expint: Exponential integral and incomplete
gamma function

Vincent Goulet
Université Laval

1 Introduction

The exponential integral

~00 e—t
Tdt’ x€R

Ei(x) = /

JXx

and the incomplete gamma function
(e9)
I(a,x)= / o le7tdt x>0, a€eR
X

are two closely related functions that arise in various fields of mathematics.

expint is a small package that intends to fill a gap in R’s support for
mathematical functions by providing facilities to compute the exponential
integral and the incomplete gamma function. Furthermore, and perhaps most
conveniently for R package developers, the package also gives easy access to
the underlying C workhorses through an APIL The C routines are derived from
the GNU Scientific Library (GSL; Galassi et al., 2009).

Package expint started its life in version 2.0-0 of package actuar (Dutang
et al., 2008) where we extended the range of admissible values in the com-
putation of limited expected value functions. This required an incomplete
gamma function that accepts negative values of argument 4, as explained at
the beginning of Appendix A of Klugman et al. (2012).

2 Exponential integral

Abramowitz and Stegun (1972, Section 5.1) first define the exponential integral
as

oo ,—t
Ei(x) = /x ert. (1)

An alternative definition (to be understood in terms of the Cauchy principal
value due to the singularity of the integrand at zero) is

0 ,—t x t
Ei(x)=— [“—dt=[Sad x>o.
—x t —00 t

The above two definitions are related as follows:
Ei(—x) = —Ei(x), x>0.)
The exponential integral can also generalized to

00 e—xt
E,(x) = / —dt, n=0,1,2,..., x>0,
n() =
where 7 is then the order of the integral. The latter expression is closely related
to the incomplete gamma function (section 3) as follows:

En(x) = x"IT(1 - n,x). 3)

One should note that the first argument of function I is negative for n > 1.
The following recurrence relation holds between exponential integrals of

successive orders: 1

Epi1(x) = E[‘f*x — xEn(x)]. (4)
Finally, E,(x) has the following asymptotic expansion:
—X
En(x)xe(1—”+”(”jl)—”(”+1)3(”+2)+...>.)
X x x X

3 Incomplete gamma function

From a probability theory perspective, the incomplete gamma function is
usually defined as

1 X
P(a,x) = W/O tle7tdt, x>0 a>0.

Function pgamma already implements this function in R (just note the differing
order of the arguments).

Now, the definition of the incomplete gamma function of interest for this
package is rather the following (Abramowitz and Stegun, 1972, Section 6.5):

I'(a,x)= /x tle7tdt, x>0, aeR. (6)

Note that 2 can be negative with this definition. Of course, for 4 > 0 one has

I'(a,x) =T(a)[1— P(a,x)]. (7)

Integration by parts of the integral in (6) yields the relation

x%e™*

I'(a,x)=—

1
+ Er(a+1,x).

When a < 0, this relation can be used repeatedly k times until a + k is a
positive number. The right hand side can then be evaluated with (7). If
a=0,—-1,-2,..., this calculation requires the value of

0o ,—t

G(O,x):/ Cdt=Ei(x),

X

the exponential integral defined in (1).

4 R interfaces

Package expint provides one main and four auxiliary R functions to compute
the exponential integral, and one function to compute the incomplete gamma
function. Their signatures are the following:

expint(x, order = 1L, scale = FALSE)
expint_E1(x, scale = FALSE)
expint_E2(x, scale = FALSE)
expint_En(x, order, scale = FALSE)
expint_Ei(x, scale = FALSE)
gammainc(a, x)

Let us first go over function gammainc since there is less to discuss. The
function takes in argument two vectors or real numbers (non-negative for
argument x) and returns the value of I'(a,x). The function is vectorized in
arguments a and x, so it works similar to, say, pgamma.

We now turn to the expint family of functions. Function expint is a unified
interface to compute exponential integrals E, (x) of any (non-negative) order,
with default the most common case Ej(x). The function is vectorized in
arguments x and order. In other words, one can compute the exponential
integral of a different order for each value of x.

> expint(c(1.275, 10, 12.3), order = 1:3)
[1] 1.408099e-01 3.830240e-06 3.009983e-07

Argument order should be a vector of integers. Non-integer values are
silently coerced to integers using truncation towards zero.

When argument scale is TRUE, the result is scaled by e*.

Functions expint_E1, expint_E2 and expint_En are simpler, slightly faster
ways to directly compute exponential integrals Eq(x), Ex(x) and E,(x), the
latter for a single order n (the first value of order if order is a vector).

> expint_E1(1.275)

[1] 0.1408099

> expint_E2(10)

[1] 3.83024e-06

> expint_En(12.3, order = 3L)
[1]1 3.009983e-07

Finally, function expint_Ei is provided as a convenience to compute Ei(x)
using (2).
> expint_Ei(5)
[1] 40.18528
> —expint_E1(-5) # same
[1] 40.18528

5 Accessing the C routines

The actual workhorses behind the R functions of section 4 are C routines with
the following prototypes:

double expint_E1(double x, int scale);
double expint_E2(double x, int scale);
double expint_En(double x, int order, int scale);
double gamma_inc(double a, double x);

Package expint makes these routines available to other packages through
declarations in the header file ‘include/expintAPl.h” in the package installation
directory. The developer of some package pkg who wants to use a routine —
say expint_E1 — in her code should proceed as follows.

1. Add package expint to the Imports and LinkingTo directives of the
‘DESCRIPTION’ file of pkg;

2. Add an entry “import(expint)” in the ‘NAMESPACE’ file of pkg;

3. Define the routine with a call to R_GetCCallable in the initialization
routine R_init_pkg of pkg (R Core Team, 2016, Section 5.4). For the
current example, the file ‘src/init.c” of pkg would contain the following
code:

void R_init_pkg(DllInfo *dl1l)
{

R_registerRoutines(/x native routine registration */);

pkg_expint_E1 = (double(*)(double,int,int))
R_GetCCallable("expint”, "expint_E1");

4. Define a native routine interface that will call expint_E1, say pkg_expint_E1
to avoid any name clash, in ‘src/init.c” as follows:

I double (*pkg_expint_E1) (double,int);

5. Declare the routine in a header file of pkg with the keyword extern to
expose the interface to all routines of the package. In our example, file
‘src/pkg.h” would contain:

I extern double(*pkg_expint_E1) (double,int);

6. Include the package header file ‘pkg.h” in any C file making use of routine
pkg_expint_E1.

To help developers get started, expint ships with a complete test package
implementing the above; see the ‘example_API’ sub-directory in the installation
directory. This test package uses the .External R to C interface and, as a bonus,
shows how to vectorize an R function on the C side (the code for this being
mostly derived from base R).

There are various ways to define a package APIL The approach described
above was derived from package zoo (Zeileis and Grothendieck, 2005). Package
xts (Ryan and Ulrich, 2014) — and probably a few others on CRAN — draws
from Matrix (Bates and Maechler, 2016) to propose a somewhat simpler ap-
proach where the API exposes routines that can be used directly in a package.
However, the provided header file can be included only once in a package,
otherwise one gets ‘duplicate symbols’ errors at link time. This constraint
does no show in the example provided with xts or in packages ReppXts (Ed-
delbuettel, 2013) and TTR (Ulrich, 2016) that link to it (the only two at the time
of writing). A way around the issue is to define a native routine calling the
routines exposed in the API. In this scenario, tests we conducted proved the
approach we retained to be up to 10% faster most of the time.

6 Implementation details

As already stated, the C routines mentioned in section 5 are derived from code
in the GNU Scientific Library (Galassi et al., 2009).

For exponential integrals, the main routine expint_E1 computes E1 (x) using
Chebyshev expansions (Gil et al., 2007, chapter 3). Routine expint_E2 computes
Ej(x) using expint_E1 with relation (4) for x < 100, and using the asymptotic
expression (5) otherwise. Routine expint_En simply relies on gamma_inc to
compute E,(x) for n > 2 through relation (3).

For the sake of providing routines that better fit within the R ecosystem
and coding style, we made the following changes to the original GSL code:

1. routines now compute a single value and return their result by value;

2. accordingly, calculation of the approximation error was dropped in all
routines;

3. most importantly, gamma_inc does not compute I'(a, x) for a > 0 with (7)
using the GSL routines, but rather using routines gammafn and pgamma
part of the R APIL

The following illustrates the last point.

> options(digits = 20)

> gammainc(1.2, 3)

[1] 0.06542142809100923162

> gamma(1.2) * pgamma(3, 1.2, 1, lower = FALSE)
[1] 0.06542142809100923162

7 Alternative packages

The Comprehensive R Archive Network! (CRAN) contains a number of pack-
ages with features overlapping expint. We review the similarities and differ-
ences here.

The closest package in functionality is gsl (Hankin, 2006). This package is
an R wrapper for the special functions and quasi random number generators
of the GNU Scientific Library. As such, it provides access to basically the same
C code as used in expint. Apart from the changes to the GSL code mentioned
in section 6, the main difference between the two packages is that gsl requires
that the GSL be installed on one’s system, whereas expint is a regular, free
standing R package.

Package VGAM (Yee, 2015) is a large, high quality package that provides
functions to compute the exponential integral Ei(x) for real values, as well as
e “Ei(x) and E;(x) and their derivatives (up to the third derivative). Func-
tions expint, expexpint and expint.E1 are wrappers to the Netlib? FORTRAN
subroutines in file ei. f. VGAM does not provide an API to its C routines.

Package pracma (Borchers, 2016) provides a large number of functions
from numerical analysis, linear algebra, numerical optimization, differential
equations and special functions. Its versions of expint, expint_E1, expint_Ei
and gammainc are entirely written in R with perhaps less focus on numerical
accuracy than the GSL and Netlib implementations. The version of gammainc
only supports positive values of a.

Package frmqa (Tran, 2012) has a function gamma_inc_err that computes
the incomplete gamma function using the incomplete Laplace integral, but it is
only valid fora = j+ %,j: 0,1,2,....

Package zipfR (Evert and Baroni, 2007) introduces a set of functions to
compute various quantities related to the gamma and incomplete gamma
functions, but these are essentially wrappers around the base R functions gamma
and pgamma with no new functionalities.

1https://cran. r-project.org
2http: //www.netlib.org

https://cran.r-project.org
http://www.netlib.org

8 Examples

We tabulate the values of E,(x) for x = 1.275,10,12.3 and n = 1,2,...,10 as
found in examples 4-6 of Abramowitz and Stegun (1972, section 5.3).

> x <- ¢(1.275, 10, 12.3)

>n<-1:10

> structure(t(outer(x, n, expint)),

+ dimnames = list(n, paste(”"x =", x)))
x = 1.275 x = 10 x = 12.3

.14080993 4
.09989831 3
.07603031 3
.06083077 3
.05046793 3.
.04301687 2
.03743074 2
.03310097 2
.02965340 2

.156969e-06
.830240e-06
.548763e-06
.304101e-06

.900528e-06
.732441e-06
.582217e-06
.447221e-06

089729%e-06

.439534e-07
.211177e-07
.009983e-07
.831550e-07
.672346e-07
.529517e-07
.400730e-07
.284066e-07
.177930e-07

[SEESEE SRR IS IS G S

3
3
3
2
2
2
2
2
2
2

— O 0O NO Ul A~ WN =

(S}

.02684699 2. .080990e-07

We also tabulate the values of I'(a,x) for a =
1,2,...,10.
>a<-c(-1.5, -1, -0.5, 1)
> x <-1:10
> structure(t(outer(a, x, gammainc)),
+ dimnames = list(x, paste("a =", a)))

325303e-06
—-1.5,—-1,-0.5,1 and x =

- OO NO U A~ wWN =
S A= TN W= =

(S}

a=-1.5

.264878e-01
.183299e-02
.870260e-03
.706365e-04
.350921e-05
.045031e-05
.310564e-06
.440569e-06
.042025e-07
.165117e-07

W=k =20 =NWw = =

a = -1

.484955e-01
.876713e-02
.547308e-03
.995573e-04
.992938e-04
.304291e-05
.478712e-05
.267206e-06
.264846e-06
.830240e-07

9 Acknowledgments

SN N N NG NN Ot R

a=-0.5

.781477e-01
.009876e-02
.776136e-03
.733500e-03
.773965e-04
.379823e-04
.127115e-05
.266464e-05
.964430e-06
.260904e-06

A =2 wWONOOO—- B =W

a =1

.678794e-01
.353353e-01
.978707e-02
.831564e-02
.737947e-03
.478752e-03
.118820e-04
.354626e-04
.234098e-04
.539993e-05

We built on the source code of R and many of the packages cited in this paper
to create expint, so the R Core Team and the package developers deserve credit.
We also extend our thanks to Dirk Eddelbuettel who was of great help in
putting together the package API, through both his posts in online forums and

private communication. Joshua Ulrich provided a fix to the API infrastructure
to avoid duplicated symbols that was implemented in version 0.1-6 of the
package.

References

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,
1972. URL http://people.math.sfu.ca/~cbm/aands/.

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Meth-
ods, 2016. URL https://CRAN.R-project.org/package=Matrix. R package
version 1.2-7.1.

H. W. Borchers. pracma: Practical Numerical Math Functions, 2016. URL https:
//cran.r-project.org/package=pracma. R package.

C. Dutang, V. Goulet, and M. Pigeon. actuar: An R package for actuarial science.
Journal of Statistical Software, 25(7), 2008. URL http://www. jstatsoft.org/
v25/107.

D. Eddelbuettel. RcppXts: Interface the xts API via Rcpp, 2013. URL https:
//CRAN.R-project.org/package=RcppXts. R package version 0.0.4.

S. Evert and M. Baroni. zipfR: Word frequency distributions in R. In Proceedings
of the 45" Annual Meeting of the Association for Computational Linguistics, Posters
and Demonstrations Sessions, pages 29-32, Prague, Czech Republic, 2007. URL
https://cran.r-project.org/package=zipfR. R package.

M. Galassi,]J. Davies, J. Theiler, B. Gough, G. Jungman, Alken P., M. Booth,
F. Rossi, and R. Ulerich. GNU Scientific Library Reference Manual, third edition,
2009. URL https://www.gnu.org/software/gsl/.

A. Gil, J. Segura, and N. M. Temme. Numerical Methods for Special Functions.
Society for Industrial and Applied Mathematics, 2007. ISBN 978-0-89871634-4.
URL http://dx.doi.org/10.1137/1.9780898717822.

R. K. S. Hankin. Special functions in R: introducing the gsl package. R News, 6,
October 2006.

S. A. Klugman, H. H. Panjer, and G. Willmot. Loss Models: From Data to Decisions.
Wiley, New York, 4 edition, 2012. ISBN 978-1-11831532-3.

R Core Team. Writing R Extensions, 2016. URL https://cran.r-project.org/
doc/manuals/R-exts.html. Manual for R version 3.3.2.

J. A. Ryan and J. M. Ulrich. «xts: eXtensible Time Series, 2014. URL https:
//CRAN.R-project.org/package=xts. R package version 0.9-7.

http://people.math.sfu.ca/~cbm/aands/
https://CRAN.R-project.org/package=Matrix
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=pracma
http://www.jstatsoft.org/v25/i07
http://www.jstatsoft.org/v25/i07
https://CRAN.R-project.org/package=RcppXts
https://CRAN.R-project.org/package=RcppXts
https://cran.r-project.org/package=zipfR
https://www.gnu.org/software/gsl/
http://dx.doi.org/10.1137/1.9780898717822
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=xts

Thanh T. Tran. frmqa: The Generalized Hyperbolic Distribution, Related Distribu-
tions and Their Applications in Finance, 2012. URL https://cran.r-project.
org/package=frmga. R package.

J. Ulrich. TTR: Technical Trading Rules, 2016. URL https://CRAN.R-project.
org/package=TTR. R package version 0.23-1.

T. W. Yee. Vector Generalized Linear and Additive Models: With an Implementation
in R. Springer, 2015. ISBN 978-1-49392818-7. URL https://cran.r-project.
org/package=VGAM.

A. Zeileis and G. Grothendieck. zoo: S3 infrastructure for regular and irregular
time series. Journal of Statistical Software, 14(6):1-27, 2005. doi: 10.18637 /jss.
v014.i06.

https://cran.r-project.org/package=frmqa
https://cran.r-project.org/package=frmqa
https://CRAN.R-project.org/package=TTR
https://CRAN.R-project.org/package=TTR
https://cran.r-project.org/package=VGAM
https://cran.r-project.org/package=VGAM

	1 Introduction
	2 Exponential integral
	3 Incomplete gamma function
	4 R interfaces
	5 Accessing the C routines
	6 Implementation details
	7 Alternative packages
	8 Examples
	9 Acknowledgments

