Package ‘glmmrBase’

July 8, 2025
Type Package
Title Generalised Linear Mixed Models in R
Version 1.0.1
Date 2025-07-08

Description Specification, analysis, simulation, and fitting of generalised linear mixed models.
Includes Markov Chain Monte Carlo Maximum likelihood and Laplace approximation model fit-
ting for a range of models,
non-linear fixed effect specifications, a wide range of flexible covariance func-
tions that can be combined arbitrarily,
robust and bias-corrected standard error estimation, power calculation, data simulation, and more.
See <https://samuel-watson.github.io/glmmr-web/> for a detailed manual.

License GPL (>=2)

Imports methods, Repp (>=1.0.11), R6, rstan (>= 2.32.1), rstantools
(>=23.1.1)

LinkingTo Rcpp (>=1.0.11), ReppEigen, SparseChol (>= 0.3.2), BH,
RceppParallel (>=5.0.1), rstan (>= 2.32.1), StanHeaders (>=
2.32.0)

RoxygenNote 7.3.2
NeedsCompilation yes
Author Sam Watson [aut, cre]

URL https://github.com/samuel-watson/glmmrBase

BugReports https://github.com/samuel-watson/glmmrBase/issues
Biarch true

Depends R (>= 3.5.0), Matrix (>= 1.3-1)

SystemRequirements GNU make

Encoding UTF-8

Config/testthat/edition 3

LazyData true

Maintainer Sam Watson <S.I.Watson@bham.ac.uk>

Repository CRAN

Date/Publication 2025-07-08 19:20:02 UTC

https://samuel-watson.github.io/glmmr-web/
https://github.com/samuel-watson/glmmrBase
https://github.com/samuel-watson/glmmrBase/issues

2

Contents

Index

Contents

glmmrBase-package o 3
Beta e e e e 4
coef.meml L e 5
coef.Model e e e e 5
confint.meml 6
CovarianCe e e e e e e e e e e e e e e e 6
cross_df . . . L 11
cycles . .o e 12
familymemlo 12
family.Model 13
fittedmeml e e e e 13
fitted.Model e 14
fixed.effects e e e 14
formulameml 15
formula.Model e e 15
hessian_from_formula 16
Imed_to_glmmr oL 17
loghikmeml 000 17
logLik.Model e 18
MatCh_TOWS o o o e e e e e 19
meml_glmer oL 19
meml_Imer e 21
menr_family L 22
MeanFunction e e e e e e 23
Model e 28
nelder e e e e e e e 51
nest_df L s 52
predictmemlo e 53
predict.Model 54
printmeml 54
progress_bar.o 55
Quantile e e 56
random.effects L 56
residuals.meml L 57
residuals.Model 57
Salamanders e 58
setParallel e 58
SImGeospat 59
SimTrial 59
summary.meml L e 60
summary.Modelo 60
veovameml . . oL oL L L L e e e e e e e e e e 61
veov.Model e 62
63

glmmrBase-package 3

glmmrBase-package Generalised Linear Mixed Models in R

Description

Specification, analysis, simulation, and fitting of generalised linear mixed models. Includes Markov
Chain Monte Carlo Maximum likelihood and Laplace approximation model fitting for a range of
models, non-linear fixed effect specifications, a wide range of flexible covariance functions that
can be combined arbitrarily, robust and bias-corrected standard error estimation, power calculation,
data simulation, and more. See <https://samuel-watson.github.io/glmmr-web/> for a detailed man-
ual. glmmrBase provides functions for specifying, analysing, fitting, and simulating mixed models
including linear, generalised linear, and models non-linear in fixed effects.

Differences between glmmrBase and Ime4 and related packages.

glmmrBase is intended to be a broad package to support statistical work with generalised linear
mixed models. While there are Laplace Approximation methods in the package, it does not intend
to replace or supplant popular mixed model packages like Ime4. Rather it provides broader func-
tionality around simulation and analysis methods, and a range of model fitting algorithms not found
in other mixed model packages. The key features are:

* Stochastic maximum likelihood methods. The most widely used methods for mixed model
fitting are penalised quasi-likelihood, Laplace approximation, and Gaussian quadrature meth-
ods. These methods are widely available in other packages. We provide Markov Chain Monte
Carlo (MCMC) Maximum Likelihood and Stochastic Approximation Expectation Maximisa-
tion algorithms for model fitting, with various features. These algorithms approximate the
intractable GLMM likelihood using MCMC and so can provide an arbitrary level of precision.
These methods may provide better maximum likelihood performance than other approxima-
tions in settings with high-dimensional or complex random effects, small sample sizes, or
non-linear models.

* Flexible support for a wide range of covariance functions. The support for different covariance
functions can be limited in other packages. For example, Ime4 only provides exchangeable
random effects structures. We include multiple different functions that can be combined arbi-
trarily.

* We similarly use efficient linear algebra methods with the Eigen package along with Stan to
provide MCMC sampling.

 Gaussian Process approximations. We include Hibert Space and Nearest Neighbour Gaussian
Process approximations for high dimensional random effects.

* The Model class includes methods for power estimation, data simulation, MCMC sampling,
and calculation of a wide range of matrices and values associated with the models.

* We include natively a range of small sample corrections to information matrices, including
Kenward-Roger, Box, Satterthwaite, and others, which typically require add-on packages for
Ime4.

» The package provides a flexible class system for specifying mixed models that can be incor-
porated into other packages and settings. The linked package glmmrOptim provides optimal
experimental design algorithms for mixed models.

4 Beta

e (New in version 0.9.1) The package includes functions to replicate the functionality of Ime4,
mcml_Imer and meml_glmer, which will also accept Ime4 syntax.

* (New in version 0.10.1) The package also provides mixed quantile regression models esti-
mated using the stochastic maximum likelihood algorithms described above. These models
specify an asymmetric Laplace distribution for the likelihood and integrate with the other
features of the package described above.

Package development

The package is still in development and there may still be bugs and errors. While we do not expect
the general user interface to change there may be changes to the underlying library as well as new
additions and functionality.

Author(s)

Sam Watson [aut, cre]

Maintainer: Sam Watson <S.I.Watson@bham.ac.uk>

Beta Beta distribution declaration

Description

Skeleton list to declare a Beta distribution in a ‘Model‘ object

Usage

Beta(link = "logit")

Arguments

link Name of link function. Only accepts ‘logit* currently.

Value

A list with two elements naming the family and link function

coef.mcml 5

coef.mcml Extracts fixed effect coefficients from a mcml object

Description

Extracts the fitted fixed effect coefficients from an ‘mcml‘ object returned from a call of ‘MCML"
or ‘LA°® in the Model class.

Usage
S3 method for class 'mcml'
coef(object, ...)

Arguments
object An ‘mcml‘ model fit.

Further arguments passed from other methods

Value

A named vector.

coef.Model Extracts coefficients from a Model object

Description

Extracts the coefficients from a ‘Model* object.

Usage
S3 method for class 'Model’
coef(object, ...)

Arguments
object A ‘Model‘ object.

Further arguments passed from other methods

Value

Fixed effect and covariance parameters extracted from the model object.

Covariance

confint.meml Fixed effect confidence intervals for a ‘mcml‘ object

Description

Returns the computed confidence intervals for a ‘mcml‘ object.

Usage
S3 method for class 'mcml'
confint(object, ...)
Arguments
object A ‘mcml‘ object.

Further arguments passed from other methods

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.

Covariance R6 Class representing a covariance function and data

Description

R6 Class representing a covariance function and data

R6 Class representing a covariance function and data

Details

For the generalised linear mixed model

Y ~ F(p,0)
p=h"1XB+Z7)
~ ~ MVN(0, D)

where h is the link function, this class defines Z and D. The covariance is defined by a covariance
function, data, and parameters. A new instance can be generated with $new(). The class will
generate the relevant matrices Z and D automatically. See glmmrBase for a detailed guide on model
specification.

Intitialisation A covariance function is specified as an additive formula made up of components
with structure (1|f(j)). The left side of the vertical bar specifies the covariates in the model that
have a random effects structure. The right side of the vertical bar specify the covariance function

https://github.com/samuel-watson/glmmrBase/blob/master/README.md

Covariance 7

‘f* for that term using variable named in the data ‘j*. Covariance functions on the right side of the
vertical bar are multiplied together, i.e. (1|f(j)*g(t)).

There are several common functions included for a named variable in data x. A non-exhaustive list
(see glmmrBase for a full list): * gr(x): Indicator function (1 parameter) * fexp(x): Exponential
function (2 parameters) * ar(x): AR function (2 parameters) * sqexp(x): Squared exponential (1
parameter) * matern(x): Matern function (2 parameters) * bessel(x): Modified Bessel function
of the 2nd kind (1 parameter) For many 2 parameter functions, such as ‘ar® and ‘fexp‘, alternative
one parameter versions are also available as ‘arO‘ and ‘fexp0O°. These function omit the variance
parameter and so can be used in combination with ‘gr‘ functions such as ‘gr(j)*arO(t)‘.

Parameters are provided to the covariance function as a vector. The parameters in the vector for each
function should be provided in the order the covariance functions are written are written. For exam-
ple, * Formula: ‘~(11gr(j))+(11gr(j*t)); parameters: ‘c(0.05,0.01)¢ * Formula: ‘~(1lgr(G)*fexpO(t))‘;
parameters: ‘c(0.05,0.5)

Updating of parameters is automatic if using the ‘update_parameters()‘ member function.

Using ‘update_parameters()‘ is the preferred way of updating the parameters of the mean or covari-

ance objects as opposed to direct assignment, e.g. ‘self$parameters <- ¢(...)*. The function calls
check functions to automatically update linked matrices with the new parameters.

Public fields

data Data frame with data required to build covariance

formula Covariance function formula.

parameters Model parameters specified in order of the functions in the formula.
Z Design matrix

D Covariance matrix of the random effects

Methods
Public methods:

e Covariance$n()

e Covariance$new()

e Covariance$update_parameters()
e Covariance$print()

* Covariance$subset()

e Covariance$chol_D()

* Covariance$log_likelihood()
e Covariance$simulate_re()

* Covariance$sparse()

e Covariance$parameter_table()
e Covariance$nngp()

e Covariance$hsgp()

e Covariance$clone()

Method n(): Return the size of the design

https://github.com/samuel-watson/glmmrBase/blob/master/README.md

Covariance

Usage:
Covariance$n()

Returns: Scalar

Method new(): Create a new Covariance object

Usage:

Covariance$new(formula, data = NULL, parameters = NULL)

Arguments:

formula Formula describing the covariance function. See Details

data (Optional) Data frame with data required for constructing the covariance.

parameters (Optional) Vector with parameter values for the functions in the model formula.
See Details.

Returns: A Covariance object

Examples:

\dontshow{

setParallel (FALSE) # for the CRAN check

}

df <- nelder(~(cl(5)*t(5)) > ind(5))

cov <- Covariance$new(formula = ~(1|gr(cl)*aro(t)),
parameters = c(0.05,0.7),
data= df)

Method update_parameters(): Updates the covariance parameters

Usage:
Covariance$update_parameters(parameters)

Arguments:

parameters A vector of parameters for the covariance function(s). See Details.

Method print(): Show details of Covariance object

Usage:

Covariance$print()

Arguments:

. ignored

Examples:

\dontshow{

setParallel (FALSE) # for the CRAN check

3

df <- nelder(~(cl(5)*t(5)) > ind(5))

Covariance$new(formula = ~(1|gr(cl)*aro(t)),
parameters = c(0.05,0.8),
data= df)

Method subset(): Keep specified indices and removes the rest

Covariance 9

Usage:
Covariance$subset (index)
Arguments:

index vector of indices to keep

Examples:

\dontshow{

setParallel (FALSE) # for the CRAN check

3

df <- nelder(~(cl(10)*t(5)) > ind(10))

cov <- Covariance$new(formula = ~(1|gr(cl)*aro(t)),
parameters = c(0.05,0.8),
data= df)

cov$subset(1:100)

Method chol_D(): Returns the Cholesky decomposition of the covariance matrix D

Usage:

Covariance$chol_D()

Returns: A matrix
Method log_likelihood(): The function returns the values of the multivariate Gaussian log
likelihood with mean zero and covariance D for a given vector of random effect terms.

Usage:

Covariance$log_likelihood(u)

Arguments:

u Vector of random effects

Returns: Value of the log likelihood
Method simulate_re(): Simulates a set of random effects from the multivariate Gaussian
distribution with mean zero and covariance D.

Usage:
Covariance$simulate_re()

Returns: A vector of random effect values

Method sparse(): If this function is called then sparse matrix methods will be used for calcu-
lations involving D

Usage:

Covariance$sparse(sparse = TRUE, amd = TRUE)

Arguments:

sparse Logical. Whether to use sparse methods (TRUE) or not (FALSE)

amd Logical indicating whether to use and Approximate Minimum Degree algorithm to cal-
culate an efficient permutation matrix so that the Cholesky decomposition of PAPAT is
calculated rather than A.

Returns: None. Called for effects.

10 Covariance

Method parameter_table(): Returns a table showing which parameters are members of which
covariance function term.

Usage:
Covariance$parameter_table()

Returns: A data frame

Method nngp(): Reports or sets the parameters for the nearest neighbour Gaussian process

Usage:

Covariance$nngp(nn = NULL)

Arguments:

nn Integer. Number of nearest neighbours. Optional - leave as NULL to return details of the
NNGTP instead.

Returns: If ‘nn‘ is NULL then the function will either return FALSE if not using a Nearest
neighbour approximation, or TRUE and the number of nearest neighbours, otherwise it will
return nothing.

Method hsgp(): Reports or sets the parameters for the Hilbert Space Gaussian process

Usage:
Covariance$hsgp(m = NULL, L = NULL)

Arguments:

m Integer or vector of integers. Number of basis functions per dimension. If only a single
number is provided and there is more than one dimension the same number will be applied
to all dimensions.

L Decimal. The boundary extension.

Returns: If ‘m‘ and ‘L are NULL then the function will either return FALSE if not using a
Hilbert space approximation, or TRUE and the number of bases functions and boundary value,
otherwise it will return nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Covariance$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

HHE m oo
Method ~Covariance$new”
B — o

df <- nelder(~(cl(5)*t(5)) > ind(5))

cov <- Covariance$new(formula = ~(1|gr(cl)*aro(t)),
parameters = c(0.05,0.7),
data= df)

cross_df 11

et
Method ~Covariance$print”
e e

df <- nelder(~(cl(5)*t(5)) > ind(5))

Covariance$new(formula = ~(1|gr(cl)*aro(t)),
parameters = ¢(0.05,0.8),
data= df)

-

Method ~Covariance$subset”

#H - e

df <- nelder(~(cl(1@)*t(5)) > ind(10))

cov <- Covariance$new(formula = ~(1|gr(cl)*aro(t)),
parameters = c(0.05,0.8),
data= df)

cov$subset(1:100)

cross_df Generate crossed block structure

Description

Generate a data frame with crossed rows from two other data frames

Usage
cross_df (df1, df2)

Arguments
df1 data frame
df2 data frame
Details

For two data frames ‘df1° and ‘df2°, the function will return another data frame that crosses them,
which has rows with every unique combination of the input data frames

Value

data frame

Examples

cross_df (data.frame(t=1:4),data.frame(cl=1:3))

12 family.meml

cycles Generates all the orderings of a

Description

Given input a, returns a length(a)*2 vector by cycling through the values of a

Usage

cycles(a)

Arguments

a vector

Value

vector

family.mcml Extracts the family from a ‘mcml‘ object.

Description

Extracts the family from a ‘mcml* object.

Usage
S3 method for class 'mcml'
family(object, ...)
Arguments
object A ‘mcml‘ object.

Further arguments passed from other methods

Value

A family object.

family.Model 13

family.Model Extracts the family from a ‘Model‘ object. This information can also
be accessed directly from the Model as ‘Model$family

Description

Extracts the family from a ‘Model* object.

Usage
S3 method for class 'Model’
family(object, ...)

Arguments
object A ‘Model‘ object.

Further arguments passed from other methods

Value

A family object.

fitted.mcml Fitted values from a ‘mcml object

Description

Fitted values should not be generated directly from an ‘mcml® object, rather fitted values should be
generated using the original ‘Model‘. A message is printed to the user.

Usage
S3 method for class 'mcml'
fitted(object, ...)

Arguments
object A ‘mcml‘ object.

Further arguments passed from other methods

Value

Nothing, called for effects, unless ‘override* is TRUE, when it will return a vector of fitted values.

14 fixed.effects

fitted.Model Extract or generate fitted values from a ‘Model* object

Description

Return fitted values. Does not account for the random effects. This function is a wrapper for
‘Model$fitted()‘, which also provides a variety of additional options for generating fitted values

from mixed models. For simulated values based on resampling random effects, see also ‘Model$sim_data()‘.
To predict the values including random effects at a new location see also ‘Model$predict()‘.

Usage
S3 method for class 'Model'’
fitted(object, ...)

Arguments
object A ‘Model‘ object.

Further arguments passed from other methods

Value

Fitted values

fixed.effects Extracts the fixed effect estimates

Description

Extracts the fixed effect estimates from an mcml object returned from call of ‘MCML* or ‘LA‘ in
the Model class.

Usage

fixed.effects(object)

Arguments

object An ‘mcml‘ model fit.

Value

A named, numeric vector of fixed-effects estimates.

formula.mcml 15

formula.mcml Extracts the formula from a ‘mcml‘ object.

Description

Extracts the formula from a ‘mcml‘ object. Separate formulae are specified for the fixed and random
effects in the model, either of which can be returned. The complete formula is available from the
generating ‘Model object as ‘Model$formula‘ or ‘formula(Model)

Usage
S3 method for class 'mcml'
formula(x, ...)

Arguments
X A ‘mcml‘ object.

Further arguments passed from other methods

Value

A formula object.

formula.Model Extracts the formula from a ‘Model‘ object

Description

Extracts the formula from a ‘Model object. This information can also be accessed directly from
the Model as ‘Model$formula‘

Usage
S3 method for class 'Model’
formula(x, ...)

Arguments
X A ‘Model‘ object.

Further arguments passed from other methods

Value

A formula object.

16 hessian_from_formula

hessian_from_formula Automatic differentiation of formulae

Description

Exposes the automatic differentiator. Allows for calculation of Jacobian and Hessian matrices of
formulae in terms of specified parameters. Formula specification is as a string. Data items are
automatically multiplied by a parameter unless enclosed in parentheses.

Usage

hessian_from_formula(form_, data_, colnames_, parameters_)

Arguments
form_ String. Formula to differentiate specified in terms of data items and parameters.
Any string not identifying a function or a data item names in ‘colnames® is
assumed to be a parameter.
data_ Matrix. A matrix including the data. Rows represent observations. The number
of columns should match the number of items in ‘colnames_*
colnames_ Vector of strings. The names of the columns of ‘data_°, used to match data
named in the formula.
parameters_ Vector of doubles. The values of the parameters at which to calculate the deriva-
tives. The parameters should be in the same order they appear in the formula.
Value

A list including the jacobian and hessian matrices.

Examples

obtain the Jacobian and Hessian of the log-binomial model log-likelihood.
The model is of data from an intervention and control group
with n1 and n@ participants, respectively, with y1 and y@ the number of events in each group.
The mean is exp(alpha) in the control
group and exp(alpha + beta) in the intervention group, so that beta is the log relative risk.
hessian_from_formula(
form_ = "(y1)*(ath)+((n1)-(y1))*log((1-exp(at+b)))+(y@)*a+((nd)-(yd))*log((1-exp(a)))",
data_ = matrix(c(10,100,20,100), nrow = 1),
colnames_ = c("y1","n1","y0","n@"),
parameters_ = c(log(@.1),log(0.5)))

Ime4_to_glmmr 17

1me4_to_glmmr Map Ime4 formula to glmmrBase formula

Description

Returns a formula that can be used for glmmrBase Models from an Ime4 input.

Usage

Ime4_to_glmmr (formula, cnames)

Arguments
formula A Ime4 style formula
chames The column names of the data to be used. These are used to check if the specified
clustering variables are in the data.
Details

The package Ime4 uses a syntax to specify random effects as ‘(1Ix)° where ‘x‘ is the grouping
variable. This function will modify such a formula, including those with nesting and crossing
operators ‘/¢ and ‘: into the glmmrBase syntax using the ‘gr()‘ function. Not typically required by
the user as it is used internally in the ‘mcml_Imer‘ and ‘mcml_glmer* functions.

Value

A formula.

Examples

df <- data.frame(cl = 1:3, t = 4:6)
f1 <= 1lmed_to_glmmr(y ~ x + (1]|cl/t),colnames(df))

loglLik.mcml Extracts the log-likelihood from an mcml object

Description

Extracts the final log-likelihood value from an mcml object returned from call of ‘MCML* or ‘LA*
in the Model class. The fitting algorithm estimates the fixed effects, random effects, and covariance
parameters all separately. The log-likelihood is separable in the fixed and covariance parameters,
so one can return the log-likelihood for either component, or the overall log-likelihood.

Usage

S3 method for class 'mcml'
logLik(object, fixed = TRUE, covariance = TRUE, ...)

18 logLik.Model

Arguments
object An ‘mcml‘ model fit.
fixed Logical whether to include the log-likelihood value from the fixed effects.
covariance Logical whether to include the log-likelihood value from the covariance param-
eters.
Further arguments passed from other methods
Value

An object of class ‘logLik‘. If both ‘fixed‘ and ‘covariance‘ are FALSE then it returns NA.

loglik.Model Extracts the log-likelihood from an mcml object

Description

Extracts the log-likelihood value from an ‘Model* object. If no data ‘y* are specified then it returns
NA.

Usage

S3 method for class 'Model’
loglLik(object, ...)

Arguments

object An ‘Model‘ object.

Further arguments passed from other methods

Value

An object of class ‘logLik‘. If both ‘fixed* and ‘covariance‘ are FALSE then it returns NA.

match_rows 19

match_rows Generate matrix mapping between data frames

Description
For a data frames ‘x‘ and ‘target°, the function will return a matrix mapping the rows of x‘ to those
of ‘target".

Usage

match_rows(x, target, by)

Arguments

X data.frame

target data.frame to map to

by vector of strings naming columns in ‘x‘ and ‘target’
Details

‘x‘ is a data frame with n rows and ‘target‘ a data frame with m rows. This function will return a
n times m matrix that maps the rows of ‘x‘ to those of ‘target‘ based on the values in the columns
specified by the argument ‘by°

Value

A matrix with nrow(x) rows and nrow(target) columns

Examples

df <- nelder(~(cl(1@)*t(5)) > ind(10))
df_unique <- df[!duplicated(df[,c('cl','t')]),]
match_rows(df,df_unique,c('cl','t"))

mcml_glmer Ime4 style generlized linear mixed model

Description

A wrapper for Model stochastic maximum likelihood model fitting replicating Ime4’s syntax

20

Usage

mcml_glmer(
formula,
data,
family,
start = NULL,

mcml_glmer

offset = NULL,

verbose = 1L,

iter.warmup =

100,

iter.sampling = 50,
weights = NULL,

Arguments

formula

data

family

start
offset

verbose

iter.warmup

iter.sampling

weights

Details

A two-sided linear formula object including both the fixed and random effects
specifications, see Details.

A data frame containing the variables named in ‘formula‘.

A family object expressing the distribution and link function of the model, see
family.

Optional. A vector of starting values for the fixed effects.
Optional. A vector of offset values.

Integer, controls the level of detail printed to the console, either 0 (no output), 1
(main output), or 2 (detailed output)

The number of warmup iterations for the MCMC sampling step of each iteration.

The number of sampling iterations for the MCMC sampling step of each itera-
tion.

Optional. A vector of observation level weights to apply to the model fit.
additional arguments passed to ‘Model$MCML()*

This function aims to replicate the syntax of Ime4’s ‘lmer‘ command. The specified formula can
be the standard Ime4 syntax, or alternatively a glmmrBase style formula can also be used to allow
for the wider range of covariance function specifications. For example both ‘y~x+(1lcl/t)* and
‘y~x+(llgr(c))+(llgr(cl)*arl(t))* would be valid formulae.

Value

A ‘mcml‘ model fit object.

mcml_Imer 21

Examples

#create a data frame describing a cross-sectional parallel cluster
data(Salamanders, package = "glmmrBase")
Not run:
glm@ <- mcml_glmer(mating~fpop:mpop-1+(1|mnum)+(1|fnum),
data=Salamanders, family=binomial (), reml=FALSE)
glml <- mcml_glmer(mating~fpop:mpop-1+(1|mnum)+(1|fnum),
data =Salamanders, family=binomial(),reml=TRUE)

End(Not run)

mcml_lmer Ime4 style linear mixed model

Description

A wrapper for Model stochastic maximum likelihood model fitting replicating Ime4’s syntax

Usage

mcml_lmer(
formula,
data,
start = NULL,
offset = NULL,
verbose = 1L,
iter.warmup = 100,
iter.sampling = 50,
weights = NULL,

)
Arguments

formula A two-sided linear formula object including both the fixed and random effects
specifications, see Details.

data A data frame containing the variables named in ‘formula‘.

start Optional. A vector of starting values for the fixed effects.

offset Optional. A vector of offset values.

verbose Integer, controls the level of detail printed to the console, either O (no output), 1
(main output), or 2 (detailed output)

iter.warmup The number of warmup iterations for the MCMC sampling step of each iteration.

iter.sampling The number of sampling iterations for the MCMC sampling step of each itera-
tion.

weights Optional. A vector of observation level weights to apply to the model fit.

additional arguments passed to ‘Model$MCML()*

22 menr_family

Details

This function aims to replicate the syntax of Ime4’s ‘lmer‘ command. The specified formula can
be the standard Ime4 syntax, or alternatively a glmmrBase style formula can also be used to allow
for the wider range of covariance function specifications. For example both ‘y~x+(1lcl/t)* and
‘y~x+(1lgr(ch)+(1lgr(ch)*arl(t))* would be valid formulae.

Value

A ‘mcml‘ model fit object.

Examples

#create a data frame describing a cross-sectional parallel cluster
#randomised trial
df <- nelder(~(cl(10)*t(5)) > ind(10))
df$int <- 0@
dffdf$cl > 5, 'int'] <- 1
simulate data using the Model class
df$y <- Model$new(
formula = ~ factor(t) + int - 1 + (1|gr(cl)) + (1]gr(cl,t)),
data = df,
family = stats::gaussian()
Y$sim_data()
Not run:
fit <- meml_lmer(y ~ factor(t) + int - 1 + (1|cl/t), data = df)

End(Not run)

mcnr_family Returns the file name and type for MCNR function

Description

Returns the file name and type for MCNR function

Usage

mcnr_family(family, cmdstan)

Arguments
family family object
cmdstan Logical indicating whether cmdstan is being used and the function will return
the filename
Value

list with filename and type

MeanFunction 23

MeanFunction For the generalised linear mixed model

Description

For the generalised linear mixed model

For the generalised linear mixed model

Details

Y ~ F(u,0)
p="h"1(XB+ Zv)

v ~ MVN(0, D)

this class defines the fixed effects design matrix X. The mean function is defined by a model formula,
data, and parameters. A new instance can be generated with $new(). The class will generate the
relevant matrix X automatically. See glmmrBase for a detailed guide on model specification.

Specification of the mean function follows standard model formulae in R. For example for a stepped-
wedge cluster trial model, a typical mean model is E(y;;:|0) = Bo + 7+ + f1dj¢ + 2ij+0 where 7
are fixed effects for each time period. The formula specification for this would be ‘~ factor(t) + int*
where ‘int’ is the name of the variable indicating the treatment.

One can also include non-linear functions of variables in the mean function, and name the parame-
ters. The resulting X matrix is then a matrix of first-order partial derivatives. For example, one can
specify ‘~ int + b_1*exp(b_2*x)".

Using ‘update_parameters() is the preferred way of updating the parameters of the mean or covari-
ance objects as opposed to direct assignment, e.g. ‘self$parameters <- c(...)*. The function calls
check functions to automatically update linked matrices with the new parameters.

Public fields

formula model formula for the fixed effects
data Data frame with data required to build X

parameters A vector of parameter values for 3 used for simulating data and calculating covariance
matrix of observations for non-linear models.

offset An optional vector specifying the offset values

X the fixed effects design matrix

https://github.com/samuel-watson/glmmrBase/blob/master/README.md

24 MeanFunction

Methods

Public methods:
* MeanFunction$n()
e MeanFunction$new()
* MeanFunction$print()
¢ MeanFunction$update_parameters()
* MeanFunction$colnames()
* MeanFunction$subset_rows()
e MeanFunction$linear_predictor()
* MeanFunction$any_nonlinear()
¢ MeanFunction$clone()

Method n(): Returns the number of observations
Usage:
MeanFunction$n()
Arguments:
. ignored

Returns: The number of observations in the model

Examples:

\dontshow{

setParallel (FALSE) # for the CRAN check

}

df <- nelder(~(cl(4)*t(5)) > ind(5))

df$int <- 0

dffdf$cl <= 2, 'int'] <- 1

mf1 <- MeanFunction$new(formula = ~ int ,
data=df,
parameters = c(-1,1)
)

mf1$n()

Method new(): Create a new MeanFunction object

Usage:
MeanFunction$new(
formula,
data,
parameters = NULL,
offset = NULL,
verbose = FALSE
)

Arguments:
formula A formula object that describes the mean function, see Details

data (Optional) A data frame containing the covariates in the model, named in the model for-
mula

MeanFunction 25

parameters (Optional) A vector with the values of the parameters 3 to use in data simulation
and covariance calculations. If the parameters are not specified then they are initialised to
0.

offset A vector of offset values (optional)

verbose Logical indicating whether to report detailed output

Returns: A MeanFunction object

Examples:
\dontshow{
setParallel (FALSE) # for the CRAN check
3
df <- nelder(~(cl(4)*t(5)) > ind(5))
df$int <- 0
dffdf$cl <= 2, 'int'] <- 1
mf1 <- MeanFunction$new(formula = ~ int ,
data=df,
parameters = c(-1,1),
)
Method print(): Prints details about the object
Usage:
MeanFunction$print()
Arguments:
. ignored

Method update_parameters(): Updates the model parameters

Usage:
MeanFunction$update_parameters(parameters)

Arguments:
parameters A vector of parameters for the mean function.
verbose Logical indicating whether to provide more detailed feedback

Method colnames(): Returns or replaces the column names of the data in the object

Usage:
MeanFunction$colnames(names = NULL)

Arguments:

names If NULL then the function prints the column names, if a vector of names, then it attempts
to replace the current column names of the data

Examples:

\dontshow{

setParallel (FALSE) # for the CRAN check
3

df <- nelder(~(cl(4)*t(5)) > ind(5))
df$int <- 0

df[df$cl <=5, 'int'] <- 1

26 MeanFunction

mf1 <- MeanFunction$new(formula = ~ int ,
data=df,
parameters = c(-1,1)
)

n on non

mf1$colnames(c(”"cluster”,”"time","individual”, "treatment”))
mf1$colnames()

Method subset_rows(): Keeps a subset of the data and removes the rest
All indices not in the provided vector of row numbers will be removed from both the data and
fixed effects design matrix X.

Usage:

MeanFunction$subset_rows(index)

Arguments:

index Rows of the data to keep

Returns: NULL

Examples:

\dontshow{

setParallel (FALSE) # for the CRAN check

}

df <- nelder(~(cl(4)*t(5)) > ind(5))

df$int <- @

dffdf$cl <= 5, '"int'] <- 1

mf1 <- MeanFunction$new(formula = ~ int ,
data=df,
parameters = c(-1,1)
)

mf1$subset_rows(1:20)

Method linear_predictor(): Returns the linear predictor
Returns the linear predictor, X * beta

Usage:
MeanFunction$linear_predictor()

Returns: A vector
Method any_nonlinear(): Returns a logical indicating whether the mean function contains
non-linear functions of model parameters. Mainly used internally.

Usage:
MeanFunction$any_nonlinear()

Returns: None. Called for effects

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeanFunction$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

MeanFunction

Examples
B oo

Method ~MeanFunction$n
HHE mm

df <- nelder(~(cl(4)*t(5)) > ind(5))

df$int <- 0@
df[df$cl <= 2, 'int'] <- 1
mf1 <- MeanFunction$new(formula = ~ int ,
data=df,
parameters = c(-1,1)
)
mf1$n()
B m o
Method ~MeanFunction$new”
oo

df <- nelder(~(cl(4)*t(5)) > ind(5))

df$int <- 0@
df[df$cl <= 2, 'int'] <- 1
mf1 <- MeanFunction$new(formula = ~ int ,
data=df,
parameters = c(-1,1),
)
B m o
Method “MeanFunction$colnames”
----——————

df <- nelder(~(cl(4)*t(5)) > ind(5))
df$int <- @
df[df$cl <= 5, "int'] <- 1
mf1 <- MeanFunction$new(formula = ~ int ,

data=df,

parameters = c(-1,1)

)
mf1$colnames(c("cluster”,”"time”,"individual”, "treatment”))
mf1$colnames()

e
Method ~MeanFunction$subset_rows”
B —m

df <- nelder(~(cl(4)*t(5)) > ind(5))
df$int <- 0@

df[df$cl <= 5, 'int'] <- 1

mf1 <- MeanFunction$new(formula = ~ int ,

27

Model

data=df,
parameters = c(-1,1)
)
mf1$subset_rows(1:20)
Model A GLMM Model

Description

A GLMM Model
A GLMM Model

Details

A generalised linear mixed model
See glmmrBase-package for a more in-depth guide.

The generalised linear mixed model is:

YNF(/’L’O)
w=h"1(XB+ Zu)
u~ MVN(0,D)

where F is a distribution with scale parameter
o

, his a link function, X are the fixed effects with parameters

B

, Z is the random effect design matrix with multivariate Gaussian distributed effects u. The class
provides access to all of the elements of the model above and associated calculations and functions
including model fitting, power analysis, and various relevant matrices, including information matri-
ces and related corrections. The object is an R6 class and so can serve as a parent class for extended
functionality.

The currently supported families (links) are Gaussian (identity, log), Binomial (logit, log, probit,
identity), Poisson (log, identity), Gamma (logit, identity, inverse), and Beta (logit).

This class provides model fitting functionality with a variety of stochastic maximum likelihood
algorithms with and without restricted maximum likelihood corrections. A fast Laplace approxi-
mation is also included. Small sample corrections are also provided including Kenward-Roger and
Satterthwaite corrections.

Many calculations use the covariance matrix of the observations, such as the information matrix,
which is used in power calculations and other functions. For non-Gaussian models, the class uses

Model 29

the first-order approximation proposed by Breslow and Clayton (1993) based on the marginal quasi-
likelihood:

Y=w-l4+2zDZ"

where W is a diagonal matrix with the GLM iterated weights for each observation equal to, for

b 2
individual i (W) Var(y|u) (see Table 2.1 in McCullagh and Nelder (1989)). The modi-

fication proposed by Zegers et al to the linear predictor to improve the accuracy of approximations
based on the marginal quasilikelihood is also available, see use_attenuation().

See glmmrBase for a detailed guide on model specification. A detailed vingette for this package is
also available onlinedoi: 10.48550/arXiv.2303.12657.

Attenuation For calculations such as the information matrix, the first-order approximation to the
covariance matrix proposed by Breslow and Clayton (1993), described above, is used. The approx-
imation is based on the marginal quasilikelihood. Zegers, Liang, and Albert (1988) suggest that a
better approximation to the marginal mean is achieved by "attenuating” the linear predictor. Setting
use equal to TRUE uses this adjustment for calculations using the covariance matrix for non-linear
models.

Calls the respective print methods of the linked covariance and mean function objects.
The matrices X and Z both have n rows, where n is the number of observations in the model/design.

Using update_parameters() is the preferred way of updating the parameters of the mean or co-
variance objects as opposed to direct assignment, e.g. self$covariance$parameters <-c(...).
The function calls check functions to automatically update linked matrices with the new parameters.

Monte Carlo maximum likelihood Fits generalised linear mixed models using one of several al-
gorithms: Markov Chain Newton Raphson (MCNR), Markov Chain Expectation Maximisation
(MCEM), or stochastic approximation expectation maximisation (SAEM) with or without Polyak-
Ruppert averaging. MCNR and MCEM are described by McCulloch (1997) doi:10.1080/01621459.
1997.10473613. For each iteration of the algorithms the unobserved random effect terms () are
simulated using Markov Chain Monte Carlo (MCMC) methods, and then these values are con-
ditioned on in the subsequent steps to estimate the covariance parameters and the mean func-
tion parameters (5). SAEM uses a Robbins-Munroe approach to approximating the likelihood
and requires fewer MCMC samples and may have lower Monte Carlo error, see Jank (2006)doi :
10.1198/106186006X157469. The option alpha determines the rate at which succesive iterations
"forget" the past and must be between 0.5 and 1. Higher values will result in lower Monte Carlo
error but slower convergence. The options mcem. adapt and mcnr.adapt will modify the number
of MCMC samples during each step of model fitting using the suggested values in Caffo, Jank, and
Jones (2006)doi:10.1111/3j.1467-9868.2005.00499.x as the estimates converge.

The accuracy of the algorithm depends on the user specified tolerance. For higher levels of toler-
ance, larger numbers of MCMC samples are likely need to sufficiently reduce Monte Carlo error.
However, the SAEM approach does overcome reduce the required samples, especially with R-P
averaging. As such a lower number (20-50) samples per iteration is normally sufficient to get con-
vergence.

There are several stopping rules for the algorithm. Either the algorithm will terminate when succe-
sive parameter estimates are all within a specified tolerance of each other (conv.criterion = 1), or
when there is a high probability that the estimated log-likelihood has not been improved. This latter
criterion can be applied to either the overall log-likelihood (conv.criterion = 2), the likelihood

https://github.com/samuel-watson/glmmrBase/blob/master/README.md
doi:10.48550/arXiv.2303.12657
doi:10.1080/01621459.1997.10473613
doi:10.1080/01621459.1997.10473613
doi:10.1198/106186006X157469
doi:10.1198/106186006X157469
doi:10.1111/j.1467-9868.2005.00499.x

30

Model

just for the fixed effects (conv.criterion = 3), or both the likelihoods for the fixed effects and
covariance parameters (conv.criterion = 4; default).

Options for the MCMC sampler are set by changing the values in self$mcmc_options. The infor-
mation printed to the console during model fitting can be controlled with the self$set_trace()
function.

To provide weights for the model fitting, store them in self$weights. To set the number of trials for
binomial models, set self$trials.

Laplace approximation Fits generalised linear mixed models using Laplace approximation to the
log likelihood. For non-Gaussian models the covariance matrix is approximated using the first order
approximation based on the marginal quasilikelihood proposed by Breslow and Clayton (1993).
The marginal mean in this approximation can be further adjusted following the proposal of Zeger
et al (1988), use the member function use_attenuated() in this class, see Model. To provide
weights for the model fitting, store them in self$weights. To set the number of trials for binomial
models, set self$trials. To control the information printed to the console during model fitting use
the self$set_trace() function.

Public fields

covariance A Covariance object defining the random effects covariance.

mean A MeanFunction object, defining the mean function for the model, including the data and
covariate design matrix X.

family One of the family function used in R’s glm functions. See family for details
weights A vector indicting the weights for the observations.

trials For binomial family models, the number of trials for each observation. The default is 1
(bernoulli).

formula The formula for the model. May be empty if separate formulae are specified for the mean
and covariance components.

var_par Scale parameter required for some distributions (Gaussian, Gamma, Beta).
mcmc_options There are five options for MCMC sampling that are specified in this list:

* warmup The number of warmup iterations. Note that if using the internal HMC sampler,
this only applies to the first iteration of the MCML algorithm, as the values from the
previous iteration are carried over.

* samps The number of MCMC samples drawn in the MCML algorithms. For smaller tol-
erance values larger numbers of samples are required. For the internal HMC sampler,
larger numbers of samples are generally required than if using Stan since the samples
generally exhibit higher autocorrealtion, especially for more complex covariance struc-
tures. For SAEM a small number is recommended as all samples are stored and used
from every iteration.

* lambda (Only relevant for the internal HMC sampler) Value of the trajectory length of the
leapfrog integrator in Hamiltonian Monte Carlo (equal to number of steps times the step
length). Larger values result in lower correlation in samples, but require larger numbers
of steps and so is slower. Smaller numbers are likely required for non-linear GLMMs.

* refresh How frequently to print to console MCMC progress if displaying verbose out-
put.

* maxsteps (Only relevant for the internal HMC sampler) Integer. The maximum number
of steps of the leapfrom integrator

Model 31

Methods
Public methods:

* Model$use_attenuation()

* Model$fitted()

* Model$residuals()

* Model$predict()

* Model$new()

* Model$print()

e Model$n()

* Model$subset_rows()

e Model$sim_data()

* Model$update_parameters()
* Model$information_matrix()
* Model$sandwich()

* Model$small_sample_correction()
* Model$box()

* Model$power()

* Model$w_matrix()

* Model$dh_deta()

* Model$Sigma()

* Model$MCML ()

* Model$LA(Q)

¢ Model$sparse()

¢ Model$mcmc_sample()

* Model$gradient()

* Model$partial_sigma()

e Model$u()

* Model$log_likelihood()

* Model$calculator_instructions()
* Model$marginal()

* Model$update_y()

* Model$set_trace()

* Model$clone()

Method use_attenuation(): Sets the model to use or not use "attenuation" when calculating
the first-order approximation to the covariance matrix.

Usage:
Model$use_attenuation(use)

Arguments:

use Logical indicating whether to use "attenuation".

Returns: None. Used for effects.

Model

Method fitted(): Return fitted values. Does not account for the random effects. For simulated
values based on resampling random effects, see also sim_data(). To predict the values including
random effects at a new location see also predict().

Usage:

Model$fitted(type = "link”, X, u, sample = FALSE, sample_n = 100)

Arguments:

type One of either "1ink" for values on the scale of the link function, or "response" for values
on the scale of the response

X (Optional) Fixed effects matrix to generate fitted values

u (Optional) Random effects values at which to generate fitted values

sample Logical. If TRUE then the parameters will be re-sampled from their sampling distribu-
tion. Currently only works with existing X matrix and not user supplied matrix X and this
will also ignore any provided random effects.

sample_n Integer. If sample is TRUE, then this is the number of samples.

Returns: Fitted values as either a vector or matrix depending on the number of samples

Method residuals(): Generates the residuals for the model
Generates one of several types of residual for the model. If conditional = TRUE then the residuals
include the random effects, otherwise only the fixed effects are included. For type, there are
raw, pearson, and standardized residuals. For conditional residuals a matrix is returned with each
column corresponding to a sample of the random effects.

Usage:

Model$residuals(type = "standardized”, conditional = TRUE)

Arguments:

type Either "standardized", "raw" or "pearson”

conditional Logical indicating whether to condition on the random effects (TRUE) or not
(FALSE)

Returns: A matrix with either one column is conditional is false, or with number of columns
corresponding to the number of MCMC samples.

Method predict(): Generate predictions at new values
Generates predicted values using a new data set to specify covariance values and values for the
variables that define the covariance function. The function will return a list with the linear predic-
tor, conditional distribution of the new random effects term conditional on the current estimates
of the random effects, and some simulated values of the random effects if requested.

Usage:

Model$predict(newdata, offset = rep(@, nrow(newdata)), m = @)

Arguments:

newdata A data frame specifying the new data at which to generate predictions

offset Optional vector of offset values for the new data

m Number of samples of the random effects to draw

Returns: A list with the linear predictor, parameters (mean and covariance matrices) for the
conditional distribution of the random effects, and any random effect samples.

Model 33

Method new(): Create a new Model object. Typically, a model is generated from a formula and
data. However, it can also be generated from a previous model fit.

Usage:

Model$new(
formula,
covariance,
mean,
data = NULL,
family = NULL,
var_par = NULL,
offset = NULL,
weights = NULL,
trials = NULL,
model_fit = NULL

)

Arguments:

formula A model formula containing fixed and random effect terms. The formula can be one
way (e.g. ~x + (1]|gr(cl)))ortwo-way (e.g. y ~ x + (1]gr(cl))). One way formulae will
generate a valid model enabling data simulation, matrix calculation, and power, etc. Out-
come data can be passed directly to model fitting functions, or updated later using member
function update_y (). For binomial models, either the syntax cbind(y, n-y) can be used
for outcomes, or just y and the number of trials passed to the argument trials described
below.

covariance (Optional) Either a Covariance object, an equivalent list of arguments that can be
passed to Covariance to create a new object, or a vector of parameter values. At a minimum
the list must specify a formula. If parameters are not included then they are initialised to
0.5.

mean (Optional) Either a MeanFunction object, an equivalent list of arguments that can be
passed to MeanFunction to create a new object, or a vector of parameter values. At a mini-
mum the list must specify a formula. If parameters are not included then they are initialised
to 0.

data A data frame with the data required for the mean function and covariance objects. This
argument can be ignored if data are provided to the covariance or mean arguments either
via Covariance and MeanFunction object, or as a member of the list of arguments to both
covariance and mean.

family A family object expressing the distribution and link function of the model, see family.
Currently accepts binomial, gaussian, Gamma, poisson, Beta, and Quantile.

var_par (Optional) Scale parameter required for some distributions, including Gaussian. De-
fault is NULL.

offset (Optional) A vector of offset values. Optional - could be provided to the argument to
mean instead.

weights (Optional) A vector of weights.

trials (Optional) For binomial family models, the number of trials for each observation. If it
is not set, then it will default to 1 (a bernoulli model).

model_fit (optional) A mcml model fit resulting from a call to MCML or LA

Returns: A new Model class object

34

Model

Examples:

\dontshow{
setParallel (FALSE)
}

For more examples, see the examples for MCML.

#create a data frame describing a cross-sectional parallel cluster
#randomised trial

df <- nelder(~(cl(10)*t(5)) > ind(10))

df$int <- 0

dffdf$cl > 5, 'int'] <- 1

mod <- Model$new(

formula = ~ factor(t) + int - 1 + (1]|gr(cl)) + (1]gr(cl,t)),
data = df,
family = stats::gaussian()

)

We can also include the outcome data in the model initialisation.
For example, simulating data and creating a new object:
df$y <- mod$sim_data()

mod <- Model$new(
formula = y ~ factor(t) + int - 1 + (1|gr(cl)) + (1]gr(cl,t)),
data = df,
family = stats::gaussian()

)

Here we will specify a cohort study
df <- nelder(~ind(20) * t(6))

df$int <- 0

dffdf$t > 3, 'int'] <- 1

des <- Model$new(

formula = ~ int + (1|gr(ind)),
data = df,
family = stats::poisson()

)

or with parameter values specified

des <- Model$new(
formula = ~ int + (1|gr(ind)),
covariance = c(0.05),
mean = ¢(1,0.5),
data = df,
family = stats::poisson()

Model 35

#an example of a spatial grid with two time points

df <- nelder(~ (x(10)xy(10))*t(2))

spt_design <- Model$new(formula = ~ 1 + (1]ar@(t)*fexp(x,y)),
data = df,
family = stats::gaussian())

Method print(): Print method for Model class
Usage:
Model$print()
Arguments:

. ignored

Method n(): Returns the number of observations in the model
Usage:
Model$n(...)
Arguments:

. ignored

Method subset_rows(): Subsets the design keeping specified observations only
Given a vector of row indices, the corresponding rows will be kept and the other rows will be
removed from the mean function and covariance

Usage:

Model$subset_rows(index)

Arguments:

index Integer or vector integers listing the rows to keep

Returns: The function updates the object and nothing is returned.

Method sim_data(): Generates a realisation of the design

Generates a single vector of outcome data based upon the specified GLMM design.
Usage:
Model$sim_data(type = "y")

Arguments:

type Either 'y’ to return just the outcome data, ’data’ to return a data frame with the simulated
outcome data alongside the model data, or ’all’, which will return a list with simulated
outcomes y, matrices X and Z, parameters beta, and the values of the simulated random
effects.

Returns: Either a vector, a data frame, or a list

Examples:
df <- nelder(~(cl(10)*t(5)) > ind(10))
df$int <- o

dffdf$cl > 5, 'int'] <- 1
\dontshow{

36

Model

setParallel (FALSE) # for the CRAN check

3
des <- Model$new(

formula = ~ factor(t) + int - 1 + (1]gr(cl)*aro(t)),
covariance = c(0.05,0.8),
mean = c(rep(0,5),0.6),
data = df,
family = stats::binomial()
)

ysim <- des$sim_data()

Method update_parameters(): Updates the parameters of the mean function and/or the co-
variance function

Usage:

Model$update_parameters(mean.pars = NULL, cov.pars = NULL, var.par = NULL)

Arguments:

mean.pars (Optional) Vector of new mean function parameters
cov.pars (Optional) Vector of new covariance function(s) parameters
var.par (Optional) A scalar value for var_par

Examples:

\dontshow{

setParallel (FALSE) # for the CRAN check
3

df <- nelder(~(cl(10)*t(5)) > ind(10))
df$int <- 0

dffdf$cl > 5, 'int'] <- 1

des <- Model$new(

formula = ~ factor(t) + int - 1 + (1]|gr(cl)*aro(t)),
data = df,
family = stats::binomial()

)

des$update_parameters(cov.pars = c(0.1,0.9))

Method information_matrix(): Generates the information matrix of the mixed model GLS es-
timator (X’S”-1X). The inverse of this matrix is an estimator for the variance-covariance matrix of
the fixed effect parameters. For various small sample corrections see small_sample_correction()
and box (). For models with non-linear functions of fixed effect parameters, a correction to the
Hessian matrix is required, which is automatically calculated or optionally returned or disabled.

Usage:
Model$information_matrix(include.re = FALSE, theta = FALSE, oim = FALSE)

Arguments:

include.re logical indicating whether to return the information matrix including the random
effects components (TRUE), or the mixed model information matrix for beta only (FALSE).

theta Logical. If TRUE the function will return the variance-coviariance matrix for the co-
variance parameters and ignore the first argument. Otherwise, the fixed effect parameter
information matrix is returned.

Model 37

oim Logical. If TRUE, returns the observed information matrix for both beta and theta, disre-
garding other arguments to the function.

Returns: A matrix

Method sandwich(): Returns the robust sandwich variance-covariance matrix for the fixed
effect parameters

Usage:

Model$sandwich()

Returns: A PxP matrix

Method small_sample_correction(): Returns a small sample correction. The option "KR"
returns the Kenward-Roger bias-corrected variance-covariance matrix for the fixed effect param-
eters and degrees of freedom. Option "KR2" returns an improved correction given in Kenward &
Roger (2009) doi: j.csda.2008.12.013. Note, that the corrected/improved version is invariant
under reparameterisation of the covariance, and it will also make no difference if the covariance
is linear in parameters. Exchangeable covariance structures in this package (i.e. gr()) are param-
eterised in terms of the variance rather than standard deviation, so the results will be unaffected.
Option "sat" returns the "Satterthwaite" correction, which only includes corrected degrees of free-
dom, along with the GLS standard errors.

Usage:

Model$small_sample_correction(type, oim = FALSE)

Arguments:
type Either "KR", "KR2", or "sat", see description.

oim Logical. If TRUE use the observed information matrix, otherwise use the expected infor-
mation matrix

Returns: A PxP matrix
Method box(): Returns the inferential statistics (F-stat, p-value) for a modified Box correction
doi:10.1002/sim. 4072 for Gaussian-identity models.

Usage:
Model$box (y)

Arguments:

y Optional. If provided, will update the vector of outcome data. Otherwise it will use the data
from the previous model fit.

Returns: A data frame.

Method power(): Estimates the power of the design described by the model using the square
root of the relevant element of the GLS variance matrix:

(XTy=1x)-!
Note that this is equivalent to using the "design effect” for many models.

Usage:
Model$power(alpha = .05, two.sided = TRUE, alternative = "pos")

doi:j.csda.2008.12.013
doi:10.1002/sim.4072

38

Model

Arguments:
alpha Numeric between zero and one indicating the type I error rate. Default of 0.05.
two.sided Logical indicating whether to use a two sided test

alternative For a one-sided test whether the alternative hypothesis is that the parameter is
positive "pos" or negative "neg"

Returns: A data frame describing the parameters, their values, expected standard errors and
estimated power.

Examples:

\dontshow{
setParallel (FALSE) # for the CRAN check
}
df <- nelder(~(cl(10)*t(5)) > ind(10))
df$int <- 0
dffdf$cl > 5, 'int'] <- 1
des <- Model$new(
formula = ~ factor(t) + int - 1 + (1]gr(cl)) + (1]gr(cl,t)),
covariance = c(0.05,0.1),
mean = c(rep(0,5),0.6),
data = df,
family = stats::gaussian(),
var_par =1
)

des$power() #power of 0.90 for the int parameter

Method w_matrix(): Returns the diagonal of the matrix W used to calculate the covariance
matrix approximation

Usage:
Model$w_matrix()

Returns: A vector with values of the glm iterated weights

Method dh_deta(): Returns the derivative of the link function with respect to the linear preditor

Usage:
Model$dh_deta()

Returns: A vector

Method Sigma(): Returns the (approximate) covariance matrix of y
Returns the covariance matrix Sigma. For non-linear models this is an approximation. See Details.

Usage:
Model$Sigma(inverse = FALSE)

Arguments:

inverse Logical indicating whether to provide the covariance matrix or its inverse

Returns: A matrix.

Method MCML (): Stochastic Maximum Likelihood model fitting

Model

39

Usage:
Model$MCML (

)

y = NULL,

method = "saem”,

tol = 0.01,

max.iter = 50,

se = "gls",

oim = FALSE,

reml = TRUE,

mcmc.pkg = "rstan”,
se.theta = TRUE,

algo = 2,

lower.bound = NULL,
upper.bound = NULL,
lower.bound.theta = NULL,
upper.bound. theta = NULL,
alpha = 0.8,
convergence.prob = 0.95,
pr.average = FALSE,
conv.criterion = 2,
skip.theta = FALSE

Arguments:
y Optional. A numeric vector of outcome data. If this is not provided then either the outcome

must have been specified when initialising the Model object, or the outcome data has been
updated using member function update_y()

method The MCML algorithm to use, either mcem or mcnr, or saem see Details. Default is

saem. mcem.adapt and menr.adapt will use adaptive MCMC sample sizes starting small
and increasing to the the maximum value specified in mcmc_options$sampling, which re-
sults in faster convergence. saem uses a stochastic approximation expectation maximisation
algorithm. MCMC samples are kept from all iterations and so a smaller number of samples
are needed per iteration.

tol Numeric value, tolerance of the MCML algorithm, the maximum difference in parameter

estimates between iterations at which to stop the algorithm. If two values are provided then
different tolerances will be applied to the fixed effect and covariance parameters.

max.iter Integer. The maximum number of iterations of the MCML algorithm.
se String. Type of standard error and/or inferential statistics to return. Options are "gls"

for GLS standard errors (the default), "robust" for robust standard errors, "kr" for origi-
nal Kenward-Roger bias corrected standard errors, "kr2" for the improved Kenward-Roger
correction, "sat" for Satterthwaite degrees of freedom correction (this is the same degrees
of freedom correction as Kenward-Roger, but with GLS standard errors), "box" to use a
modified Box correction (does not return confidence intervals), "bw" to use GLS standard
errors with a between-within correction to the degrees of freedom, "bwrobust" to use robust
standard errors with between-within correction to the degrees of freedom.

oim Logical. If TRUE use the observed information matrix, otherwise use the expected infor-

mation matrix for standard error and related calculations.

reml Logical. Whether to use a restricted maximum likelihood correction for fitting the covari-

ance parameters

40

Model

mcme. pkg String. Either cmdstan for cmdstan (requires the package cmdstanr), rstan to use
rstan sampler, or hme to use a cruder Hamiltonian Monte Carlo sampler. cmdstan is recom-
mended as it has by far the best number of effective samples per unit time. cmdstanr will
compile the MCMC programs to the library folder the first time they are run, so may not
currently be an option for some users.

se.theta Logical. Whether to calculate the standard errors for the covariance parameters. This
step is a slow part of the calculation, so can be disabled if required in larger models. Has no
effect for Kenward-Roger standard errors.

algo Integer. 1 = L-BFGS for beta and BOBYQA for theta, 2 = BOBYQA for both, 3 = L-
BFGS for both (default). The L-BFGS algorithm may perform poorly with some covariance
structures, in this case select 1 or 2, or apply an upper bound.

lower.bound Optional. Vector of lower bounds for the fixed effect parameters. To apply
bounds use MCEM.

upper.bound Optional. Vector of upper bounds for the fixed effect parameters. To apply
bounds use MCEM.

lower.bound. theta Optional. Vector of lower bounds for the covariance parameters (default
is 0; negative values will cause an error)

upper.bound. theta Optional. Vector of upper bounds for the covariance parameters.

alpha If using SAEM then this parameter controls the step size. On each iteration i the step
size is (1/alpha)”, default is 0.8. Values around 0.5 will result in lower bias but slower
convergence, values closer to 1 will result in higher convergence but potentially higher
error.

convergence.prob Numeric value in (0,1) indicating the probability of convergence if using
convergence criteria 2, 3, or 4.

pr.average Logical indicating whether to use Polyak-Ruppert averaging if using the SAEM
algorithm (default is TRUE)

conv.criterion Integer. The convergence criterion for the algorithm. 1 = the maximum dif-
ference between parameter estimates between iterations as defined by tol, 2 = The prob-
ability of improvement in the overall log-likelihood is less than 1 - convergence.prob 3
= The probability of improvement in the log-likelihood for the fixed effects is less than 1
- convergence.prob 4 = The probabilities of improvement in the log-likelihood the fixed
effects and covariance parameters are both less than 1 - convergence.prob

skip.theta Logical. If TRUE then the covariance parameter estimation step is skipped. This
option is mainly used for testing, but may be useful if covariance parameters are known.

Returns: A mcml object

Examples:

\dontrun{

Simulated trial data example

data(SimTrial,package = "glmmrBase")

model <- Model$new(
formula = y ~ int + factor(t) - 1 + (1|gr(cl)*ar1(t)),
data = SimTrial,
family = gaussian()

)

glm3 <- model$MCML ()

Model 41

Salamanders data example

data(Salamanders, package="glmmrBase")

model <- Model$new(
mating~fpop:mpop-1+(1|gr(mnum))+(1|gr(fnum)),
data = Salamanders,
family = binomial()

)

we will try MCEM with 500 MCMC iterations
model$mcmc_options$samps <- 500

view the grouping structure

glm2 <- model$MCML (method = "mcem")

Example using simulated data
#create example data with six clusters, five time periods, and five people per cluster-period
df <- nelder(~(cl(6)*t(5)) > ind(5))
parallel trial design intervention indicator
df$int <- 0
dffdf$cl > 3, 'int'] <- 1
specify parameter values in the call for the data simulation below
des <- Model$new(
formula= ~ factor(t) + int - 1 +(1|gr(cl)*aro(t)),
covariance = ¢(0.05,0.7),
mean = c(rep(9,5),0.2),
data = df,
family = gaussian()
)
ysim <- des$sim_data() # simulate some data from the model
fitl <- des$MCML(y = ysim) # Default model fitting with SAEM-PR
use MCEM instead and stop when parameter values are within 1e-2 on successive iterations
fit2 <- des$MCML(y = ysim, method="mcem”,tol=1e-2,conv.criterion = 1)

Non-linear model fitting example using the example provided by nlmer in lme4
data(Orange, package = "1lme4")

the 1me4 example:

startvec <- c(Asym = 200, xmid = 725, scal = 350)

(nm1 <- 1me4: :nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,
Orange, start = startvec))

Orange <- as.data.frame(Orange)
Orange$Tree <- as.numeric(Orange$Tree)

Here we can specify the model as a function.
model <- Model$new(

circumference ~ Asym/(1 + exp((xmid - (age))/scal)) - 1 + (Asym|gr(Tree)),
data = Orange,

42

Model

family = gaussian(),
mean = c(200,725,350),
covariance = c(500),
var_par = 50

)
for this example, we will use MCEM with adaptive MCMC sample sizes

model$mcmc_options$samps <- 1000
nfit <- model$MCML (method = "mcem.adapt")

summary (nfit)
summary (nm1)

}

Method LA(): Maximum Likelihood model fitting with Laplace Approximation
Usage:
Model$LA(
y = NULL,
start,
method = "nr",
se = "gls",
oim = FALSE,
reml = TRUE,
max.iter = 40,
tol = 1e-04,
se.theta = TRUE,
algo = 2,
lower.bound = NULL,
upper.bound = NULL,
lower.bound. theta = NULL,
upper.bound. theta = NULL
)

Arguments:

y Optional. A numeric vector of outcome data. If this is not provided then either the outcome
must have been specified when initialising the Model object, or the outcome data has been
updated using member function update_y ()

start Optional. A numeric vector indicating starting values for the model parameters.

method String. Either "nloptim" for non-linear optimisation, or "nr" for Newton-Raphson (de-
fault) algorithm

se String. Type of standard error and/or inferential statistics to return. Options are "gls" for
GLS standard errors (the default), "robust" for robust standard errors, "kr" for original
Kenward-Roger bias corrected standard errors, "kr2" for the improved Kenward-Roger cor-
rection, "sat" for Satterthwaite degrees of freedom correction (this is the same degrees of
freedom correction as Kenward-Roger, but with GLS standard errors)"box" to use a modi-
fied Box correction (does not return confidence intervals), "bw" to use GLS standard errors

Model 43

with a between-within correction to the degrees of freedom, "bwrobust" to use robust stan-
dard errors with between-within correction to the degrees of freedom. Note that Kenward-
Roger assumes REML estimates, which are not currently provided by this function.

oim Logical. If TRUE use the observed information matrix, otherwise use the expected infor-
mation matrix for standard error and related calculations.

reml Logical. Whether to use a restricted maximum likelihood correction for fitting the covari-
ance parameters

max.iter Maximum number of algorithm iterations, default 20.

tol Maximum difference between successive iterations at which to terminate the algorithm

se.theta Logical. Whether to calculate the standard errors for the covariance parameters. This
step is a slow part of the calculation, so can be disabled if required in larger models. Has no
effect for Kenward-Roger standard errors.

algo Integer. 1 = L-BFGS for beta-u and BOBYQA for theta (default), 2 = BOBYQA for both.

lower.bound Optional. Vector of lower bounds for the fixed effect parameters. To apply
bounds use nloptim.

upper.bound Optional. Vector of upper bounds for the fixed effect parameters. To apply
bounds use nloptim.

lower.bound.theta Optional. Vector of lower bounds for the covariance parameters.
upper.bound. theta Optional. Vector of upper bounds for the covariance parameters.

Returns: A mcml object

Examples:

\dontshow{
setParallel (FALSE) # for the CRAN check
}
#create example data with six clusters, five time periods, and five people per cluster-period
df <- nelder(~(cl(6)*t(5)) > ind(5))
parallel trial design intervention indicator
df$int <- @
dffdf$cl > 3, 'int'] <- 1
specify parameter values in the call for the data simulation below
des <- Model$new(
formula = ~ factor(t) + int - 1 + (1]gr(cl)*aro(t)),
covariance = c(0.05,0.7),
mean = c(rep(0,5),-0.2),
data = df,
family = stats::binomial()
)
ysim <- des$sim_data() # simulate some data from the model
fit1 <- des$LA(y = ysim)

Method sparse(): Set whether to use sparse matrix methods for model calculations and fitting.
By default the model does not use sparse matrix methods.

Usage:
Model$sparse(sparse = TRUE, amd = TRUE)

Arguments:

44

Model

sparse Logical indicating whether to use sparse matrix methods

amd Logical indicating whether to use and Approximate Minimum Degree algorithm to cal-
culate an efficient permutation matrix so that the Cholesky decomposition of PAPAT is
calculated rather than A.

Returns: None, called for effects

Method mcmc_sample(): Generate an MCMC sample of the random effects
Usage:
Model$mcmc_sample(mcmec.pkg = "rstan”)

Arguments:

mcme. pkg String. Either cmdstan for cmdstan (requires the package cmdstanr), rstan to use
rstan sampler, or hme to use a cruder Hamiltonian Monte Carlo sampler. cmdstan is recom-
mended as it has by far the best number of effective samples per unit time. cmdstanr will
compile the MCMC programs to the library folder the first time they are run, so may not
currently be an option for some users.

Returns: A matrix of samples of the random effects

Method gradient(): The gradient of the log-likelihood with respect to either the random effects
or the model parameters. The random effects are on the N(0,I) scale, i.e. scaled by the Cholesky
decomposition of the matrix D. To obtain the random effects from the last model fit, see member
function $u

Usage:
Model$gradient(y, u, beta = FALSE)

Arguments:

y (optional) Vector of outcome data, if not specified then data must have been set in another
function.

u (optional) Vector of random effects scaled by the Cholesky decomposition of D

beta Logical. Whether the log gradient for the random effects (FALSE) or for the linear pre-
dictor parameters (TRUE)

Returns: A vector of the gradient

Method partial_sigma(): The partial derivatives of the covariance matrix Sigma with respect
to the covariance parameters. The function returns a list in order: Sigma, first order derivatives,
second order derivatives. The second order derivatives are ordered as the lower-triangular matrix
in column major order. Letting ’d(i)’ mean the first-order partial derivative with respect to pa-
rameter i, and d2(i,j) mean the second order derivative with respect to parameters i and j, then if
there were three covariance parameters the order of the output would be: (sigma, d(1), d(2), d(3),
d2(1,1), d2(1,2), d2(1,3), d2(2,2), d2(2,3), d2(3,3)).

Usage:
Model$partial_sigma()

Returns: A list of matrices, see description for contents of the list.

Method u(): Returns the sample of random effects from the last model fit, or updates the
samples for the model.

Model 45

Usage:
Model$u(scaled = TRUE, u)

Arguments:

scaled Logical indicating whether the samples are on the N(0,I) scale (scaled=FALSE) or
N(0,D) scale (scaled=TRUE)

u (optional) Matrix of random effect samples. If provided then the internal samples are replaced
with these values. These samples should be N(0,I).

Returns: A matrix of random effect samples

Method log_likelihood(): The log likelihood for the GLMM. The random effects can be left
unspecified. If no random effects are provided, and there was a previous model fit with the same
data y then the random effects will be taken from that model. If there was no previous model fit
then the random effects are assumed to be all zero.

Usage:
Model$log_likelihood(y, u)

Arguments:
y A vector of outcome data
u An optional matrix of random effect samples. This can be a single column.

Returns: The log-likelihood of the model parameters

Method calculator_instructions(): Prints the internal instructions and data used to calcu-
late the linear predictor. Internally the class uses a reverse polish notation to store and calculate
different functions, including user-specified non-linear mean functions. This function will print
all the steps. Mainly used for debugging and determining how the class has interpreted non-linear
model specifications.

Usage:
Model$calculator_instructions()

Returns: None. Called for effects.

Method marginal(): Calculates the marginal effect of variable x. There are several options
for marginal effect and several types of conditioning or averaging. The type of marginal effect
can be the derivative of the mean with respect to x (dydx), the expected difference E(ylx=a)-
E(ylx=b) (diff), or the expected log ratio log(E(ylx=a)/E(ylx=b)) (ratio). Other fixed effect
variables can be set at specific values (at), set at their mean values (atmeans), or averaged over
(average). Averaging over a fixed effects variable here means using all observed values of the
variable in the relevant calculation. The random effects can similarly be set at their estimated
value (re="estimated"), set to zero (re="zero"), set to a specific value (re="at"), or averaged
over (re="average"). Estimates of the expected values over the random effects are generated
using MCMC samples. MCMC samples are generated either through MCML model fitting or
using mcmc_sample. In the absence of samples average and estimated will produce the same
result. The standard errors are calculated using the delta method with one of several options for
the variance matrix of the fixed effect parameters. Several of the arguments require the names of
the variables as given to the model object. Most variables are as specified in the formula, factor
variables are specified as the name of the variable_value, e.g. t_1. To see the names of the
stored parameters and data variables see the member function names().

46

Model

Usage:
Model$marginal(
X)
type,
re,
se,
at = c(),
atmeans = c(),
average = c(),
xvals = c(1, @),
atvals = c(),
revals = c(),
oim = FALSE

)

Arguments:

x String. Name of the variable to calculate the marginal effect for.

type String. Either dydx for derivative, diff for difference, or ratio for log ratio. See de-
scription.

re String. Either estimated to condition on estimated values, zero to set to zero, at to provide
specific values, or average to average over the random effects.

se String. Type of standard error to use, either GLS for the GLS standard errors, KR for Kenward-
Roger estimated standard errors, KR2 for the improved Kenward-Roger correction (see
small_sample_correction()), or robust to use a robust sandwich estimator.

at Optional. A vector of strings naming the fixed effects for which a specified value is given.

atmeans Optional. A vector of strings naming the fixed effects that will be set at their mean
value.

average Optional. A vector of strings naming the fixed effects which will be averaged over.

xvals Optional. A vector specifying the values of a and b for diff and ratio. The default is

(1,0).

atvals Optional. A vector specifying the values of fixed effects specified in at (in the same
order).

revals Optional. If re="at" then this argument provides a vector of values for the random
effects.

oim Logical. If TRUE use the observed information matrix, otherwise use the expected infor-
mation matrix for standard error and related calculations.

Returns: A named vector with elements margin specifying the point estimate and se giving
the standard error.

Method update_y(): Updates the outcome data y
Some functions require outcome data, which is by default set to all zero if no model fitting function
has been run. This function can update the interval y data.

Usage:

Model$update_y(y)

Arguments:

y Vector of outcome data

Model 47

Returns: None. Called for effects

Method set_trace(): Controls the information printed to the console for other functions.
Usage:
Model$set_trace(trace)
Arguments:

trace Integer, either 0 = no information, 1 = some information, 2 = all information

Returns: None. Called for effects.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Model$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Breslow, N. E., Clayton, D. G. (1993). Approximate Inference in Generalized Linear Mixed Mod-
els. Journal of the American Statistical Association<, 88(421), 9-25. doi:10.1080/01621459.
1993.10594284

McCullagh P, Nelder JA (1989). Generalized linear models, 2nd Edition. Routledge.

McCulloch CE (1997). “Maximum Likelihood Algorithms for Generalized Linear Mixed Models.”
Journal of the American statistical Association, 92(437), 162—170.doi:10.2307/2291460

Zeger, S. L., Liang, K.-Y., Albert, P. S. (1988). Models for Longitudinal Data: A Generalized
Estimating Equation Approach. Biometrics, 44(4), 1049.doi:10.2307/2531734

See Also

nelder, MeanFunction, Covariance
Model, Covariance, MeanFunction

Model, Covariance, MeanFunction

Examples

b m oo
Method ~Model$new”
B o

For more examples, see the examples for MCML.

#create a data frame describing a cross-sectional parallel cluster
#randomised trial

df <- nelder(~(cl(1@)*t(5)) > ind(10))

df$int <- @

dffdf$cl > 5, 'int'] <- 1

doi:10.1080/01621459.1993.10594284
doi:10.1080/01621459.1993.10594284
doi:10.2307/2291460
doi:10.2307/2531734

48

Model

mod <- Model$new(

formula = ~ factor(t) + int - 1 + (1]|gr(cl)) + (1]gr(cl,t)),
data = df,
family = stats::gaussian()

)

We can also include the outcome data in the model initialisation.
For example, simulating data and creating a new object:
df$y <- mod$sim_data()

mod <- Model$new(
formula = y ~ factor(t) + int - 1 + (1]gr(cl)) + (1]|gr(cl,t)),
data = df,
family = stats::gaussian()

)

Here we will specify a cohort study
df <- nelder(~ind(20) * t(6))

df$int <- 0@

dffdf$t > 3, 'int'] <- 1

des <- Model$new(

formula = ~ int + (1|gr(ind)),
data = df,
family = stats::poisson()

)

or with parameter values specified

des <- Model$new(
formula = ~ int + (1|gr(ind)),
covariance = c(0.05),
mean = c¢(1,0.5),
data = df,
family = stats::poisson()

)

#an example of a spatial grid with two time points

df <- nelder(~ (x(10)xy(10))*t(2))

spt_design <- Model$new(formula = ~ 1 + (1]ar@(t)*fexp(x,y)),
data = df,
family = stats::gaussian())

B oo
Method “Model$sim_data”
B oo

df <- nelder(~(cl(10)*t(5)) > ind(10))
df$int <- @
dffdf$cl > 5, 'int'] <- 1

des <- Model$new(

Model

formula = ~ factor(t) + int - 1 + (1]|gr(cl)*aro(t)),
covariance = c(0.05,0.8),
mean = c(rep(0,5),0.6),
data = df,
family = stats::binomial()
)

ysim <- des$sim_data()

B oo
Method ~Model$update_parameters”
o

df <- nelder(~(cl(10)*t(5)) > ind(10))
df$int <- @

df[df$cl > 5, 'int'] <- 1

des <- Model$new(

formula = ~ factor(t) + int - 1 + (1]|gr(cl)*aro(t)),
data = df,
family = stats::binomial()
)
des$update_parameters(cov.pars = c(0.1,0.9))
-
Method ~Model$power™
-

df <- nelder(~(cl(1@)*t(5)) > ind(10))
df$int <- @
df[df$cl > 5, 'int'] <- 1
des <- Model$new(
formula = ~ factor(t) + int - 1 + (1]gr(cl)) + (1]gr(cl,t)),
covariance = ¢(0.05,0.1),
mean = c(rep(0,5),0.6),
data = df,
family = stats::gaussian(),
var_par =1
)
des$power() #power of 0.90 for the int parameter

Bt o
Method ~Model$MCML"
B o

Not run:

Simulated trial data example

data(SimTrial,package = "glmmrBase")

model <- Model$new(
formula = y ~ int + factor(t) - 1 + (1]|gr(cl)*ari(t)),
data = SimTrial,
family = gaussian()

)

49

50

Model

glm3 <- model$MCML ()

Salamanders data example

data(Salamanders, package="glmmrBase")

model <- Model$new(
mating~fpop:mpop-1+(1|gr(mnum))+(1|gr(fnum)),
data = Salamanders,
family = binomial()

)

we will try MCEM with 500 MCMC iterations
model$mcmc_options$samps <- 500

view the grouping structure

glm2 <- model$MCML (method = "mcem")

Example using simulated data
#create example data with six clusters, five time periods, and five people per cluster-period
df <- nelder(~(cl(6)*t(5)) > ind(5))
parallel trial design intervention indicator
df$int <- @
dffdf$cl > 3, 'int'] <- 1
specify parameter values in the call for the data simulation below
des <- Model$new(
formula= ~ factor(t) + int - 1 +(1|gr(cl)*aro(t)),
covariance = c(0.05,0.7),
mean = c(rep(0,5),0.2),
data = df,
family = gaussian()
)
ysim <- des$sim_data() # simulate some data from the model
fitl <- des$MCML(y = ysim) # Default model fitting with SAEM-PR
use MCEM instead and stop when parameter values are within 1e-2 on successive iterations
fit2 <- des$MCML(y = ysim, method="mcem",tol=1e-2,conv.criterion = 1)

Non-linear model fitting example using the example provided by nlmer in lme4
data(Orange, package = "lme4")

the lme4 example:

startvec <- c(Asym = 200, xmid = 725, scal = 350)

(nm1 <- 1me4::nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,
Orange, start = startvec))

Orange <- as.data.frame(Orange)
Orange$Tree <- as.numeric(Orange$Tree)

Here we can specify the model as a function.

model <- Model$new(
circumference ~ Asym/(1 + exp((xmid - (age))/scal)) - 1 + (Asym|gr(Tree)),
data = Orange,
family = gaussian(),
mean = c(200,725,350),
covariance = c(500),

nelder 51

var_par = 50

)
for this example, we will use MCEM with adaptive MCMC sample sizes

model$mcmc_options$samps <- 1000
nfit <- model$MCML (method = "mcem.adapt”)

summary(nfit)
summary (nm1)

End(Not run)

B o
Method ~Model$LA"
oo

#create example data with six clusters, five time periods, and five people per cluster-period
df <- nelder(~(cl(6)*t(5)) > ind(5))
parallel trial design intervention indicator
df$int <- 0@
dffdf$cl > 3, 'int'] <- 1
specify parameter values in the call for the data simulation below
des <- Model$new(
formula = ~ factor(t) + int - 1 + (1]|gr(cl)*aro(t)),
covariance = ¢(0.05,0.7),
mean = c(rep(0,5),-0.2),
data = df,
family = stats::binomial()
)
ysim <- des$sim_data() # simulate some data from the model
fitl <- des$LA(y = ysim)

nelder Generates a block experimental structure using Nelder’s formula

Description

Generates a data frame expressing a block experimental structure using Nelder’s formula

Usage

nelder(formula)

Arguments

formula A model formula. See details

nest_df

Details

Nelder (1965) suggested a simple notation that could express a large variety of different blocked
designs. The function ‘nelder()‘ that generates a data frame of a design using the notation. There
are two operations:

‘> (or — in Nelder’s notation) indicates "clustered in".
“*#¢ (or x in Nelder’s notation) indicates a crossing that generates all combinations of two factors.

The implementation of this notation includes a string indicating the name of the variable and a
number for the number of levels, such as ‘abc(12)°. So for example ‘~cl(4) > ind(5)‘ means in each
of five levels of ‘cl‘ there are five levels of ‘ind‘, and the individuals are different between clusters.
The formula ‘~cl(4) * t(3)‘ indicates that each of the four levels of ‘cl® are observed for each of the
three levels of ‘t*. Brackets are used to indicate the order of evaluation. Some specific examples:

‘~person(5) * time(10)‘: A cohort study with five people, all observed in each of ten periods ‘time*

‘~(cl(4) * t(3)) > ind(5)‘: A repeated-measures cluster study with four clusters (labelled ‘cl*), each
observed in each time period ‘t* with cross-sectional sampling and five indviduals (labelled ‘ind‘)
in each cluster-period.

‘~(cl(4) >1ind(5)) * t(3)‘: A repeated-measures cluster cohort study with four clusters (labelled ‘cl)
wth five individuals per cluster, and each cluster-individual combination is observed in each time
period ‘t°.

‘~((x(100) * y(100)) > hh(4)) * t(2)*: A spatio-temporal grid of 100x100 and two time points, with
4 households per spatial grid cell.

Value

A list with the first member being the data frame

Examples

nelder(~(j(4) * t(5)) > i(5))
nelder(~person(5) * time(10))

nest_df Generate nested block structure

Description

Generate a data frame that nests one data frame in another

Usage

nest_df (df1, df2)

Arguments

df1 data frame
df2 data frame

predict.mcml 53

Details

For two data frames ‘df1‘ and ‘df2°, the function will return another data frame that nests ‘df2° in
‘df1°. So each row of ‘df1‘ will be duplicated ‘nrow(df2)‘ times and matched with ‘df2°. The values
of each ‘df2° will be unique for each row of ‘df1°

Value

data frame

Examples

nest_df (data.frame(t=1:4),data.frame(cl=1:3))

predict.mcml Predict from a ‘mcml‘ object

Description

Predictions cannot be generated directly from an ‘mcml‘ object, rather new predictions should be
generated using the original ‘Model‘. A message is printed to the user.

Usage
S3 method for class 'mcml'
predict(object, ...)
Arguments
object A ‘mcml‘ object.

Further arguments passed from other methods

Value

Nothing. Called for effects.

54 print.mcml

predict.Model Generate predictions at new values from a ‘Model* object

Description

Generates predicted values from a ‘Model‘ object using a new data set to specify covariance values
and values for the variables that define the covariance function. The function will return a list
with the linear predictor, conditional distribution of the new random effects term conditional on
the current estimates of the random effects, and some simulated values of the random effects if
requested. Typically this functionality is accessed using ‘Model$predict()‘, which this function
provides a wrapper for.

Usage

S3 method for class 'Model’

predict(object, newdata, offset = rep(@, nrow(newdata)), m =0, ...)
Arguments

object A ‘Model‘ object.

newdata A data frame specifying the new data at which to generate predictions

offset Optional vector of offset values for the new data

m Number of samples of the random effects to draw

Further arguments passed from other methods

Value

A list with the linear predictor, parameters (mean and covariance matrices) for the conditional dis-
tribution of the random effects, and any random effect samples.

print.mcml Prints an meml fit output

Description

Print method for class "‘mcml ‘"

Usage

S3 method for class 'mcml'
print(x, ...)

progress_bar 55

Arguments
X an object of class "‘mcml‘" as a result of a call to MCML, see Model
Further arguments passed from other methods
Details

‘print.mcml‘ tries to replicate the output of other regression functions, such as ‘Im‘ and ‘Imer*
reporting parameters, standard errors, and z- and p- statistics. The z- and p- statistics should be
interpreted cautiously however, as generalised linear miobjected models can suffer from severe
small sample biases where the effective sample size relates more to the higher levels of clustering
than individual observations.

Parameters ‘b‘ are the mean function beta parameters, parameters ‘cov‘ are the covariance function
parameters in the same order as ‘$covariance$parameters‘, and parameters ‘d‘ are the estimated
random effects.

Value

No return value, called for side effects.

progress_bar Generates a progress bar

Description

Prints a progress bar

Usage

progress_bar(i, n, len = 30)

Arguments

i integer. The current iteration.

n integer. The total number of interations

len integer. Length of the progress a number of characters
Value

A character string

Examples

progress_bar(10,100)

56 random.effects

Quantile Family declaration to support quantile regression

Description

Skeleton list to declare a quantile regression model in a “‘Model‘ object.

Usage

Quantile(link = "identity"”, scaled = FALSE, g = 0.5)

Arguments
link Name of the link function - any of ‘identity‘, ‘log*, ‘logit‘, ‘inverse*, or ‘probit*
scaled Logical indicating whether to include a scale parameter. If FALSE then the scale
parameter is one.
q Scalar in [0,1] declaring the quantile of interest.
Value

A list with two elements naming the family and link function

random.effects Extracts the random effect estimates

Description
Extracts the random effect estimates or samples from an mcml object returned from call of ‘MCML*
or ‘LA* in the Model class.

Usage

random.effects(object)

Arguments

object An ‘mcml‘ model fit.

Value

A matrix of dimension (number of fixed effects) x (number of MCMC samples). For Laplace
approximation, the number of "samples" equals one.

residuals.mcml 57

residuals.mcml Residuals method for a ‘mcml‘ object

Description

Calling residuals on an ‘mcml® object directly is not recommended. This function will currently
only generate marginal residuals. It will generate a new ‘Model‘ object internally, thus copying all
the data, which is not ideal for larger models. The preferred method is to call residuals on either the
‘Model‘ object or using ‘Model$residuals()‘, both of which will also generate conditional residuals.

Usage
S3 method for class 'meml'
residuals(object, type, ...)
Arguments
object A ‘mcml‘ object.
type Either "standardized", "raw" or "pearson"

Further arguments passed from other methods

Value

A matrix with either one column is conditional is false, or with number of columns corresponding
to the number of MCMC samples.

residuals.Model Extract residuals from a ‘Model* object

Description

Return the residuals from a ‘Model‘ object. This function is a wrapper for ‘Model$residuals().
Generates one of several types of residual for the model. If conditional = TRUE then the residuals
include the random effects, otherwise only the fixed effects are included. For type, there are raw,
pearson, and standardized residuals. For conditional residuals a matrix is returned with each column
corresponding to a sample of the random effects.

Usage

S3 method for class 'Model'’
residuals(object, type, conditional, ...)

58 setParallel

Arguments
object A ‘Model‘ object.
type Either "standardized", "raw" or "pearson”
conditional Logical indicating whether to condition on the random effects (TRUE) or not
(FALSE)
Further arguments passed from other methods
Value

A matrix with either one column is conditional is false, or with number of columns corresponding
to the number of MCMC samples.

Salamanders Salamanders data

Description

Obtained from uu <- url("http://www.math.mcmaster.ca/bolker/R/misc/salamander.txt")
sdat <- read. table(uu, header=TRUE, colClasses=c(rep("”factor”,5), "numeric”)) Seehttps:
//rpubs.com/bbolker/salamander for more information.

setParallel Disable or enable parallelised computing

Description

By default, the package will use multithreading for many calculations if OpenMP is available on
the system. For multi-user systems this may not be desired, so parallel execution can be disabled
with this function.

Usage

setParallel(parallel_, cores_ = 2L)

Arguments
parallel_ Logical indicating whether to use parallel computation (TRUE) or disable it
(FALSE)
cores_ Number of cores for parallel execution
Value

None, called for effects

https://rpubs.com/bbolker/salamander
https://rpubs.com/bbolker/salamander

SimGeospat 59

SimGeospat Simulated data from a geospatial study with continuous outcomes

Description

Simulated data from a geospatial study with continuous outcomes

Examples

#Data were generated with the following code:
n <- 600
SimGeospat <- data.frame(x = runif(n,-1,1), y = runif(n,-1,1))

sim_model <- Model$new(
formula = ~ (1|fexp(x,y)),
data = SimGeospat,
covariance = c¢(0.25,0.8),
mean = c(0),
family = gaussian()

)

SimGeospat$y <- sim_model$sim_data()

SimTrial Simulated data from a stepped-wedge cluster trial

Description

Simulated data from a stepped-wedge cluster trial

Examples

#Data were generated with the following code:
SimTrial <- nelder(~ (cl(10)*t(7))>i(10))
SimTrial$int <- @

SimTrial[SimTrial$t > SimTrial$cl, 'int'] <- 1

model <- Model$new(
formula = ~ int + factor(t) - 1 + (1|gr(cl)*ar1(t)),
covariance = ¢(0.05,0.8),
mean = rep(9,8),
data = SimTrial,
family = gaussian()

)

SimTrial$y <- model$sim_data()

60 summary.Model

summary .mcml Summarises an mcml fit output

Description

Summary method for class "‘mcml "

Usage
S3 method for class 'meml’
summary (object, ...)
Arguments
object an object of class "‘meml‘" as a result of a call to MCML, see Model

Further arguments passed from other methods

Details

‘print.mcml‘ tries to replicate the output of other regression functions, such as ‘Im‘ and ‘Imer*
reporting parameters, standard errors, and z- and p- statistics. The z- and p- statistics should be
interpreted cautiously however, as generalised linear miobjected models can suffer from severe
small sample biases where the effective sample size relates more to the higher levels of clustering
than individual observations.

Parameters ‘b‘ are the mean function beta parameters, parameters ‘cov‘ are the covariance function
parameters in the same order as ‘$covariance$parameters‘, and parameters ‘d‘ are the estimated
random effects.

Value

A list with random effect names and a data frame with random effect mean and credible intervals

summary .Model Summarizes a ‘Model‘ object

Description

Summarizes ‘Model‘ object.

Usage

S3 method for class 'Model’
summary(object, max_n = 10, ...)

vcov.mcml 61

Arguments
object An ‘Model" object.
max_n Integer. The maximum number of rows to print.
Further arguments passed from other methods
Value

An object of class ‘logLik‘. If both ‘fixed‘ and ‘covariance‘ are FALSE then it returns NA.

vcov.mcml Extract the Variance-Covariance matrix for a ‘mcml‘ object

Description

Returns the calculated variance-covariance matrix for a ‘mcml‘ object. The generating Model object
has several methods to calculate the variance-convaariance matrix. For the standard GLS informa-
tion matrix see ‘Model$information_matrix()‘. Small sample corrections can be accessed directly
from the generating Model using ‘Model$small_sample_correction()‘. The varaince-covariance
matrix including the random effects can be accessed using ‘Model$information_matrix(include.re
=TRUE)".

Usage
S3 method for class 'mcml’
vcov(object, ...)

Arguments
object A ‘mcml‘ object.

Further arguments passed from other methods

Value

A variance-covariance matrix.

62 vcov.Model

vcov.Model Calculate Variance-Covariance matrix for a ‘Model‘ object

Description

Returns the variance-covariance matrix for a ‘Model‘ object. Specifically, this function will re-
turn the inverse GLS information matrix for the fixed effect parameters. Small sample corrections
can be accessed directly from the Model using ‘Model$small_sample_correction(). The varaince-
covariance matrix including the random effects can be accessed using ‘Model$information_matrix(include.re

=TRUE)‘.
Usage
S3 method for class 'Model’
vcov(object, ...)
Arguments
object A ‘Model‘ object.

Further arguments passed from other methods

Value

A variance-covariance matrix.

Index

* package
glmmrBase-package, 3

Beta, 4, 33
binomial, 33

coef.meml, 5
coef.Model, 5
confint.mcml, 6
Covariance, 6, 30, 33, 47
cross_df, 11

cycles, 12

family, 12, 13, 20, 30, 33
family.mcml, 12
family.Model, 13
fitted.mcml, 13
fitted.Model, 14
fixed.effects, 14
formula, 15, 24
formula.meml, 15
formula.Model, 15

Gamma, 33

gaussian, 33

glmmrBase (glmmrBase-package), 3
glmmrBase-package, 3, 28

hessian_from_formula, 16

Ime4_to_glmmr, 17
loglLik.mcml, 17
loglLik.Model, 18

match_rows, 19

mcml_glmer, 4, 19

mcml_lmer, 4, 21

mcnr_family, 22
MeanFunction, 23, 30, 33, 47

Model, 5, 14, 17, 28, 30,47, 55, 56, 60

nelder, 47, 51
nest_df, 52

poisson, 33
predict.mcml, 53
predict.Model, 54
print.mcml, 54
progress_bar, 55

Quantile, 33, 56

random.effects, 56
residuals.mcml, 57
residuals.Model, 57

Salamanders, 58
setParallel, 58
SimGeospat, 59
SimTrial, 59
summary .mcml, 60
summary .Model, 60

vcov.mecml, 61
vcov.Model, 62

63

	glmmrBase-package
	Beta
	coef.mcml
	coef.Model
	confint.mcml
	Covariance
	cross_df
	cycles
	family.mcml
	family.Model
	fitted.mcml
	fitted.Model
	fixed.effects
	formula.mcml
	formula.Model
	hessian_from_formula
	lme4_to_glmmr
	logLik.mcml
	logLik.Model
	match_rows
	mcml_glmer
	mcml_lmer
	mcnr_family
	MeanFunction
	Model
	nelder
	nest_df
	predict.mcml
	predict.Model
	print.mcml
	progress_bar
	Quantile
	random.effects
	residuals.mcml
	residuals.Model
	Salamanders
	setParallel
	SimGeospat
	SimTrial
	summary.mcml
	summary.Model
	vcov.mcml
	vcov.Model
	Index

