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Abstract

A unified implementation of parametric proportional hazards (PH)
and accelerated failure time (AFT) models for right-censored or interval-
censored and left-truncated data is described. The description here is
valid for time-constant covariates, but the necessary modifications for
handling time-varying covariates are implemented in eha. Note that
only piecewise constant time variation is handled.

1 Introduction

There is a need for software for analyzing parametric proportional hazards
(PH) and accelerated failure time (AFT) data, that are right or interval
censored and left truncated.

2 The proportional hazards model

We define proportional hazards models in terms of an expansion of a given
survivor function Sy,

so(t:2) = {So(g(t,0))y ), (1)

where 0 is a parameter vector used in modeling the baseline distribution, 3
is the vector of regression parameters, and g is a positive function, which
helps defining a parametric family of baseline survivor functions through

S(t;0) = So(9(t.0)), t>0, O€cO. (2)



With fy and kg defined as the density and hazard functions corresponding
to Sy, respectively, the density function corresponding to S is

0
0
= 2 5)(0(1.))
= gt(ta e)f(](g(tu 0))7
where 5
Correspondingly, the hazard function is
f(t;6)
h(t;0) =
0= 5w:0) (3

= 6:(t, 0)ho(g(t, 0)).
So, the proportional hazards model is

No(t;z) = h(t; 0)exp(z0)
= gt(tv O)ho(g(tv 0)) eXp<ZIB)7

corresponding to (1).

2.1 Data and the likelihood function

Given left truncated and right or interval censored data (s;,t;, u;, d;, 2;), i =
1,...,n and the model (4), the likelihood function becomes

L((@ B); (s, t,u,d), H{ (t;;0) exp(z ZB))I{di:u

X (S(ti;e)eXP(ZzB))’{dﬁéz} )
X (S(ts; 0)P=P) — §(uy; )i Hidi=
x S(s;;0)” PP}

Here, for : = 1,...,n, s; < t; < u; are the left truncation and exit intervals,
respectively, d; = 0 means that ¢; = u; and right censoring at w;, d; = 1
means that ; = u; and an event at u;, and d; = 2 means that ¢; < u; and an
event occurs in the interval (¢;, u;) (interval censoring) and z; = (2, .. ., 2ip)
is a vector of explanatory variables with corresponding parameter vector

B=l1,....0p),i=1,...,n.



From (5) we now get the log likelihood and the score vector in a straight-
forward manner.

(((0,8); (s,t,u,d),Z) = > {logh(t;; 0) + z:8}
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(6)

and (in the following we drop the long argument list to £), for the regression
parameters 3,
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and for the “baseline” parameters 6, in vector form,
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From (3),
0
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and, from (2),

So(1:0) = 2 S(1:60) = 253 (4(1.6)

= —go(t,0) fo(9(t,0)).

For estimating standard errors, the observed information (the negative of
the hessian) is useful. However, instead of the error-prone and tedious work of
calculating analytic second-order derivatives, we will rely on approximations
by numerical differentiation.

(10)

3 The shape—scale families

From (1) we get a shape—scale family of distributions by choosing 8 = (p, \)

and
t

p
g(t(p&))—(ﬂ, t>0; p,\>0.

However, for reasons of efficient numerical optimization and normality of
parameter estimates, we use the parametrisation p = exp(y) and A = exp(«),
thus redefining g to

AN
—) , t>0; —oo<7v,a<oo. (11)
exp(a)

ot () =

For the calculation of the score and hessian of the log likelihood function, we
need some partial derivatives of g. They are found in an appendix.

3.1 The Weibull family of distributions
The Weibull family of distributions is obtained by

So(t) = exp(—t), t=>0,

leading to
fo(t) =exp(—t), t=>0,

and
ho(t) =1, t>0.

We need some first and second order derivatives of f and h, and they are
particularly simple in this case, for h they are both zero, and for f we get

folt) = —exp(=t), t>0.
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3.2 The EV family of distributions
The EV (Extreme Value) family of distributions is obtained by setting
ho(t) = exp(t), t>0,

leading to
So(t) = exp{—(exp(t) — 1)}, t=>0,
The rest of the necessary functions are easily derived from this.

3.3 The Gompertz family of distributions
The Gompertz family of distributions is given by
h(t) = Texp(t/A), t>0; 7,A>0.

This family is not directly possible to generate from the described shape-scale
models, so it is treated separately by direct maximum likelihood.

3.4 Other families of distributions

Included in the eha package are the lognormal and the loglogistic distribu-
tions as well.

4 The accelerated failure time model

In the description of this family of models, we generate a scape-scale family
of distributions as defined by the equations (2) and (11). We get

S(t; (7, @) = So(g(t, (v,)))
) So({ ; }expm))’ Vo0 oo <o < oo (12)

exp(a)
Given a vector z = (21,...,2,) of explanatory variables and a vector of
corresponding regression coefficients 8 = (f1, ..., 5,), the AFT regression

model is defined by
S(t; (v, @, B)) = So(g(t exp(zB), (v, )

texp(z0) }GXP(’Y)>

exp(a)

—



So, by defining 8 = (v, « — z3), we are back in the framework of Section 2.
We get
f(t:0) = g:(t,0) fo(g(t,0))

and
h(t; 0) = g:(t, 0)ho(g(t,0)), (14)

defining the AFT model generated by the survivor function Sy and corre-
sponding density fy and hazard hy.

4.1 Data and the likelihood function

Given left truncated and right or interval censored data (s;,t;, u;, d;, 2;), i =
1,...,n and the model (14), the likelihood function becomes

L((v, . B); (s, t,d), H{h t;; @;) =1

X S(tz, Oi)l{ #2} (15)
x (S(t; 94) — 5(u;;0;)) 4=
x S(s:;0;)7"}
Here, for e =1,...,n, s; < t; < u; are the left truncation and exit intervals,

respectively, d; = 0 means that t;, = u; and right censoring at ¢;, d; = 1
means that ¢; = u; and an event at ¢;, and d; = 2 means that ¢; < u; and an
event uccurs in the interval (¢;,u;) (interval censoring), and z; = (21, . . ., 2ip)
is a vector of explanatory variables with corresponding parameter vector

,3: (51,...,61,),7::1,...,71
From (15) we now get the log likelihood and the score vector in a straight-
forward manner.

E((fy,a,ﬁ) (s,t,u,d), Z log h(t;; 6;)

ird;=1
+ ) log S(t;; 6;)
iid;#£2

+ ) log(S(ti; 0;) — S(us; ;)

i:d; =2
—ZlogS(si;O
i=1

and (in the following we drop the long argument list to ¢), for the regression
parameters 3,
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and for the “baseline” parameters v and «,
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Here, from (3),
ho(.0:) = (. 6))
Y\ ¥y ¥ _87 i}
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0
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0 8 0

= —Zijha(t,ei), ] = ]_,...,p.



Similarly, from (2) we get

S.(t;6,) = %S(t; 0;) = %So(g(tﬂi))
= —g,(t,0:) fo(y(t, 6;)),
S.(t;0;) = %S(zﬁ; 0;) = %So(g(t,ei))
= —9a(t,0:) fo(9(t,6:)).
and
0

0 0
-7 5(t:0;) = %So (g(t, ei))a_ﬂ(a —z,3)
—2;5.(t,6;), j=1,...,p.

For estimating standard errors, the observed information (the negative of
the hessian) is useful, so
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The second order partial derivatives h.,. and S, are

aa/hf(t 0)

= Gerr (£, 0)ho(g(t,0)) + gir (t, 0) g (t, 0) g (g(t, 6))

+ 9i(t,0)g0(t,0)g-(t,0)hg (g(t,0))

+ g:(t, 0)goo (1, 0)h(9(t, 0))

+ gz (t,0)g0(t, 0) o (g(t, 0))

= ho(g(t,0))girr(1,6) (16)

+ ho(g(t, 0)){g:(t, 0)gee (¢, 0)
+ - (t,0) g, ( 0)

+ g1 (t,0)g:(t,0)}

+ hg(g(t,0)) a2, 9)99( 0)g-
(7. 7) = (1,7), (1, A), (A A,

hew(t,0) =

(t,0),,

and from (10),

0
= —S5.(t;0
8T’ST(’ )

= {4 (1,0) fo(9(£.0)) + g, (. 0)g (1. 0) 1 (9(t. 0)) },  (17)
(7, 7") = (7:7), (7, A), (A, ).

S,0i(t,0)

A Some partial derivatives

The function (see (11))

exp(7)
g(t, (v,a)) = (expt(a)> , t>0; —oco<vy,a<o0. (18)
has the following partial derivatives:
gt(t,(%a):eXp g( ), t>0
9, (t: (v, 0)) = g(t, (7, @) )10g{g( (7)) }
9a(t, (7,0)) = —exp(7)g(t, (7, @)
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=t (o) + 2y (1 (r.0)), >0

Gty (t, (7, 0‘)) ;

gia (t, (7, @) = —exp(7)g:e (L, (v, @), >0

9o (t, (1, @) = gy (t, (v, 2)) {1 +1og g(t, (v,a)) }
Gra(t, (7, 0)) = ga(t, (v, @) {1 +logg(t, (v, @) }
9oz (t, (7, 0)) = —exp(7)ga(t, (v, @)

G2 (t7 (7, Oz)) = Gty (t7 (7 a))

+ eXpt(,Y) 9~ (t, (’7, Oé)) {2 + 10gg(t7 (7’ Oé)) }

e (t, (7:0)) = —exp(N){g:(t, (v, @) + gir (1, (v, 0)) }
Jta? (t7 (’% Oé)) == exp(’Y)gtoz (tv (’77 Oé))

The formulas will be easier to read if we remove all function arguments,
Le., (t, (7, a)):

gt — t gv
gy =glogyg
g = —exp(7y)g

exp
gty = Gt + t(’}/) G, t>0

Gia = —exp(V)g, t>0
G2 = gq,{l + logg}

Jra = ga{l +logg}

o2 = — xP(7)9a

e
Xi(7)97{2 +logg}, t>0

Giy2 = Gty +
Jtya = — eXp('y){gt + 9t’y}7 t>0
Jta2 = — eXp(’y)gtom t>0
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