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1 Introduction

The methods in the deming package are concerned with the problem of comparing two assays,
both of which are measured with error. Let xi and yi be the two measurements of a compound
where the true value of the quantity is ui and assume that both assays are linear.

xi = a+ bui + ϵi (1)

yi = c+ dui + δi (2)

(3)

where ϵ and δ are the errors. We would like to �nd the calibration equation y = α + βx that
best maps between the two assays.

In this situation ordinary least squares applied to x and y is unsatisfactory since it is asym-
metric. The �tted lines for y ∼ x and x ∼ y are not the same, and neither has an expected slope
of 1 when β = 1.

Least squares regression of y on x assumes that the x variate is measured without error,
and minimizes the sum of squared vertical distance between the data points y and the �tted
regression line. Regression of x on y minimizes the horizontal distances. Adcock [1] in 1878
suggested minimizing the sum of squared horizontal + vertical distances to the predicted values.
However the idea of Adcock remained largely unnoticed for more than 50 years, until it was
widely propogated in the book by Deming [2]. The latter has become so well known that a
common label for the method is �Deming regression� in many �elds. Figure 1 shows a typical
case.

An almost entirely separate discussion of the same issue is found under the label �total
least squares� (TLS), which is where one will �nd most of the modern literature on this topic.
Markovsky and Van Hu�el [4] present a good overview of the area, which has a rich literature
of algorithms and extensions. They catalog multiple discoveries of the approach across di�erent
�elds. (Interestingly, Deming is not listed in their bibliography.)

The code for �gure 1.

> tdata <- data.frame(x=1:6, y=c(2.3,1.3, 4.1,3.5,6.3, 3))

> lfit <- lm(y ~ x, tdata) # y on x
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Figure 1: Example of linear and deming regression applied to a simple data set. The ordinary
linear regression of y on x (black) minimizes the sum of squared vertical distances. The regression
of x on y (blue, dashed) minimizes a sum of squared horizontal distances. The Deming regression
(red) minimizes the sum of orthagonal distances between the points and the line.

> dfit <- deming(y ~ x, tdata) # Deming

> lfit2 <- lm(x ~ y, tdata) # x on y

> with(tdata, plot(x, y, xlim=c(0,7), ylim=c(1,7)))

> abline(lfit)

> abline(-lfit2$coef[1]/lfit2$coef[2], 1/lfit2$coef[2], col=4, lty=2)

> abline(dfit, col=2, lwd=2)

> segments(tdata$x, tdata$y, tdata$x, predict(lfit), col=1, lty=1)

> segments(tdata$x, tdata$y, predict(lfit2), tdata$y, col=4, lty=2)

2 Generalized Deming regression

There are a number of alternate ways to compute the Deming regression line. The Deming line
will be the �rst principle component of the centered data, the �rst eignevector of the matrix Z
whose 2 columns are the centered x and y vectors, or the �rst component of a singular value
decomposition or factor analysis of Z. A partial least squares (PLS) or structural equation
modeling (SEM) model �t to x and y will also recover the Deming estimate of slope.

In the TLS literature both X and Y can be matrices, and the most straightforward approach
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Figure 2: Bland-Altman plot of the ferritin data.

is to obtain the singular value decompostition

(X,Y ) = UDV ′

where D is the diagonal matrix of singular values. Assume X is of dimension n by p and partion
V as

V =

[
V11V12

V21V22

]
(4)

Then if V22 is non-singular a solution exists with β̂ = −V12V
−1
xx . A solution will not exist when

a coe�cient is in�nite, i.e., if the best �tting line is vertical in one of the p dimensions. The
solution will be unique if dp > dp+1. The counterexample to uniqueness is when the data lies on
a circle, then the variance explained by any regression line will be the same as any other, and
dp = dp+1.

There would appear to be little need for yet another program to compute this quantity
other than providing a recognizable name to search for in the R libraries. For laboratory work,
however, it is the generalized Deming method that is of most interest. Returning to our original
de�nitions (1) and (2), ordinary Deming regression is based on the assumtion that that the assay
errors ϵ and δ are equal in magnitude for the two assays and are constant across the range of
u. This latter is rarely if ever true for biologic assays, and both will normally be false in more
general applications.
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Figure 3: Revised variance plot for the ferritin data on a coe�cient of variation scale.

Figure 2 shows a Bland-Altman plot of paired assay results from long-term monitoring of a
ferritin assay. Each time that a new lot of the principle reagent was brought into use, a subset
of currently available samples were assayed in duplicate using both the old and new lot. If the
assumptions of standard Deming regression hold we would expect to see approximately constant
vertical variation across the range of the horizontal axis of the plot. This is clearly not the case.
(The x-axis was plotted on a square root scale to spread out the data somewhat, but this does
not change the message.)

> f.ave <- with(ferritin, (old.lot + new.lot)/2)

> f.diff<- with(ferritin, old.lot - new.lot)

> plot(sqrt(f.ave), f.diff, xaxt='n',

xlab="Average", ylab="Difference")

> temp <- 0:7*5

> axis(1, temp, temp^2)

Figure 3 shows a revised plot with average of the two assay values on the horizontal and
abs(di�erence/mean) along the vertical axis, along with a lowess line. A horizontal trend in
this plot corresponds to constant coe�cient of variation, which for this data set appears to be a
reasonable assumption.

> plot(f.ave, abs(f.diff/f.ave), log='x',
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xlab="Average", ylab="Estimated CV")

> lines(lowess(f.ave, abs(f.diff/f.ave)), col=2)

Linnet [3] discusses �tting regression lines in the situation of constant coe�cient of variation,
and gives a more complete rationale. We use an algorithm based on Ripley and Thompson [8]
which includes both ordinary Deming regression and Linnet's extension within a more general
framework. Referring again to equations (1) and (2), assume that x and y both estimate the
common unknown quantity u, and the error terms have standard deviations

sd(x) = σ[e+ fu] (5)

sd(y) = σ[g + hu] (6)

for known constants e, f , g, and h and an unknown scale factor σ, where u is again the true
value. A value of (e, f, g, h) = (1, 0, 1, 0) corresponds to standard Deming regression, and
(e, f, g, h) = (0, 1, 0, 1) corresponds to the constant proportional errors assumption of Linnet.
The cv argument of the deming function chooses between these two cases, or all four constants
can be supplied using the stdpat argument. A second alternative is for the user to directly
supply values for sd(x) or sd(y) for each data point using the xstd and ystd arguments. The
following produces the 7 calibration equations for each of the 7 reagent changes in the ferritin
data set.

> cmat <- matrix(0, nrow=3, ncol=7)

> for (i in 1:7) {

dfit <- deming(new.lot ~ old.lot, data=ferritin,

subset=(period==i), cv=TRUE)

cmat[1:2,i] <- coef(dfit)

cmat[3,i] <- coef(lm(new.lot ~ old.lot, ferritin,

subset= (period==i), weight=1/new.lot))[2]

}

> dimnames(cmat) <- list(c("Intercept", "old.lot", "old.lot (LS)") , 1:7)

> round(cmat,3)

1 2 3 4 5 6 7

Intercept -0.015 -0.982 2.390 0.234 0.208 -0.079 0.085

old.lot 0.986 1.015 0.962 0.948 0.913 0.981 0.971

old.lot (LS) 1.080 1.015 0.933 0.940 0.911 0.996 0.996

For unweighted regression the Deming slope is always larger than the least squares line but in
the constant CV case it can go either way. The di�erence in regression slopes for any given
batch is small, but corrections to the clinical assay must be cumulative over time. From the �rst
regression equation, results from assays after the �rst lot change need to be modi�ed with

corrected result = -0.015 + 0.986 * value

in order to have them match prior reports. Matching is important since a given patient may be
followed sequentially over many years. The second assay change compounds this

corrected result = -0.015 + 0.986* ( -0.982 + 1.015 *value)
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The cumulative e�ect under the Deming �ts has a slope coe�cient of 0.793, the product of the
7 slopes, an estimated loss in potency of 21%.

When the data has both a wide range and results near zero, it will often be necessary for
the error to include both a constant and a proportional portion. The arsenate data set contains
results of two di�erent methods for assessment of arsenate(V) in river waters; the resultant
estimates range from 0 to 19.25 µg/l. Constant proportional error (constant CV) is clearly
untenable, since it would predict in�nite precision for the smallest values. This data set contains
estimates of the precision of each point, which we can use to obtain an appropriate �t.

> afit <- deming(aas ~ aes, arsenate, xstd=se.aes, ystd=se.aas)

> afit

Call:

deming(formula = aas ~ aes, data = arsenate, xstd = se.aes, ystd = se.aas)

n= 30

Coef se(coef) lower 0.95 upper 0.95

Intercept -0.1094048 0.3083245 -0.7137096 0.4949001

Slope 1.0277709 0.1705373 0.6935239 1.3620179

Scale= 1.165495

> dfit <- deming(aas ~ aes, arsenate)

> lfit <- lm(aas ~ aes, arsenate)

> temp <- cbind(coef(afit), coef(dfit), coef(lfit))

> dimnames(temp)[[2]] <- c("weighted Deming", "unweighted Deming", "Linear")

> round(temp,3)

weighted Deming unweighted Deming Linear

(Intercept) -0.109 -0.490 -0.299

aes 1.028 1.142 1.089

For values less than .3 (about 10% of the data) the constant part of the error is predominant
while for those above 2 the proportional part dominates. Calibration �ts that do or do not
properly account for the error di�er by important amounts.

3 Theil-Sen Regression

One interesting way to characterize the slope of least squares regression line is that it is the
solution of ρ(x, r(β)) = 0, where ρ is the Pearson correlation coe�cient and r(β) are the residuals
from a �tted line with slope β. A non-parametric counterpoint to this is Thiel-Sen regression,
which satis�es τ(x, r(β)) = 0 where τ is Kendall's tau, a rank based alternative to the correlation
coe�cient. This was proposed by Theil [11]; Sen [9] extended the results and added a con�dence
interval estimate. The approach is well known in selected �elds (e.g. astronomy), and almost
completely unknown in others. It has strong resistance to outliers and nearly full e�ciency
compared to linear regression when the errors are Gaussian.

The standard way to calculate TS regression is to �rst draw a line segment between each of
the n(n− 1)/2 unique pairs of points in the data; the TS slope estimate is the median of these
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Figure 4: The geometry underlying the Thiel-Sen estimator. The set of values xi − xj is plotted
versus yi − yj for all i ̸= j along with a reference line x = 0. The red line divides the points into
four equal groups, and is the Thiel-Sen estimate of slope.

n(n− 1)/2 slope values. Once the slope is established the intercept is chosen so that the median
residual is zero.

Figure 4 shows a plot of xi − xj vs yi − yj for all 8 ∗ 7 = 56 data pairs from a small set of
8 data points. A line from the origin to each point has identical angle to a line connecting that
pair of points in a plot of the 8 original (x, y) pairs. Each pair of points i, j appears twice in
the paired plot, corresponding once to yi − yj and a second time using yj − yi. The Thiel-Sen
estimate of slope is that line through the origin such that quadrants 1�4 of the plot, formed
by this line and the vertical axis, each have the same number of points. The solution is simply
median(atan(dy/dx)) where dy and dx are the paired y and x di�erences, respectively. Since
(yi − yj)/(xi − xj) = (yj − yi)/(xj − xi) the computer program only uses the n(n− 1)/2 unique
values, removing any which lie exactly on the vertical axis since they would count equally in two
quadrants and thus cancel. Theil-Sen regression of x on y would use the horizontal axis, rather
than vertical, as the second reference line for forming quadrants.
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Figure 5: The geometry underlying the Passing-Bablock estimate.. The set of values xi − xj is
plotted versus yi − yj for all i ̸= j. A reference line with slope -1 (black) and the estimated PB
slope coe�cent (red) divide the points into 4 equal groups.

4 Passing-Bablock Regression

The Thiel-Sen slope, like ordinarly least squares, is biased towards zero if there is error in both x
and y, nor is it symmetric in x and y. Passing and Bablock proposed variations on the Thiel-Sen
estimate to address these concerns. Their method is well known in the �eld of laboratory testing
but almost unheard of outside of that domain. There are actually 3 estimators, proposed in a
series of papers in 1983, 1984, and 1988.

The �rst Passing-Bablock method (PB1) is described in their 1983 paper [5]. It modi�es the
Thiel-Sen estimate so as to make the procedure symmetric about the line y = x instead of about
the horizontal axis. Where a Thiel-Sen regression of y on x uses the regression line plus the
vertical axis to partition the points, and TS regression of x on y would use the regression line
plus the horizontal axis, the Passing-Bablock line chooses that regression line such that it and
the y = −x line separate the data points into 4 equal portions. This is illustrated in �gure 5.
Computationally, it su�ces to modify the arctan function so as to return angles in the range of
(−π/4, 3π/4) instead of the default of (−π/2, π/2). The kernel of the R code is three lines:

theta <- atan(dy/dx)

theta <- ifelse(theta < -pi/4, theta+pi, theta)

slope <- median(theta)
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where dy and dx are the paired di�erences in x and y. Points where the angle is exactly −π/4
would count equally in both quadrants so can be ignored. (Since both x and y are measured with
error such values should be rare in real data.) As with the Theil-Sen estimate, the underlying R
routine only evaluates and uses the n(n− 1)/2 unique pairs.

For a two-sided con�dence interval Passing and Bablock use an identical formula to that
derived for Thiel-Sen regression, namely the kth angles above and below the median value where

k = (zα/2/2)
√

Vn/2

Vn = (1/18)[n(n− 1)(2n+ 5)/18

In the second paper of their series [6] they show that this method has excellent power, nearly
as good as Deming regression when the data has Gaussian errors, while gaining resistance to
outliers.

A second approach to the Passing-Bablock estimate, and one that is more informative with
respect to extending the method, is based on another property of Deming regression: the slope
of the Deming regression line is that rotation of the original data such that a least-squares
regression on the rotated data has a slope of zero. A symmetric Thiel-Sen (STS) estimate can
then be de�ned as that rotation of the original data set such that the Thiel-Sen estimate of
slope is zero. A simple iterative algorithm to compute this is to compute the TS estimate,
rotate the original data by the resulting angle, and continue re�tting and further rotation until
convergence. Geometrically, the STS estimate corresponds to a pair of orthagonal lines that
partition the points of �gure 4 equally.

The PB1 estimate can be viewed as a one step approximation to the STS estimate above:
start with a clockwise rotation of π/4 (45 degrees) and then do a singe iteration of re�nement.
Since it is based on a single Thiel-Sen regression the theoretical justi�cation for the Thiel-Sen
con�dence interval formula translates directly to the Passing-Bablock estimate. For all of the
data sets considered thus far the STS algorithm converges in 2 or 3 iterations, and the PB1
estimator reaches the same or very nearly the same value as the fully iterated estimate.

Neither the Deming, STS, nor PB1 estimates of slope are scale invariant. Starting with a
data set whose slope estimate is β̂, multiplication of all the y values by some constant k does
not necessarily lead to an estimated slope of kβ̂. In the third paper of their series [7] two further
estimators PB2 and PB3 are proposed which are scale invariant while still retaining symmetry
in x and y. For the PB2 estimate, �rst �nd a value m which is the median of the angles in the
lower right portion of �gure 5, i.e. points with dy < 0 and dx > 0. The estimated regression line
is de�ned such that it and a line of angle m partition the points equally. It can also be viewed
as a 1 step STS estimator using π/2 +m as the initial clockwise rotatation.

The PB3 estimate is de�ned by two lines. Referring again to �gure 4 or 5, a pair of lines at
angles θ and −θ are opened and shut like a pair of scissors about the x-axis until they evenly
partition the data points, then θ taken as the estimated slope. Passing and Bablock describe
an iterative estimation procedure, however it is easy to see that median(abs(theta)) provides
a direct solution. The PB3 estimator is not a simple one-step approximation to the symmetric
Thiel-Sen (STS) estimate.
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5 Other notes

Unlike the other estimates found in the package the STS estimate can have multiple zeros. For
a data set like the arsenate study, where the overall data clusters tightly around a line, multiple
solutions are uncommon, and when they occur normally form a small tight cluster of values. The
other extreme is a set of points evenly distributed in cirle about the origin, for which there will be
n solutions. When multiple solutions occur the program returns the value of that one having the
smallest MAD of the residuals. The output structure includes an additional component angle
containing the full set of solutions.

For the PB2, PB3 and STS methods it is not at all certain that the Sen estimator of con�dence
limits is valid. Since they are are iterative the 1 to 1 mapping between the slope and Kendall's tau
which forms the basis for Sen's argument no longer holds. Secondly, extending the Sen variance
formula to data with case weights is far from clear. The pbreg and theilsen routines therefore
also include an option for bootstrap con�dence intervals, and we recommend using it whenever
there are case weights or for the STS, PB2, and PB3 estimators. Due to the excessive number
of ties that would be generated by ordinary bootstrap sampling the wild bootstrap method [12]
is used.

6 Which method is best?

The two primary advantages of the robust methods in laboratory studies are that they give a
robust estimate of the slope in the case of outliers and are less sensitive to choosing the correct
variance speci�cation. Figure 6 shows the result on a data set with outliers: one of the two
laboratory methods has had 3 assay failures. The PB regression line tracks the main body of
the data, while the other two lines are pulled away.

> plot(new.lot ~ old.lot, data=ferritin2, subset=(period==2),

xlab="Old lot", ylab="New lot")

> dfit <- deming(new.lot ~ old.lot, ferritin2, subset=(period==2),

cv=TRUE)

> lfit <- lm(new.lot ~ old.lot, ferritin2, subset=(period==2))

> pfit <- pbreg(new.lot ~ old.lot, ferritin2, subset=(period==2))

> abline(pfit, col=1)

> abline(lfit, lty=2)

> abline(dfit, lty=3)

A discussion by Støckl, Dewitte, and Thienpont provides a useful counterpoint. Essentially,
if the data is good, all the methods will agree on that fact. If there are assay issues, outliers in
particular, then the actual source of the problem needs to be investigated rather than just using
a �better� regression tool. Understanding data requires more than pushing a button.

They argue further, and I think incorrectly, that ordinary least squares can su�ce. The
ferritin data is a counter-example. In order to provide long term calibration of the assay for
the purposes of patient care, the calibration corrections used by the lab will be the cumulative
product of the regression slopes. If OLS were used at each stage the downward bias, even if it is
small for each given reagent change, would accumulate over time.
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Figure 6: Ferritin data with outliers, along with OLS (dashed), Deming (dotted), and Passing-
Bablock (solid) regression lines.
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