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Abstract

In situations where a large data set is partitioned into many rela-
tively small clusters, and where members within clusters have some-
thing in common, the number of parameters tend to increase with
sample size, if a fixed-effects model is applied. This fact causes the
standard assumptions underlying asymptotic results to be violated.
The standard solution to this problem is to apply a random intercepts
model, where each cluster has its own intercept. The cluster intercepts
are usually taken to be a random sample from a Normal distribution
with mean zero and unknown variance. In the statistical computing
environment R, there are a few packages, most notably lme4, that es-
timates models of this kind. For binary and Poisson data, lme4 is a de
facto standard for analyzing generalized linear mixed models (GLMM ).
It also generalises from the random intercepts model to include random
slopes as well as nested clustering. The package glmmML generalises in
other directions. First, it is only implemented for the simple random
intercepts model and the Binomial and Poisson distributions, but it al-
lows for other distributions than the Normal for the random intercepts.
Test of the null hypothesis of no clustering is performed by a modi-
fied likelihood ratio test and, on request, by bootstrapping. Second,
it allows for estimating a fixed effects model, assuming that all clus-
ter intercepts are distinct fixed parameters, and, as a replacement for
asymptotics, a bootstrapping tecnique is implemented. The random
intercepts model is fitted through maximum likelihood with adaptive
Gauss-Hermite and Laplace quadrature approximations of the likeli-
hood function. The fixed effects model is fitted through a profiling
approach, which is necessary when the number of clusters is large,
because the standard function glm in R will choke on a huge design
matrix. In a simulation study the two approaches are compared re-
garding two aspects. The first aspect is test of grouping effect, and the
second is performance of regression parameter estimates. The main
result is that the fixed effects model has severe bias when the mixed
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effects variance is positive and the number of clusters is large. It is also
shown that the Laplace approximation works fairly well when cluster
sizes are not too small.

1 Introduction

Data sets with many small groups where there is within-group correlation
and between-group variation are commonly encountered in many fields of
application, for example in medical studies with repeated observations of
patients, and in demographic investigations, where it is realistic to assume
that members of a family have common characteristics. In this paper we
investigate the properties of mixed effects models for these situations. We
concentrate on binary and count data responses, i.e., the binomial and Pois-
son distributions in the framework of generalised linear models.

The generalised linear model with random intercept is a well-known
model with some implementations in standard software. It is available in
SAS, Stata, and in R R Core Team (2019). There are also (at least)
five R packages available, the lme4 package Bates et al. (2015) includes the
lmer function, the MASS package Venables and Ripley (2002) includes Rip-
ley’s glmmPQL function, and, adding to that, the presently discussed glmmML

package (Broström, 2019).
So what is the motivation for the package glmmML? Because it is different

from the others (except lme4) in that it, as the name implies, fits the model
via a direct maximum likelihood approach. The (marginal) likelihood func-
tion is a multi-dimensional integral in the general case. Furthermore, fixed
effects models can be estimated efficiently through a profiling approach. This
means that even with a huge number of clusters, the estimation procedure
is fast and exact.

The random effects version of glmmML only fits models with random in-
tercepts. This means that the multiple integral can be expanded into several
one-dimensional integrals, and the numerical integration of the log likelihood
function by the Laplace or Gauss-Hermite approximations is fast and accu-
rate. Maximisation of the log likelihood function is done using the optim

function vmmin in C code version. For this purpose we use the Linpack

Fortran subroutines dpoco, dposl, and dpodi, combined with blas routines.
All are found within R.

In the fixed effects model, testing is performed via a simple bootstrap.
Under the null hypothesis of no cluster effect, the grouping factor can be
randomly permuted without changing the probability distribution. This is
the basic idea in estimating the p-value by simulation.

In Section 2 we define the likelihood function for the distributions we
consider, i.e., the binomial and the Poisson. We then consider fixed group
effects in Section 3, introducing the profile approach. In Section 4 we intro-
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duce the random effects model with a symmetric mixture distribution. We
show how to construct the log-likelihood function and we derive the first and
second partial derivatives.

For comparisons of choice of random or fixed effects of clustering, see the
forthcoming paper by Broström and Holmberg (2011).

2 The likelihood function

Assume that there are n clusters in our data, of sizes ni, i = 1, . . . , n. For
each cluster we observe responses (yi1, . . . , yini

) and vectors of explanatory
variables (xi1, . . . ,xini

), where xij is a p-dimensional vector with the first
element identically equal to unity, corresponding to the mean value of the
random intercept. The random part, ui, of the intercept is assumed to follow
a distribution with density

h(u;σ) =
1

σ
p

(

u

σ

)

, −∞ < u < ∞, σ > 0, (1)

i.e., with location zero and scale σ. It is assumed that u1, . . . , un are inde-
pendent.

The conditional distribution of the response, given the random inter-
cepts β1 + ui, i = 1, . . . , n, is assumed to follow a multivariate distribution
according to

Pr(Yij = yij | ui;x) = P (βxij + ui, yij),

yij = 0, 1, . . . ; j = 1, . . . , ni, i = 1, . . . , n. (2)

For instance, with the Bernoulli distribution and the logit link, we get

P (x, y) =
exy

1 + ex
, y = 0, 1; −∞ < x < ∞,

and with the cloglog link we have

P (x, y) =
(

1− exp(−ex)
)y

exp
(

−(1− y)ex
)

, y = 0, 1; −∞ < x < ∞,

The Poisson distribution with log link gives rise to

P (x, y) =
exy

y!
e−ex , y = 0, 1, 2, . . . ; −∞ < x < ∞ (3)

These are in fact all the possibilities that are available in glmmML and will be
considered in this paper.

In the fixed effects model (and in the random effects model, if we condi-
tion on these effects), the likelihood function becomes

L
(

(β,γ);y,x
)

=

n
∏

i=1

ni
∏

j=1

P (βxij + γi, yij). (4)
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The log likelihood function becomes

ℓ
(

(β,γ);y,x
)

=

n
∑

i=1

ni
∑

j=1

logP (βxij + γi, yij), (5)

3 Fixed group effects

3.1 Without profiling

The partial derivatives with respect to βm, m = 1; . . . , p, of the log likelihood
function (5) are:

Um(β,γ) =
∂

∂βm
ℓ
(

(β,γ);y,x
)

=

n
∑

i=1

ni
∑

j=1

xijmG
(

βxij + γi, yij
)

, m = 1, . . . , p.
(6)

where

G(x, y) =
∂

∂x
logP (x, y) =

∂
∂x
P (x, y)

P (x, y)

The partial derivatives with respect to γi, i = 1, . . . , n of (5) are:

Up+i(β,γ) =
∂

∂γi
ℓ
(

(β,γ);y,x
)

=

ni
∑

j=1

G
(

βxij + γi, yij
)

, i = 1, . . . , n.
(7)

The Hessian, or minus the observed information, −I(β,γ) has entries

−Ims(β,γ) =
∂

∂βs
Um(β,γ)

=
n
∑

i=1

ni
∑

j=1

xijmxijsH
(

βxij + γi, yij
)

, m, s = 1, . . . , p,
(8)

−I(p+i)s(β,γ) =
∂

∂βs
Up+i(β,γ)

=

ni
∑

j=1

xijsH
(

βxij + γi, yij
)

, s = 1, . . . , p; i = 1, . . . , n.

(9)

−I(p+i)(p+i)(β,γ) =
∂

∂γi
Up+i(β,γ)

=

ni
∑

j=1

H
(

βxij + γi, yij
)

, i = 1, . . . , n.
(10)
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−I(p+i)(p+k)(β,γ) = 0, k ̸= i; k, i = 1, . . . , n.

where

H(x, y) =
∂

∂x
G(x, y)

When n is large, we may utilise the fact that I is partially diagonal.

3.2 With profiling

Setting (7) equal to zero defines γ implicitly as functions of β, γi = γi(β), i =
1, . . . , n:

F
(

β, γi(β)
)

=

ni
∑

j=1

G
(

βxij + γi(β), yij
)

= 0, i = 1, . . . , n. (11)

Generally, we get no explicit form for γi(β), but we can calculate its partial
derivatives via implicit derivation. From

∂

∂βm
F
(

β, γi(β)
)

=
∂γi

∂βm

∂F

∂γi
+

∂F

∂βm
= 0

we get

∂γi(β)

∂βm
= −

∂F
∂βm

∂F
∂γi

= −
∑ni

j=i xijmH
(

βxij + γi, yij
)

∑ni

j=1H
(

βxij + γi, yij
) , i = 1, . . . , n; m = 1, . . . , p.

(12)

Replacing γ by γ(β) in (5) gives the profile log likelihood ℓ(p):

ℓ(p)
(

β;y,x
)

=
n
∑

i=1

ni
∑

j=1

logP
(

βxij + γi(β), yij
)

, (13)

3.2.1 Profile partial derivatives

The partial derivatives with respect to βm, m = 1; . . . , p, of the log profile
likelihood function (13) becomes:

U (p)
m (β) =

∂

∂βm
ℓ(p)(β;y,x)

=
n
∑

i=1

ni
∑

j=1

(

xijm +
∂γi(β)

∂βm

)

G
(

βxij + γi(β), yij
)

= Um

(

β,γ(β)
)

+
n
∑

i=1

∂γi(β)

∂βm

ni
∑

j=1

G
(

βxij + γi(β), yij
)

= Um(β,γ(β)),

(14)
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where the last equality follows from (11). Thus we get back the unprofiled
partial derivatives (6).

3.2.2 The profile Hessian

From (14) we get the Hessian, or minus the information matrix

−I(p)ms(β) =
∂

∂βs
Um

(

β,γ(β)
)

=

n
∑

i=1

ni
∑

j=1

xijm

(

xijs +
∂γi(β)

∂βs

)

H
(

βxij + γi(β), yij
)

=

n
∑

i=1

ni
∑

j=1

xijmxijsHij

−
n
∑

i=1

∑ni

j=1 xijmHij

∑ni

j=1 xijsHij
∑ni

j=1Hij
,

m, s = 1, . . . , p.

(15)

where

Hij = H
(

βxij + γi(β), yij
)

, j = 1, . . . ni; i = 1, . . . , n.

3.2.3 At the maximum

The following theorem by Patefield (1977) justifies the use of the profile
likelihood for statistical inference.

Theorem 1 (Patefield) The inverse Hessians from the full likelihood and

from the profile likelihood for β are identical when

(γ,β) = (γ̂, β̂).

3.3 Optimisation considerations

There are a few practical things to note in the optimisation by profiling.
First, a new iteration step starts by solving the n equations given by setting
(7) equal to zero. The left-hand sides are simple, monotone functions of one
variable and easy and fast to solve numerically, but see below. This gives
(γ1, . . . , γn), which are plugged into (12), (14), and (15).

Second, it is easy to see that clusters where all the responses are zero
can be removed from the calculations, after noting that the corresponding
γ = −∞. Correspondingly, in the binomial case, clusters with all responses
equal to one can be removed and the corresponding γ = +∞. These extreme
cases correspond to probabilities equal to zero and one, respectively.
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In order to illustrate the performance boost of the profile approach over
using the standard glm function in R, consider the following numerical ex-
ample with 1000 clusters and five individuals in each, one covariate:

> dat <- data.frame(y = rbinom(5000, size = 1, prob = 0.5),

+ x = rnorm(5000), group = rep(1:1000, each = 5))

> system.time(fit1 <- glm(y ~ factor(group) + x, data = dat,

+ family = binomial))

user system elapsed

86.430 0.840 87.546

> library(glmmML)

> system.time(fit2 <- glmmboot(y ~ x, cluster = group,

+ data = dat))

user system elapsed

0.080 0.010 0.097

The huge difference in computing time is not due to lack of enough computer
memory; the test was performed on a machine with 64 GB RAM. The result-
ing parameter estimates, standard errors and p-values are indistinguishable.

3.3.1 Profiling with the Poisson distribution

When data are Poisson, the profiling can be made explicit. The log likelihood
function is, from (3) and (5),

ℓ ∝
n
∑

i=1

ni
∑

j=1

{

yij(βxij + γi)− exp(βxij + γi)
}

, (16)

and equations (11) become

ni
∑

j=1

{

yij − exp(βxij + γi)
}

= 0, i = 1, . . . , n.

with solutions

γi = log

( ni
∑

j=1

yij

)

− log

( ni
∑

j=1

exp(βxij)

)

, i = 1, . . . , n. (17)

Inserting (17) into (16) and simplifying results in the profile likelihood

ℓ(p) ∝
n
∑

i=1

ni
∑

j=1

yij

{

βxij − log

( ni
∑

j=1

exp(βxij)

)}
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This is also recognized as a partial likelihood (Cox, 1975). In fact, when the
responses yij are indicators, zero or one, and the clusters are interpreted as
risk sets at times when events occur, the profile likelihood is identical to the
partial likelihood in Cox regression (with Breslow’s approximation for ties).
This was observed by Johansen (1983).

4 Random group effects

We assume conditional independence, and, conditionally on u(= γ), an or-
dinary logistic regression model with offsets u = (u1, . . . , un). Since u is
unobserved, the unconditional likelihood function is of greater interest, and
we get it by “integrating out” u:

L
(

(β, σ);y,x
)

=

∫

· · ·
∫

Rn

n
∏

i=1

ni
∏

j=1

P (βxij + ui, yij)
1

σ
p

(

ui

σ

)

du1 · · · dun.

Due to independence, this n-dimensional integral can be written as a product
of n simple integrals:

L
(

(β, σ);y,x
)

=
n
∏

i=1

∫

∞

−∞

p(u)

ni
∏

j=1

P (βxij + σu, yij)du, (18)

where a variable substitution (u → σu) has taken place.
The log likelihood function thus becomes

ℓ
(

(β, σ);y,x
)

=

n
∑

i=1

log

∫

∞

−∞

p(u)

ni
∏

j=1

P (βxij + σu, yij)du, (19)

and the remaining part of this section is devoted to the problem of maximis-
ing (19) with respect to (β, σ). For this we will need the score vector, and
for estimation of the variance-covariance matrix of the parameter estimates
we will use the Hessian of (19), or rather an approximation thereof.

For the numerical evaluation of integrals we use quadrature methods,
briefly described in Subsections 4.3 and 4.4. For more detail, consult, e.g.,
Gray (2001). There are two ways to proceed: (i) Calculate the analytic par-
tial first and second order derivatives of the log likelihood function (19) and
make numerical approximations of them, and (ii) from the approximation
of (19), calculate the analytic partial first and second order derivatives. We
follow the latter route.

In the next subsection we introduce the Laplace transform of this prob-
lem, and after that the Gauss-Hermite approximation is introduced. The
latter is a generalisation of the former. In both cases, a fully adaptive ver-
sion is implemented.
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4.1 The Laplace approximation

The integrals will be evaluated by Laplace approximation. We follow the
approach of approximating only the log-likelihood function and from there
calculate all the necessary derivatives.

4.1.1 The log-likelihood function

We look at one group, i.e., a fixed i for the moment. Let

p(u)

ni
∏

j=1

P (βxij + σu, yij) = exp{g(u,θ)},

with θ = (β, σ). Then the integral in (19) can be written, using the Laplace
approximation, as

∫

∞

−∞

exp{g(u,θ)}du ≈
√
2πω̂ exp{g(û,θ)},

where ω̂ and û are defined below. For that we need some partial derivatives
of g.

g(u,θ) = log{p(u)}+
ni
∑

j=1

logP (βxij + σu, yij),

gu(u,θ) =
∂

∂u
log{p(u)}+ σ

ni
∑

j=1

G(βxij + σu, yij),

guu(u,θ) =
∂2

∂u2
log{p(u)}+ σ2

ni
∑

j=1

H(βxij + σu, yij),

(20)

where

G(x, y) =
∂

∂x
logP (x, y)

H(x, y) =
∂

∂x
G(x, y)

(21)

Now, û is defined as

û = û(θ) = argmaxug(u,θ), (22)

(where we emphasise that û is a function of θ), i.e., we also have

gu(û,θ) = 0. (23)
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Then ω̂ is defined as

ω̂ = ω̂(θ) =

√

− 1

guu(û,θ)

=

(

d2

du2
log{p(u)} |u=û −σ2

ni
∑

j=1

H(βxij + σû, yij)

)

−
1

2

,

(24)

which also gives the relation

guu(û,θ) = − 1

ω̂2(θ)
(25)

Thus, the contribution to the log likelihood from the ith group is approxi-
mated by

ℓi(θ) ≈ 0.5 log(2π) + log{ω̂(θ)}+ g(û(θ),θ)

= 0.5 log(2π)− 0.5 log{guu(û(θ),θ)}+ g(û(θ),θ)
(26)

4.1.2 The score vector

In the maximisation of

ℓ(θ) =

n
∑

i=1

ℓi(θ),

we will make use of the score vector. For that purpose we will need the partial
derivatives of û(θ) and ω̂(θ). From (23) we get, by implicit differentiation,

∂

∂θ
gu(û(θ),θ) = guu(û,θ)

∂û

∂θ
+

∂gu

∂θ

=
∂û

∂θ
guu(û,θ) + guθ(û,θ)

= ûθ(θ)guu(û,θ) + guθ(û,θ) = 0

(27)

which gives

ûθ(θ) =
∂û(θ)

∂θ
= −guθ(û,θ)

guu(û,θ)
= ω̂2(θ)guθ(û,θ) = ω̂2(θ)guθ(û(θ),θ) (28)

In calculating the partial first order derivatives, we utilise the formula

∂

∂θ
ℓ(û(θ),θ) =

∂

∂θ
log ω̂(θ) + ûθgu + gθ

=
ω̂θ

ω̂
+ ûθgu + gθ.

(29)

So, we will need

∂

∂θ
ω̂(û(θ),θ) = ω̂θ =

1

2
(−guu)

−
3

2 {ûθguuu + guuθ}

=
1

2
ω̂3{ûθguuu + guuθ}

(30)
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4.1.3 The Hessian

The Hessian will be needed for variance estimation. For that purpose we will
need the partial derivatives of second order of û(θ). Therefore, we continue
by calculating the partial derivatives of (27) with respect to θ′.

∂2

∂θ∂θ′
gu(û(θ),θ) = ûθθ′guu + ûθ(ûθ′guuu + guuθ′)

+ ûθ′guuθ + guθθ′

= 0.

Solving for ûθθ′ gives

ûθθ′ =
∂

∂θ′
ûθ(θ) = ω̂2(ûθûθ′guuu + ûθguuθ′ + ûθ′guuθ + guθθ′).

We will also need

∂2

∂θθ′
ω̂(θ) =

3

4
ω̂5(ûθ′guuu + guuθ′)(ûθguuu + guuθ)

+
1

2
ω̂3(ûθθ′guuu + ûθûθ′guuuu + ûθguuuθ′ + ûθθ′guuuθ + guuθθ′).

From (29), with the same formula, we get

∂2

∂θ∂θ′
ℓ(û(θ),θ) =

∂

∂θ′

{

ω̂θ

ω̂
+ ûθgu + gθ

}

=
ω̂θθ

′ω̂ − ω̂θω̂θ
′

ω̂2
+ ûθθ′gu

+ ûθ(ûθ′guu + guθ′) + ûθ′guθ + gθθ′ .

All the necessary derivatives can be found in A.

4.2 The Gauss-Hermite approximation

The Gauss-Hermite approximation can be viewed upon as a generalisation of
the Laplace approximation; instead of using just a single point, the approx-
imation is built around approximations in several points. More specifically,
the formula is

∫

∞

−∞

exp{g(u,θ)}du ≈
√
2πω̂

n
∑

i=1

hi exp{g(û+
√
2πω̂xi,θ) + x2i }, (31)

where x1, . . . , xn and h1, . . . , hn are the abscissas and weights of the trans-
form, and n is the number of quadrature points. When n = 1, this coincides
with the Laplace approximation.

The constants (but functions of θ) û and ω̂ are the same as in the Laplace
transform of Section 4.3. The calculations of the approximations of the first
and second order partial derivatives (or vice versa) are straightforward (cf.
Section 4.3), and we omit them here. They are implemented in the R package
glmmML.
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5 Conclusion

What model should be used to a particular data set, i.e., when is a mixed
effects model preferable over a fixed effects model? Generally speaking, a
random effects model is appropriate if the observed clusters may be regarded
as a random sample from a (large, possibly infinite) pool of possible clusters.
The observed clusters are of no practical interest per se, but the distribution
in the pool is. Or this distribution is regarded as a nuisance that needs to
be controlled for. A fixed effects model, on the other hand, is appropriate if
we consider the given clusters as the full universe of clusters.

In the random effects case, we expect the number of clusters to grow as
sample size grows, and the cluster sizes to remain stable. In the fixed effects
approach, on the other hand, it is expected that the number of clusters is
stable, while cluster size grows with sample size.
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A Analytic derivatives

A.1 The score

The partial derivatives with respect to βm,m = 1; . . . , p, of the log likelihood
function (19) are:

∂

∂βm
ℓ
(

(β, ω);y,x
)

=

n
∑

i=1

∂
∂βm

∫

∞

−∞
φ(u)

∏ni

j=1 P (βxij + σu, yij)du
∫

∞

−∞
φ(u)

∏ni

j=1 P (βxij + σu, yij)du
(32)

The partial derivatives in the numerators are given by

∂

∂βm

∫

∞

−∞

φ(u)

ni
∏

j=1

P (βxij + σu, yij)du =

∫

∞

−∞

φ(u)

ni
∏

j=1

P (βxij + σu, yij)

ni
∑

j=1

xijmG(βxij + σu, yij)du, (33)

with

G(x, y) =
∂

∂x
logP (x, y) =

∂
∂x
P (x, y)

P (x, y)
(34)

The partial derivative with respect to ω = log(σ) is

∂

∂ω
ℓ
(

(β, ω);y,x
)

=
n
∑

i=1

∂
∂ω

∫

∞

−∞
φ(u)

∏ni

j=1 P (βxij + σu, yij)du
∫

∞

−∞
φ(u)

∏ni

j=1 P (βxij + σu, yij)du
(35)

From this, we get the partial derivatives in the numerators as

∂

∂ω

∫

∞

−∞

φ(u)

ni
∏

j=1

P (βxij + σu, yij)du =

σ

∫

∞

−∞

uφ(u)

ni
∏

j=1

P (βxij + σu, yij)

ni
∑

j=1

G(βxij + σu, yij)du (36)

A.2 The Hessian

Some “symbolic” notation:

ℓ =
n
∑

i=1

log hi (37)

∂ℓ

∂βm
=

n
∑

i=1

hβ(m, i)

hi
, m = 1, . . . , p,

∂ℓ

∂ω
=

n
∑

i=1

hω(i)

hi

13



Here hβ(m, i), i = 1, . . . , n; m = 1, . . . , p are given by equation (33), and
hω(i), i = 1, . . . , n are given by equation (36).

The second derivatives are needed at the solution in order to estimate
standard errors.

∂2ℓ

∂βk∂βm
=

n
∑

i=1

{

hββ(k,m, i)

hi
− hβ(k, i)

hi

hβ(m, i)

hi

}

, k,m = 1, . . . , p

∂2ℓ

∂βk∂ω
=

n
∑

i=1

{

hβω(k, i)

hi
− hβ(k, i)

hi

hω(i)

hi

}

, k = 1, . . . , p

∂2ℓ

∂ω2
=

n
∑

i=1

{

hωω(i)

hi
− hω(i)

hi

hω(i)

hi

}

(38)

So we need to calculate hββ , hβω, and hωω,

hββ(k,m, i) =

∂

∂βk

∫

∞

−∞

φ(u)

ni
∏

j=1

P (βxij + σu, yij)

ni
∑

j=1

xijmG(βxij + σu, yij)du =

∫

∞

−∞

φ(u)

ni
∏

j=1

P (βxij + σu, yij)

{ ni
∑

j=1

xijkG(βxij + σu, yij)

×
ni
∑

j=1

xijmG(βxij + σu, yij) +

ni
∑

j=1

xijkxijmH(βxij + σu, yij)du

k,m = 1, . . . , p; i = 1, . . . , n

where

H(x, y) =
∂2

∂x2
logP (x, y) =

∂

∂x
G(x, y).

hβω(k, i) =

∂

∂βk
σ

∫

∞

−∞

uφ(u)

ni
∏

j=1

P (βxij + σu, yij)

ni
∑

j=1

G(βxij + σu, yij)du =

σ

∫

∞

−∞

uφ(u)

ni
∏

j=1

P (βxij + σu, yij)

{ ni
∑

j=1

xijkG(βxij + σu, yij)

×
ni
∑

j=1

G(βxij + σu, yij) +

ni
∑

j=1

xijkH(βxij + σu, yij)

}

du

k = 1, . . . , p; i = 1, . . . , n
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hωω(i) =

∂

∂ω
σ

∫

∞

−∞

uφ(u)

ni
∏

j=1

P (βxij + σu, yij)

ni
∑

j=1

G(βxij + σu, yij)du =

σ

∫

∞

−∞

uφ(u)

ni
∏

j=1

P (βxij + σu, yij)

{ ni
∑

j=1

G(βxij + σu, yij)

×
(

1 + σu

ni
∑

j=1

G(βxij + σu, yij)
)

+ σu

ni
∑

i=1

H(βxij + σu, yij)

}

du

i = 1, . . . , n

B Some necessary derivatives using the Laplace or

Gauss-Hermite approximation

The basic partial derivatives are:

gσ = u
∑

G(βxij + σu, yij)

gβm
=

∑

xijmG(βxij + σu, yij), m = 1, . . . , p

guσ = uσ
∑

H(βxij + σu, yij) +
∑

G(βxij + σu, yij)

guβm
= σ

∑

xijmH(βxij + σu, yij), m = 1, . . . , p

guuσ = 2σ
∑

H(βxij + σu, yij) + uσ2
∑

I(βxij + σu, yij)

guuβm
= σ2

∑

xijmI(βxij + σu, yij)

guuu =
d3

du3
log p(u) + σ3

∑

I(βxij + σu, yij)

(39)

where

I(βxij + σu, yij) =
∂

∂x
H(x, y), (40)

For the calculation of the Hessian we need

gσσ = u2
∑

H(βxij + σu, yij)

gσβm
= u

∑

xijmH(βxij + σu, yij)

gβmβk
=

∑

xijmxijkH(βxij + σu, yij),

(41)

and

guσσ = u2σ
∑

I(βxij + σu, yij) + 2u
∑

H(βxij + σu, yij)

guσβm
= uσ

∑

xijmI(βxij + σu, yij) +
∑

xijmH(βxij + σu, yij)

guβmβk
= σ

∑

xijmxijkI(βxij + σu, yij),

(42)
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and

guuσσ = u2σ2
∑

K(βxij + σu, yij)

+ 4uσ
∑

I(βxij + σu, yij) + 2
∑

H(βxij + σu, yij)

guuσβm
= uσ2

∑

xijmK(βxij + σu, yij) + 2σ
∑

xijmI(βxij + σu, yij)

guuβmβk
= σ2

∑

xijmxijkK(βxij + σu, yij),

(43)

where

K(βxij + σu, yij) =
∂

∂x
I(x, y), (44)

and

guuuu =
d4

du4
log p(u) + σ4

∑

K(βxij + σu, yij)

guuuσ = uσ3
∑

K(βxij + σu, yij) + 3σ2
∑

I(βxij + σu, yij)

guuuβm
= σ3

∑

xijmK(βxij + σu, yij)

(45)
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