geom_world() provides a convenient global base map for
ggplot2. It comes bundled with country polygons,
coastlines, and political/administrative boundaries.
Key features include:
By default, geom_world() plots the map using the WGS84
standard.
You can specify the CRS directly within the function.
For a cleaner look, you can remove the blue ocean background and change the land fill color.
If you only need continental landmasses without internal country
borders, set show_admin_boundaries = FALSE.
Combining both options creates a minimalist silhouette map:
geom_world() shines when working with different map
projections. It automatically projects the underlying polygons.
crs_robin <- "+proj=robin +datum=WGS84"
ggplot() +
geom_world(crs = crs_robin) +
coord_sf(crs = crs_robin) +
theme_void()Changing the central meridian (centering the map on the Pacific) is
often difficult in standard ggplot2. geom_world() handles
the polygon splitting automatically.
crs_robin_150 <- "+proj=robin +lon_0=150 +datum=WGS84"
ggplot() +
geom_world(crs = crs_robin_150) +
coord_sf(crs = crs_robin_150) +
theme_void()A common issue with coord_sf() is that gridlines appear,
but axis labels (coordinates) disappear. This often occurs when:
expand = TRUE extends the map beyond ±180° or
±90°.Recommended pattern for reliable axis labels: Use
expand = FALSE inside coord_sf and set
panel.ontop = TRUE in the theme.
ggplot() +
geom_world() +
coord_sf(
crs = 4326,
expand = FALSE,
datum = sf::st_crs(4326)
) +
theme_minimal() +
theme(panel.ontop = TRUE)annotation_graticule() provides precise control over
meridians and parallels. Unlike standard gridlines, these are annotation
layers that:
lon_step,
lat_step) and label placement.ggplot() +
geom_world() +
annotation_graticule(
lon_step = 60,
lat_step = 30,
label_offset = 5
) +
coord_sf(
crs = 4326,
expand = FALSE,
datum = sf::st_crs(4326)
) +
theme_void() +
theme(panel.ontop = TRUE)Note how the graticules curve naturally with the projection.
crs_robin <- "+proj=robin +datum=WGS84"
ggplot() +
geom_world(crs = crs_robin) +
annotation_graticule(
crs = crs_robin,
lon_step = 30,
lat_step = 15,
label_offset = 3e5
) +
coord_sf(crs = crs_robin) +
theme_void()For regional maps, the recommended pattern is to:
annotation_graticule() to draw the lines but hide
its internal labels (label_color = NA).labs() or coord_sf labels for
the axes.expand = FALSE.cn_xlim <- c(70, 140)
cn_ylim <- c(0, 60)
ggplot() +
geom_world() +
annotation_graticule(
xlim = cn_xlim,
ylim = cn_ylim,
crs = 4326,
lon_step = 10,
lat_step = 10,
label_color = NA,
label_offset = 1,
label_size = 3.5
) +
coord_sf(
xlim = cn_xlim,
ylim = cn_ylim,
expand = FALSE
) +
labs(
x = "Longitude",
y = "Latitude"
) +
theme_bw()You can create “highlight” maps by layering geom_world()
calls. The first call draws the base (e.g., white), and the second call
filters for specific countries to color them.
Users can also merge external datasets (e.g., GDP, population, or
other metrics) with the map data to create choropleth maps. This
requires accessing the underlying spatial data using
check_geodata and load.
First, ensure the necessary geospatial data files are available and load them. Then, merge your custom data using the ISO country code (SOC).
# 1. Ensure data availability and GET FILE PATHS
map_files <- check_geodata(c("world_countries.rda", "world_coastlines.rda"))
#> extdata dir: C:/Users/Administrator/AppData/Local/Temp/RtmpoR5e8C/Rinst857cbac4d11/ggmapcn/extdata (writable = TRUE)
#> cache dir: C:\Users\Administrator\AppData\Roaming/R/data/R/ggmapcn (writable = TRUE)
#> Using existing cache file: C:/Users/Administrator/AppData/Roaming/R/data/R/ggmapcn/world_countries.rda
#> Using existing extdata file: C:/Users/Administrator/AppData/Local/Temp/RtmpoR5e8C/Rinst857cbac4d11/ggmapcn/extdata/world_coastlines.rda
# 2. Load the world countries data (object name: 'countries')
load(map_files[1])
# 3. Create custom data: Real 2023 Population Estimates (Top 25+ major nations)
# Unit: Millions
custom_data <- data.frame(
iso_code = c("CHN", "IND", "USA", "IDN", "PAK", "NGA", "BRA", "BGD",
"RUS", "MEX", "JPN", "ETH", "PHL", "EGY", "VNM", "COD",
"TUR", "IRN", "DEU", "THA", "GBR", "FRA", "ITA", "ZAF",
"KOR", "ESP", "COL", "CAN", "AUS", "SAU"),
pop_mil = c(1425.7, 1428.6, 339.9, 277.5, 240.5, 223.8, 216.4, 172.9,
144.4, 128.5, 123.3, 126.5, 117.3, 112.7, 98.9, 102.3,
85.8, 89.2, 83.2, 71.8, 67.7, 64.7, 58.9, 60.4,
51.7, 47.5, 52.1, 38.8, 26.6, 36.9)
)
# 4. Merge custom data with the 'countries' object
# Note: Use 'all.x = TRUE' to preserve the map geometry for all countries
merged_data <- merge(
countries,
custom_data,
by.x = "SOC",
by.y = "iso_code",
all.x = TRUE
)
# 5. Plot with layering strategy
ggplot() +
# Layer 1: Data Fill (No borders, just color)
geom_sf(
data = merged_data,
aes(fill = pop_mil),
color = "transparent"
) +
# Layer 2: World Boundaries (Transparent fill, standard borders)
geom_world(
country_fill = NA,
show_ocean = FALSE
) +
# Styling
scale_fill_viridis_c(
option = "plasma",
na.value = "grey95",
direction = -1, # Reverse color scale so dark = high population
name = "Population (Millions)"
) +
theme_void() +
theme(legend.position = "bottom")This workflow highlights a key design philosophy: by accessing raw
spatial data via check_geodata() and processing it with
geom_sf(), you gain complete flexibility to visualize
custom datasets. At the same time, overlaying geom_world()
ensures that the final map retains the consistent, high-quality basemap
and administrative boundary styles provided by ggmapcn.