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The package ebci implements robust empirical Bayes confidence intervals (EBCIs) proposed by
Armstrong et al. [2020] for inference in a normal means model Yi ∼ N(θi, σ2

i ), i = 1, . . . , n.

Setup

Suppose we use an empirical Bayes estimator of θi that shrinks toward the predictor based on the
regression of θi onto Xi (equivalently, regression of Yi onto Xi),

θ̂i = X′i δ + wEB,i(Yi − X′i δ), (1)

where δ = E[XiX′i ]
−1E[Xiθi], wEB,i =

µ2
µ2+σ2

i
is the degree of shrinkage, and

µ2 = E[(θi − X′i δ)
2 | Xi, σi]. (2)

is the second moment of the regression residual. We assume that µ2 doesn’t depend on σi. Under
this setup, Morris [1983] proposes to use the parametric EBCI

θ̂i ±
z1−α/2√wEB,i

wEB,iσi.

The critical value z1−α/2/
√wEB,i is larger than the usual critical value z1−α/2 =qnorm(1-alpha/2)

if the estimator was unbiased conditional on θi. This CI is justified if we strengthen the assumption
(2) by making the normality assumption θi | Xi, σi ∼ N(X′i δ, µ2). However, if the residual θi − X′i δ
is not normally distributed, this CI will undercover. Armstrong et al. [2020] derive a robust EBCI
that is only uses (2) and not the normality assumption. The EBCI takes the form

θ̂i ± cvaα(m2i, ∞)wEB,iσi, m2i = (1− 1/wEB,i)
2µ2/σ2

i = σ2
i /µ2, (3)

where the critical value cvaα is derived in Armstrong et al. [2020]. Here m2i is the second moment
of the conditional bias of θ̂i, scaled by the standard error (normalized bias, henceforth). This critical
value imposes a constraint (2) on the second moment of θi, but no constraints on higher moments.
We can make the critical value smaller by also imposing a constraint on the kurtosis of θi (or
equivalently, the kurtosis of the normalized bias)

κ = E[(θi − X′i δ)
4 | Xi, σi]/µ2

2. (4)

1



In analogy to (2), we assume here that the conditional fourth moment of θi − X′i δ doesn’t depend
on (Xi, σi). In this case, the robust EBCI takes the form

θ̂i ± cvaα(m2i, κ)wEB,iσi.

These critical values are implemented in the package by the cva function:

library("ebci")

## If m_2=0, then we get the usual critical value

cva(m2=0, kappa=Inf, alpha=0.05)$cv

#> [1] 1.959964

## Otherwise the critical value is larger:

cva(m2=4, kappa=Inf, alpha=0.05)$cv

#> [1] 7.216351

## Imposing a constraint on kurtosis tightens it

cva(m2=4, kappa=3, alpha=0.05)$cv

#> [1] 4.619513

In practice, the parameters δ, µ2, and κ are unknown. To implement the EBCI, the package replaces
them with consistent estimates, following the baseline implementation in Armstrong et al. [2020].
We illustrate this in the next section.

Example

Here we illustrate the use of the package using a dataset from Chetty and Hendren [2018] (CH
hereafter). The dataset is included in the package as the list cz. Run ?cz for a full description of the
dataset. As in Chetty and Hendren [2018], we use precision weights proportional to the inverse of
the squared standard error to compute (δ, µ2, κ).

## As Y_i, use fixed effect estimate theta25 of causal effect of neighborhood

## for children with parents at the 25th percentile of income distribution. The

## standard error for this estimate is se25. As predictors use average outcome

## for permanent residents (stayers), stayer25. Let us use 90% CIs, as in

## Armstrong et al

r <- ebci(formula=theta25~stayer25, data=cz, se=se25, weights=1/se25�2,

alpha=0.1)

For shrinkage toward the grand mean, or toward zero, use the specification theta25 ~ 1, and
theta25 ~ 0, respectively, in the formula argument of ebci.

The return value contains (see ?ebci for full description)

1. The least squares estimate of δ:

r$delta

#> (Intercept) stayer25

#> -1.44075193 0.03244676

2. Estimates of µ2 and κ. The estimate used for EBCI calculations (estimate) is ob-
tained by applying a finite-sample correction to an initial method of moments estimate
(uncorrected_estimate). This correction ensures that we don’t shrink all the way to zero (or
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past zero) if the method-of-moments estimate of µ2 is negative (see Armstrong et al. [2020]
for details):

c(r$mu2, r$kappa)

#> estimate uncorrected_estimate estimate

#> 6.243867e-03 6.243867e-03 7.785337e+02

#> uncorrected_estimate

#> 3.453191e+02

3. The parameter α determining the confidence level, r$alpha, and the matrix of regressors, r$X.

4. A data frame with columns:

names(r$df)

#> [1] "w_eb" "w_opt" "ncov_pa" "len_eb" "len_op" "len_pa"

#> [7] "len_us" "th_us" "th_eb" "th_op" "se" "weights"

#> [13] "residuals"

The columns of the data frame refer to:

• w_eb Empirical Bayes shrinkage factor wEB,i = µ2/(µ2 + σ2
i ).

• th_eb Empirical Bayes estimator θ̂i given in (1)

• len_eb Half-length cvaα(m2, κ)wiσi of the robust EBCI, so that the lower endpoint of the
EBCIs are given by th_eb-len_eb, and the upper endpoint by th_eb+len_eb. Let us verify
this for the first observation:

cva(r$df$se[1]�2/r$mu2[1], r$kappa[1], alpha=0.1)$cv*r$df$w_eb[1]*r$df$se[1]

#> [1] 0.1916245

r$df$len_eb[1]

#> [1] 0.1916245

• len_pa Half-length z1−α/2
√

wiσi of the parametric EBCI.

• w_opt Shrinkage factor that optimizes the length of the resulting confidence interval. In
other words, instead of using wEB,i in (3), we use shrinkage wi that minimizes cvaα((1−
1/wEB,i)

2µ2/σ2
i , κ)wiσi. See Armstrong et al. [2020] for details. The vector is missing here

since the default option, wopt=FALSE, is to skip computation of the length-optimal CIs to
speed up the calculations.

• th_op Estimator based on the length-optimal shrinkage factor w_opt (missing here since the
default is wopt=FALSE)

• len_op Half-length cvaα((1− 1/wEB,i)
2µ2/σ2

i , κ)wiσi of the length-optimal EBCI (missing
here since we specified wopt=FALSE).

• th_us The unshrunk estimate Yi, as specified in the formula argument of the function ebci.

• len_us Half-length z1−α/2σi of the CI based on the unshrunk estimate

• se The standard error σi, as specified by the argument se of the ebci function.

• ncov_pa maximal non-coverage of the parametric EBCI.
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Using the data frame, we can give a table summarizing the results. Let us show the results for the
CZ in New York:

df <- (cbind(cz[!is.na(cz$se25), ], r$df))

df <- df[df$state=="NY", ]

knitr::kable(data.frame(cz=df$czname, unshrunk_estimate=df$theta25,

estimate=df$th_eb,

lower_ci=df$th_eb-df$len_eb, upper_ci=df$th_eb+df$len_eb),

digits=3)

cz unshrunk_estimate estimate lower_ci upper_ci

Syracuse 0.246 0.032 -0.124 0.189
Oneonta 0.835 0.112 -0.091 0.315
Union -0.493 -0.014 -0.201 0.173
Buffalo 0.084 -0.003 -0.131 0.125
Elmira 0.056 0.056 -0.143 0.255
Olean -0.024 0.080 -0.114 0.273
Watertown 0.537 0.098 -0.111 0.307
Plattsburgh 0.585 0.056 -0.153 0.266
Amsterdam 0.578 0.074 -0.134 0.282
Albany -0.199 -0.015 -0.179 0.148
Poughkeepsie -0.333 -0.099 -0.233 0.035
New York -0.148 -0.116 -0.180 -0.053

Armstrong et al. [2020] present the same information as a figure.

Finally, let us compute some summary statistics as in Table 3 in Armstrong et al. [2020]. Average
half-length of the robust, parametric, and unshrunk CI:

mean(r$df$len_eb)

#> [1] 0.1952409

mean(r$df$len_pa)

#> [1] 0.1234121

mean(r$df$len_us)

#> [1] 0.7858001

The efficiency of the parametric and unshrunk CI relative to the robust EBCI is given by

mean(r$df$len_eb)/mean(r$df$len_pa)

#> [1] 1.582023

mean(r$df$len_eb)/mean(r$df$len_us)

#> [1] 0.2484613

While the parametric EBCI is shorter on average, it yields CIs that may violate the 90% coverage
requirement. In particular, the average maximal non-coverage probability at the estimated value of
(µ2, κ) is given by
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mean(r$df$ncov_pa)

#> [1] 0.2274703
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