## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(flexmet) ## ---- autodep=TRUE------------------------------------------------------------ ## example parameters from Table 7 of Reise & Waller (2003) a <- c(0.57, 0.68, 0.76, 0.72, 0.69, 0.57, 0.53, 0.64, 0.45, 1.01, 1.05, 0.50, 0.58, 0.58, 0.60, 0.59, 1.03, 0.52, 0.59, 0.99, 0.95, 0.39, 0.50) b <- c(0.87, 1.02, 0.87, 0.81, 0.75, -0.22, 0.14, 0.56, 1.69, 0.37, 0.68, 0.56, 1.70, 1.20, 1.04, 1.69, 0.76, 1.51, 1.89, 1.77, 0.39, 0.08, 2.02) ## convert from difficulties and discriminations to FMP parameters b1 <- 1.702 * a b0 <- - 1.702 * a * b bmat <- cbind(b0, b1) ## ----------------------------------------------------------------------------- # generate a large number of theta and TRF (thetastar) values theta <- seq(-3, 5, length = 5000) TRF <- rowSums(irf_fmp(theta = theta, b = bmat)) ## ----------------------------------------------------------------------------- fmp0 <- MonoPoly::monpol(theta ~ TRF, K = 0) fmp1 <- MonoPoly::monpol(theta ~ TRF, K = 1) fmp2 <- MonoPoly::monpol(theta ~ TRF, K = 2) fmp3 <- MonoPoly::monpol(theta ~ TRF, K = 3) fmp4 <- MonoPoly::monpol(theta ~ TRF, K = 4) ## ----------------------------------------------------------------------------- fmp0$RSS fmp1$RSS fmp2$RSS fmp3$RSS fmp4$RSS ## ---- fig.height = 6, fig.width = 7------------------------------------------- cols <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00") par(lwd = 2) curve(0*x, xlim = c(0, 22), ylim = c(-1, 1), col = "darkgray", xlab = "Expected Sum Score", ylab = "Residuals of Polynomial Approximation") points(TRF, residuals(fmp0), type = 'l', col = cols[1], lty = 2) points(TRF, residuals(fmp1), type = 'l', col = cols[2], lty = 3) points(TRF, residuals(fmp2), type = 'l', col = cols[3], lty = 2) points(TRF, residuals(fmp3), type = 'l', col = cols[4], lty = 1) points(TRF, residuals(fmp4), type = 'l', col = cols[5], lty = 3) legend("bottomright", legend = c(expression(paste(italic(k[theta])," = 0")), expression(paste(italic(k[theta])," = 1")), expression(paste(italic(k[theta])," = 2")), expression(paste(italic(k[theta])," = 3")), expression(paste(italic(k[theta])," = 4"))), col = cols, lty = c(2, 3, 2, 1, 3), bty = "n") ## ----------------------------------------------------------------------------- (tvec <- coef(fmp3)) ## ----------------------------------------------------------------------------- bstarmat <- t(apply(bmat, 1, transform_b, tvec = tvec)) ## inspect transformed parameters signif(head(bstarmat), 2) ## ---- fig.height=5, fig.width=5, fig.align="center"--------------------------- par(pty = "s") curve(rowSums(irf_fmp(x, bmat = bstarmat)), xlim = c(0, 23), ylim = c(0, 23), xlab = expression(paste(theta,"*")), ylab = "Expected Sum Score") abline(0, 1, col = 2)