## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----metapred1---------------------------------------------------------------- library(driveR) path2annovar_csv <- system.file("extdata/example.hg19_multianno.csv", package = "driveR") ## ----metapred2---------------------------------------------------------------- metaprediction_df <- predict_coding_impact(annovar_csv_path = path2annovar_csv) head(metaprediction_df) ## ----metapred3, eval=FALSE---------------------------------------------------- # metaprediction_df <- predict_coding_impact(annovar_csv_path = path2annovar_csv, # keep_highest_score = FALSE) ## ----metapred4, eval=FALSE---------------------------------------------------- # metaprediction_df <- predict_coding_impact(annovar_csv_path = path2annovar_csv, # keep_single_symbol = FALSE) ## ----metapred5, eval=FALSE---------------------------------------------------- # metaprediction_df <- predict_coding_impact(annovar_csv_path = path2annovar_csv, # na.string = "NA") ## ----setup, eval=FALSE-------------------------------------------------------- # library(driveR) ## ----example_av_csv----------------------------------------------------------- path2annovar_csv <- system.file("extdata/example.hg19_multianno.csv", package = "driveR") ## ----example_scna------------------------------------------------------------- head(example_scna_table) ## ----phenolyzer_input,eval=FALSE---------------------------------------------- # phenolyzer_genes <- create_features_df(annovar_csv_path = path2annovar_csv, # scna_df = example_scna_table, # prep_phenolyzer_input = TRUE, # build = "GRCh37") ## ----save_phenolyzer_input, eval=FALSE---------------------------------------- # write.table(x = data.frame(gene = phenolyzer_genes), # file = "input_genes.txt", # row.names = FALSE, col.names = FALSE, quote = FALSE) ## ----example_phenoylzer------------------------------------------------------- path2phenolyzer_out <- system.file("extdata/example.annotated_gene_list", package = "driveR") ## ----features_df, eval=FALSE-------------------------------------------------- # features_df <- create_features_df(annovar_csv_path = path2annovar_csv, # scna_df = example_scna_table, # phenolyzer_annotated_gene_list_path = path2phenolyzer_out, # build = "GRCh37") ## ----features_df_load, echo=FALSE--------------------------------------------- features_df <- example_features_table ## ----cancer_types------------------------------------------------------------- knitr::kable(MTL_submodel_descriptions) ## ----driver_prob-------------------------------------------------------------- driver_prob_df <- prioritize_driver_genes(features_df = features_df, cancer_type = "LUAD") head(driver_prob_df, 10) ## ----setup2, eval = FALSE----------------------------------------------------- # library(driveR) ## ----example_av_csv2---------------------------------------------------------- path2annovar_csv <- system.file("extdata/example_cohort.hg19_multianno.csv", package = "driveR") ## ----example_scna2------------------------------------------------------------ head(example_cohort_scna_table) ## ----phenolyzer_input2, eval=FALSE-------------------------------------------- # phenolyzer_genes <- create_features_df(annovar_csv_path = path2annovar_csv, # scna_df = example_cohort_scna_table, # prep_phenolyzer_input = TRUE, # batch_analysis = TRUE) ## ----save_phenolyzer_input2, eval=FALSE--------------------------------------- # write.table(x = data.frame(gene = phenolyzer_genes), # file = "input_genes.txt", # row.names = FALSE, col.names = FALSE, quote = FALSE) ## ----example_phenoylzer2------------------------------------------------------ path2phenolyzer_out <- system.file("extdata/example_cohort.annotated_gene_list", package = "driveR") ## ----features_df2, eval=FALSE------------------------------------------------- # features_df <- create_features_df(annovar_csv_path = path2annovar_csv, # scna_df = example_cohort_scna_table, # phenolyzer_annotated_gene_list_path = path2phenolyzer_out, # batch_analysis = TRUE) ## ----features_df_load2, echo=FALSE-------------------------------------------- features_df <- example_cohort_features_table ## ----driver_prob2------------------------------------------------------------- driver_prob_df <- prioritize_driver_genes(features_df = features_df, cancer_type = "LAML") head(driver_prob_df, 10)