chiani |
Maintainer: | Leonardo Chiani <leonardo.chiani@polimi.it> |
Repository: | CRAN |
Date/Publication: | 2025-07-18 09:40:01 UTC |
Compute confidence intervals for sensitivity indices
Description
Computes confidence intervals for a gsaot_indices
object using
bootstrap results.
Usage
## S3 method for class 'gsaot_indices'
confint(object, parm = NULL, level = 0.95, type = "norm", ...)
Arguments
object |
An object of class |
parm |
A specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. |
level |
(default is 0.95) Confidence level for the interval. |
type |
(default is |
... |
Additional arguments (currently unused). |
Value
A data frame with the following columns:
-
input
: Name of the input variable. -
component
: The index component for Wasserstein-Bures. -
index
: Estimated indices -
original
: Original estimates. -
bias
: Bootstrap bias estimate. -
low.ci
: Lower bound of the confidence interval. -
high.ci
: Upper bound of the confidence interval.
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
y <- y
res <- ot_indices_wb(x, y, 10, boot = TRUE, R = 100)
confint(res, parm = c(1,3), level = 0.9)
Entropic lower bounds for entropic optimal transport sensitivity indices
Description
Calculate entropic lower bounds for entropic Optimal Transport sensitivity indices
Usage
entropic_bound(
y,
M,
cost = "L2",
discrete_out = FALSE,
solver = "sinkhorn",
solver_optns = NULL,
scaling = TRUE
)
Arguments
y |
An array or a matrix containing the output values. |
M |
A scalar representing the number of partitions for continuous inputs. |
cost |
(default |
discrete_out |
(default |
solver |
Solver for the Optimal Transport problem. Currently supported options are:
|
solver_optns |
(optional) A list containing the options for the Optimal Transport solver. See details for allowed options and default ones. |
scaling |
(default |
Details
The function allows the computation of the entropic lower bounds.
solver
should be either "sinkhorn"
or "sinkhorn_log"
.
Value
A scalar representing the entropic lower bound.
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
M <- 25
sink_lb <- entropic_bound(y, M)
Multivariate Gaussian linear model evaluation
Description
Generates samples from a multivariate Gaussian distribution and evaluates a simple linear transformation model.
Usage
gaussian_fun(N)
Arguments
N |
Number of input samples to generate. |
Details
Inputs x
are sampled from:
\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma), \quad \boldsymbol{\mu} = [1, 1, 1], \quad \Sigma = \begin{bmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{bmatrix}
The output is given by:
\mathbf{Y} = A \mathbf{X}^{\top}, \quad A = \begin{bmatrix} 4 & -2 & 1 \\ 2 & 5 & -1 \end{bmatrix}
Value
A list with two elements:
-
x
: a numeric matrix of sizeN x 8
containing the input samples. -
y
: a numeric vector of lengthN
with the corresponding function outputs.
See Also
Examples
result <- gaussian_fun(1000)
head(result$x)
head(result$y)
Irrelevance threshold for optimal transport sensitivity indices
Description
Calculate irrelevance threshold using dummy variable for Optimal Transport sensitivity indices
Usage
irrelevance_threshold(
y,
M,
dummy_optns = NULL,
cost = "L2",
discrete_out = FALSE,
solver = "sinkhorn",
solver_optns = NULL,
scaling = TRUE
)
Arguments
y |
An array or a matrix containing the output values. |
M |
A scalar representing the number of partitions for continuous inputs. |
dummy_optns |
(default |
cost |
(default |
discrete_out |
(default |
solver |
Solver for the Optimal Transport problem. Currently supported options are:
|
solver_optns |
(optional) A list containing the options for the Optimal Transport solver. See details for allowed options and default ones. |
scaling |
(default |
Details
The function allows the computation of irrelevance threshold.
The function samples from a distribution defined in
dummy_optns
(by default a standard normal), independent from the output
y
and then computes the indices using the algorithm specified in
solver
. Under the hood, lower_bound
calls the other available functions
in the package:
-
ot_indices_1d()
(forsolver="1d"
) -
ot_indices_wb()
(forsolver="wasserstein-bures"
) -
ot_indices()
(forsolver %in% c("sinkhorn", "sinkhorn_log", "wasserstein")
) The user can choose the distribution of the dummy variable using the argumentdummy_optns
.dummy_optns
should be a named list with at least a term called"distr"
defining the sampling function. The other terms in the list are used as arguments to the sampling function.
Value
An object of class gsaot_indices
.
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
M <- 25
dummy_lb <- irrelevance_threshold(y, M)
# Custom sampling funtion and network simplex solver
dummy_optns <- list(distr = "rgamma", shape = 3)
dummy_lb_cust <- irrelevance_threshold(y, M,
dummy_optns = dummy_optns,
solver = "transport")
Ishigami-Homma function evaluation
Description
Evaluates the Ishigami-Homma function.
Input samples are drawn from a uniform distribution over [-\pi, \pi]^3
Usage
ishi_homma_fun(N, A = 2, B = 1)
Arguments
N |
Number of input samples to generate. |
A |
(default: |
B |
(default: |
Details
The Ishigami-Homma function is defined as:
Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)
where X_i \sim \mathcal{U}(-\pi, \pi)
.
Value
A list with two elements:
-
x
: a numeric matrix of sizeN x 8
containing the input samples. -
y
: a numeric vector of lengthN
with the corresponding function outputs.
See Also
Examples
result <- ishi_homma_fun(1000)
head(result$x)
head(result$y)
Estimate optimal transport sensitivity indices for generic outputs
Description
ot_indices
calculates sensitivity indices using Optimal
Transport (OT) for a multivariate output sample y
with respect to input
data x
. Sensitivity indices measure the influence of inputs on outputs,
with values ranging between 0 and 1.
Usage
ot_indices(
x,
y,
M,
cost = "L2",
discrete_out = FALSE,
solver = "sinkhorn",
solver_optns = NULL,
scaling = TRUE,
boot = FALSE,
stratified_boot = TRUE,
R = NULL,
parallel = "no",
ncpus = 1,
conf = 0.95,
type = "norm"
)
Arguments
x |
A matrix or data.frame containing the input(s) values. The values
can be numeric, factors, or strings. The type of data changes the
partitioning. If the values are continuous (double), the function
partitions the data into |
y |
A matrix containing the output values. Each column represents a different output variable, and each row represents a different observation. Only numeric values are allowed. |
M |
A scalar representing the number of partitions for continuous inputs. |
cost |
(default |
discrete_out |
(default |
solver |
Solver for the Optimal Transport problem. Currently supported options are:
|
solver_optns |
(optional) A list containing the options for the Optimal Transport solver. See details for allowed options and default ones. |
scaling |
(default |
boot |
(default |
stratified_boot |
(default |
R |
(default |
parallel |
(default |
ncpus |
(default |
conf |
(default |
type |
(default |
Details
Solvers
OT is a widely studied topic in Operational Research and Calculus. The
reference for the OT solvers in this package is
Peyré et al. (2019). The default solver is
"sinkhorn"
, the Sinkhorn's solver introduced in
Cuturi (2013). It solves the
entropic-regularized version of the OT problem. The "sinkhorn_log"
solves
the same OT problem but in log scale. It is more stable for low values of
the regularization parameter but slower to converge. The option
"transport"
is used to choose a solver for the non-regularized OT
problem. Under the hood, the function calls transport::transport()
from
package transport
. This option does not define the solver per se, but the
solver should be defined with the argument solver_optns
. See the next
section for more information.
Solver options
The argument solver_optns
should be empty (for default options) or a list
with all or some of the required solver parameters. All the parameters not
included in the list will be set to default values. The solvers
"sinkhorn"
and "sinkhorn_log"
have the same options:
-
numIterations
(default1e3
): a positive integer defining the maximum number of Sinkhorn's iterations allowed. If the solver does not converge in the number of iterations set, the solver will throw an error. -
epsilon
(default0.01
): a positive real number defining the regularization coefficient. If the value is too low, the solver may returnNA
. -
maxErr
(default1e-9
): a positive real number defining the approximation error threshold between the marginal histogram of the partition and the one computed by the solver. The solver may fail to converge innumIterations
if this value is too low.
The solver "transport"
has the parameters:
-
method
(default"networkflow
): string defining the solver of the OT problem. -
control
: a named list of parameters for the chosen method or the result of a call totransport::trcontrol()
. -
threads
(default1
): an Integer specifying the number of threads used in parallel computing.
For details regarding this solver, check the transport::transport()
help
page.
Value
A gsaot_indices
object containing:
-
method
: a string that identifies the type of indices computed. -
indices
: a names array containing the sensitivity indices between 0 and 1 for each column in x, indicating the influence of each input variable on the output variables. -
bound
: a double representing the upper bound of the separation measure or an array representing the mean of the separation for each input according to the bootstrap replicas. -
x
,y
: input and output data provided as arguments of the function. -
inner_statistic
: a list of matrices containing the values of the inner statistics for the partitions defined bypartitions
. Ifmethod = wasserstein-bures
, each matrix has three rows containing the Wasserstein-Bures indices, the Advective, and the Diffusive components. -
partitions
: a matrix containing the partitions built to calculate the sensitivity indices. Each column contains the partition associated to the same column inx
.
If boot = TRUE
, the object contains also:
-
indices_ci
: adata.frame
with first column the input, second and third columns the lower and upper bound of the confidence interval. -
inner_statistic_ci
: a list of matrices. Each element of the list contains the lower and upper confidence bounds for the partition defined by the row. -
bound_ci
: a list containing the lower and upper bounds of the confidence intervals of the separation measure bound. -
type
,conf
: type of confidence interval and confidence level, provided as arguments. -
W_boot
: list of bootstrap objects, one for each input.
References
Cuturi M (2013).
“Sinkhorn distances: Lightspeed computation of optimal transport.”
Advances in neural information processing systems, 26.
Peyré G, Cuturi M, others (2019).
“Computational optimal transport: With applications to data science.”
Foundations and Trends® in Machine Learning, 11(5-6), 355–607.
See Also
ot_indices_1d()
, ot_indices_wb()
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
M <- 25
# Calculate sensitivity indices
sensitivity_indices <- ot_indices(x, y, M)
sensitivity_indices
Estimate optimal transport indices on one dimensional outputs
Description
Estimate optimal transport indices on one dimensional outputs
Usage
ot_indices_1d(
x,
y,
M,
p = 2,
boot = FALSE,
R = NULL,
parallel = "no",
ncpus = 1,
conf = 0.95,
type = "norm"
)
Arguments
x |
A matrix or data.frame containing the input(s) values. The values
can be numeric, factors, or strings. The type of data changes the
partitioning. If the values are continuous (double), the function
partitions the data into |
y |
An array containing the output values. |
M |
A scalar representing the number of partitions for continuous inputs. |
p |
A numeric representing the p-norm Lp used as ground cost in the Optimal Transport problem. |
boot |
(default |
R |
(default |
parallel |
(default |
ncpus |
(default |
conf |
(default |
type |
(default |
Value
A gsaot_indices
object containing:
-
method
: a string that identifies the type of indices computed. -
indices
: a names array containing the sensitivity indices between 0 and 1 for each column in x, indicating the influence of each input variable on the output variables. -
bound
: a double representing the upper bound of the separation measure or an array representing the mean of the separation for each input according to the bootstrap replicas. -
x
,y
: input and output data provided as arguments of the function. -
inner_statistic
: a list of matrices containing the values of the inner statistics for the partitions defined bypartitions
. Ifmethod = wasserstein-bures
, each matrix has three rows containing the Wasserstein-Bures indices, the Advective, and the Diffusive components. -
partitions
: a matrix containing the partitions built to calculate the sensitivity indices. Each column contains the partition associated to the same column inx
.
If boot = TRUE
, the object contains also:
-
indices_ci
: adata.frame
with first column the input, second and third columns the lower and upper bound of the confidence interval. -
inner_statistic_ci
: a list of matrices. Each element of the list contains the lower and upper confidence bounds for the partition defined by the row. -
bound_ci
: a list containing the lower and upper bounds of the confidence intervals of the separation measure bound. -
type
,conf
: type of confidence interval and confidence level, provided as arguments. -
W_boot
: list of bootstrap objects, one for each input.
See Also
Examples
x <- rnorm(1000)
y <- 10 * x
ot_indices_1d(data.frame(x), y, 10)
Estimate sensitivity maps using optimal transport indices
Description
Estimate sensitivity maps using optimal transport indices
Usage
ot_indices_smap(x, y, M)
Arguments
x |
A matrix or data.frame containing the input(s) values. The values
can be numeric, factors, or strings. The type of data changes the
partitioning. If the values are continuous (double), the function
partitions the data into |
y |
A matrix containing the output values. Each column is interpreted as a different output. |
M |
A scalar representing the number of partitions for continuous inputs. |
Value
A matrix where each column represents an input and each row
represents an output. The values are indices between 0 and 1 computed using
ot_indices_1d()
.
Examples
N <- 1000
x1 <- rnorm(N)
x2 <- rnorm(N)
x <- cbind(x1, x2)
y1 <- 10 * x1
y2 <- x1 + x2
y <- cbind(y1, y2)
ot_indices_smap(data.frame(x), y, 30)
Estimate Wasserstein-Bures approximation of the optimal transport solution
Description
Estimate Wasserstein-Bures approximation of the optimal transport solution
Usage
ot_indices_wb(
x,
y,
M,
boot = FALSE,
R = NULL,
parallel = "no",
ncpus = 1,
conf = 0.95,
type = "norm"
)
Arguments
x |
A matrix or data.frame containing the input(s) values. The values
can be numeric, factors, or strings. The type of data changes the
partitioning. If the values are continuous (double), the function
partitions the data into |
y |
A matrix containing the output values. Each column represents a different output variable, and each row represents a different observation. Only numeric values are allowed. |
M |
A scalar representing the number of partitions for continuous inputs. |
boot |
(default |
R |
(default |
parallel |
(default |
ncpus |
(default |
conf |
(default |
type |
(default |
Value
A gsaot_indices
object containing:
-
method
: a string that identifies the type of indices computed. -
indices
: a names array containing the sensitivity indices between 0 and 1 for each column in x, indicating the influence of each input variable on the output variables. -
bound
: a double representing the upper bound of the separation measure or an array representing the mean of the separation for each input according to the bootstrap replicas. -
x
,y
: input and output data provided as arguments of the function. -
inner_statistic
: a list of matrices containing the values of the inner statistics for the partitions defined bypartitions
. Ifmethod = wasserstein-bures
, each matrix has three rows containing the Wasserstein-Bures indices, the Advective, and the Diffusive components. -
partitions
: a matrix containing the partitions built to calculate the sensitivity indices. Each column contains the partition associated to the same column inx
.
If boot = TRUE
, the object contains also:
-
indices_ci
: adata.frame
with first column the input, second and third columns the lower and upper bound of the confidence interval. -
inner_statistic_ci
: a list of matrices. Each element of the list contains the lower and upper confidence bounds for the partition defined by the row. -
bound_ci
: a list containing the lower and upper bounds of the confidence intervals of the separation measure bound. -
type
,conf
: type of confidence interval and confidence level, provided as arguments. -
W_boot
: list of bootstrap objects, one for each input.
See Also
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
y <- y
ot_indices_wb(x, y, 10)
Plot optimal transport sensitivity indices
Description
Plot Optimal Transport based sensitivity indices using ggplot2
package.
Usage
## S3 method for class 'gsaot_indices'
plot(x, ranking = NULL, wb_all = FALSE, threshold = NULL, ...)
Arguments
x |
An object generated by |
ranking |
An integer with absolute value less or equal than the number
of inputs. If positive, select the first |
wb_all |
(default |
threshold |
(default |
... |
Further arguments passed to or from other methods. |
Value
A ggplot
object that, if called, will print
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
M <- 25
# Calculate sensitivity indices
sensitivity_indices <- ot_indices_wb(x, y, M)
sensitivity_indices
plot(sensitivity_indices)
Compare sensitivity indices across methods
Description
This function takes a list of gsaot_indices
objects
and generates a bar plot comparing the sensitivity indices across different methods.
Usage
plot_comparison(x_list, wb_all = FALSE)
Arguments
x_list |
A list of S3 objects of class |
wb_all |
(default |
Value
A ggplot
object representing the bar plot of sensitivity indices
grouped by input and colored by method.
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
M <- 25
# Calculate sensitivity indices
ind_wb <- ot_indices_wb(x, y, M)
ind_sink <- ot_indices(x, y, M)
plot_comparison(list(ind_wb, ind_sink))
Plot optimal transport local separations
Description
Plot Optimal Transport based local separations for each partition using
ggplot2
package. If provided, it plots also the uncertainty estimates.
Usage
plot_separations(x, ranking = NULL, wb_all = FALSE, ...)
Arguments
x |
An object generated by |
ranking |
An integer with absolute value less or equal than the number
of inputs. If positive, select the first |
wb_all |
(default |
... |
Further arguments passed to or from other methods. |
Value
A patchwork
object that, if called, will print.
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
M <- 25
# Get sensitivity indices
sensitivity_indices <- ot_indices(x, y, M)
plot_separations(sensitivity_indices)
Print optimal transport sensitivity indices information
Description
Print optimal transport sensitivity indices information
Usage
## S3 method for class 'gsaot_indices'
print(x, ...)
Arguments
x |
An object generated by |
... |
Further arguments passed to or from other methods. |
Value
The information contained in argument x
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
M <- 25
# Calculate sensitivity indices
sensitivity_indices <- ot_indices(x, y, M)
print(sensitivity_indices)
Sobol G function evaluation
Description
This function evaluates the Sobol G function on a set of input samples generated via crude Monte Carlos. It returns both the sampled inputs and the corresponding function outputs.
Usage
sobol_fun(N, a = c(0, 1, 4.5, 9, 99, 99, 99, 99))
Arguments
N |
Integer. Number of input samples to generate. |
a |
(default: |
Details
The Sobol G function is defined as:
Y = \prod_{j=1}^{8} \frac{|\ 4 X_j - 2\ | + a_j}{1 + a_j}
where X_j \sim \mathcal{U}(0, 1)
independently.
Value
A list with two elements:
-
x
: a numeric matrix of sizeN x 8
containing the input samples. -
y
: a numeric vector of lengthN
with the corresponding function outputs.
See Also
Examples
result <- sobol_fun(1000)
head(result$x)
head(result$y)
Summary method for gsaot_indices
objects
Description
Summary method for gsaot_indices
objects
Usage
## S3 method for class 'gsaot_indices'
summary(object, digits = 3, ranking = NULL, ...)
Arguments
object |
An object of class |
digits |
(default: |
ranking |
An integer with absolute value less or equal than the number
of inputs. If positive, select the first |
... |
Further arguments (currently ignored). |
Value
(Invisibly) a named list
containing the main elements
summarised on screen.